
212

International Journal on Advances in Intelligent Systems, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Towards Evolvable Documents with a Conceptualization-Based Case Study

Marek Suchánek and Robert Pergl

Faculty of Information Technology
Czech Technical University in Prague

Prague, Czech Republic
Email: marek.suchanek,robert.pergl@fit.cvut.cz

Abstract—Documents surround us in our everyday lives and affect
us even without noticing it. Information technology brought an
evolution to documents in terms of flexibility and efficiency in
their composing, processing, and sharing. However, in these days,
an electronic document lacks the evolvability and reusability of
its parts. Maintaining the consistency across one or even several
documents and their versions makes it a very complicated task.
We encounter a similar problem in the software development
domain where, however, effective principles and techniques have
been developed and adopted. Incorporating modularity, design
patterns, loose coupling, separation of concerns, and other
principles are being successfully applied to achieve evolvability.
Results are proven in decades by scientific research and count-
less practical applications. Hypothetically, such principles may
be used also for documents in order to achieve reliable and
easy-to-maintain documents. This paper presents our generic
conceptualization leading to evolvable documents and which is
applicable in any documentation domain based on related work
in the electronic documents, as well as the evolvable software
development domains. Advantages and core ideas of our concep-
tualization are then demonstrated in a case study – prototype
design of OntoUML modelling language documentation. Finally,
possible next steps for generic evolvable documents are proposed,
as we perceive our contribution as the first step in the journey
towards evolvable documents in the scientific point of view. The
results from this paper can be used for further research and as the
first boilerplate for designing custom evolvable documentation.

Keywords–Electronic Documents; Evolvability; Modularity;
Conceptualization; OntoUML; Case Study; Separation of Concerns.

I. INTRODUCTION AND MOTIVATION

Documents are a vital carrier for storing and distributing
knowledge – the precious result of various human activities.
The number of documents grows rapidly primarily due to
their “cheapness” in the digital era. However, an interesting
observation may be made: In spite of various means of storing,
retrieving, and sharing documents in electronic forms, the
foundations did not change, and the documents are the same
hard-to-maintain and evolve structures as they always were.
Imagine, for example, a document capturing regulations of
a study program enrolment. Such a document is issued and
maintained by the Dean of a faculty. However, it must be
compliant with the university’s regulations document, which
in turn must be compliant with the regulations of the Ministry
of Education. We have three levels of documents where the
more specific ones contain parts of the more general ones,
take them as-is or elaborate more specific versions, add further
regulations, and so on. Now, imagine that there is a change
in the Ministry’s regulations, which must be appropriately
dealt with in the referring documents. This situation affects at

least dozens of Faculty’s agendas which results in inefficiency,
inconsistency, and other related problems.

This paper is an extension of the previous conference
paper [1] by extending related work, broadening the initial
conceptualization, and (the most importantly) introducing a
conceptualization-based case study – draft of the evolvable
OntoUML documentation. OntoUML is an ontology-based
modelling language used also for expressing the conceptual-
ization in this paper [2].

The first observation is that documents are seen as mono-
lithic wholes or wholes composed of highly coupled parts
which cannot be separated or even reused. If we would be
able to decouple parts of documents, make them loosely
coupled just by higher concerns and design them as reusable,
it would significantly help in many domains, such as teaching
materials, corporate documents, manuals, or regulations. The
practice of software engineering suggests that if done properly,
evolvability may be significantly improved, the efficiency of
document management gained, and error rate decreased [3].

In Section II, we first briefly introduce a wide variety
of related work affecting documents domain in terms of the
modularity and evolvability. Section III is divided into three
steps of our approach to create a generic conceptualization,
i.e., independent on a type of enterprise or domain involved.
We apply concepts from theories used in computer science
and software engineering verified by practice. Furthermore, we
build our approach on the Normalized Systems (NS) theory [3],
which is dealing with evolvability of information systems and
it has been reported to be successfully applied in other domains
than software development including documents [4]-[5]. In
Subsection III-A, we split the domain into key parts and then,
in Subsection III-B, we introduce conceptual models for them
using the ontologically well-founded conceptual modelling
language OntoUML [2]. After this exploratory and inductive
part, Section IV demonstrates the case study that applies the
previously described ideas and findings from the related work.
Finally, Section V contains deduced possible and potentially
suitable next steps and future work.

II. RELATED WORK

Over the years of Information and Communication Tech-
nologies (ICT) field development, many solutions for work-
ing with documents and documentation emerged [6]. In this
section, we discuss some key areas and approaches related
to electronic documents. This review of the current state-of-
the-art provides a foundation for our conceptualization of the
documents problem domain in general.

213

International Journal on Advances in Intelligent Systems, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Nowadays, there are many different text processing tools,
syntaxes and complex systems for dealing with documents
within their whole life-cycle [6]. The goal of this part is
not to describe particular existing solutions, but to empha-
size essential and interesting approaches or ideas that should
be considered before developing new solutions. All of the
mentioned approaches strive to make dealing with documents
simpler and more effective. In the following conceptualization
and the case study, we will take those observations into
account.

A. Formats and Syntax
There is a plethora of markup languages and document

encoding possibilities providing different advantages: some are
focused to be easily readable in plain text, and others provide
ways to encode complex document elements [6]. From using
basic annotations to mark headings and lists emerged simple
markups such as Markdown or more complex as AsciiDoc or
reStructuredText. Interesting ly, last two named share a concept
of extensions that is similar to LATEX commands/environments
or Word macros. Such feature is essential for building complex
documents. But when compared to LATEX and office suites, it
is much more flexible and easier to process due to the good
human and machine-readability in a plain text [7][8].

Another interesting concept of versatility and evolvability
is represented by the Pillar markup language for the Pharo
environment [9]. It consists of a document model which is
easily extensible by implementing new classes and visitors
defining syntactic constructs meaning and handling. Further-
more, the provided tool allows export in many other formats
and markups. Sadly, the syntax is not very common and Pillar
is widely used only in the Pharo community.

When it comes to a specific format, community size
and available well-maintained tooling are crucial. Converting
between formats is also important to mention. A great example
of a markup converter is Pandoc, which enables conversion
from over 20 formats to more than 30 formats [10]. The smaller
number of input formats illustrates the fact that some of them
are harder to process. At the same time, an output format of
a document should be expressive and extensible. For example,
LATEX has mechanisms of custom packages and commands,
environments, and macros. It is then a considerable challenge
to convert it to another format lacking these extensions [11].

B. Templates and Styles
Separation of a graphical design and content is the first

notion of separation of concerns in documents. This separation
– as well as splitting the document into parts (or modules)
– makes it easier to maintain and to keep track of changes.
Dealing with style when writing a document is extra overhead
that should be done separately. Only the meaning should be
expressed by the text, for example, marking text as important
instead of decorating it as bold. Then, in some template, such
important text then can be rendered in red colour, underlined
or different font without stating that it should not be bold. This
applies to every possible semantics in a text [6].

A document, or any piece of data in general, can be
rendered using an independent template associated with one
or various styles. This approach can be seen in many docu-
mentation systems and languages, such as Extensible Markup
Language (XML), HyperText Markup Language (HTML) and

Cascading Style Sheets (CSS), LATEX or even in various What-
you-see-is-what-you-get (WYSIWYG) Office suites. This sep-
aration leads to good evolvability of document structure and
style without touching the content itself [6][11].

Using templates with styles to easily form and design
complex structures is well observable in the field of web
development. Many web frameworks are supplied with one of
many template engines, namely, Twig, Jinja, JavaServer Pages,
Mustache, or other. Template engine takes structured data
and a template as input and produces a rendered document,
e.g., query result in the form of HTML document with table
or JavaScript Object Notation (JSON) array based on the
request. Moreover, it is usually possible to extend and compose
templates together, and to create reusable components and
macros [12].

C. Sharing and Collaboration
Documents are often written by more than one person.

Collaboration possibilities are related to the format used. If
the document files are in plain text, then one of the solutions
is to use Git or other version control system (VCS) [13]. There
are also many cloud services allowing users to create and edit
documents collaboratively, for instance, Google Documents,
Dropbox Paper, Overleaf, or Microsoft Office Online. Both
types of solutions help maintain consistency of document
versions in a distributed authoring set-up.

When mentioning Git and other VCSs, it is important to
emphasize that they already provides a lot of functions that a
powerful document system needs [13][14]. Such features are
among others:

• tracking of history and comparing changes of version,
• tagging a specific version,
• signing and verifying changes,
• looking up who changed a particular line of text,
• working with multiple sources/targets and linking

other projects submodules,
• logging and advanced textual or binary search within

the changes,
• allowing changes in multiple branches,
• merging or combining changes.

Moreover, services like GitLab, GitHub, or BitBucket
provide more collaborative tools for issues, change reviews,
project management, and other services integrations. One of
the important related services types is continuous integration
(CI), which allows the building, checking, and distribution
of results seamlessly. It can be used for example to compile
the LATEX document and send the Portable Document Format
(PDF) to a file server or email address [14][15].

D. Document Management Systems and Wikis
A document management system (DMS), as explained

in [6] and [16], is an information system that is able to manage
and store documents. Most of them are capable of keeping a
record of the various versions created and modified by different
users. The term has some overlap with the notion of content
management systems. It is often viewed as a component of
enterprise content management (ECM) systems and related

214

International Journal on Advances in Intelligent Systems, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to digital asset management, document imaging, workflow
systems and records management systems.

One of the leading current DMS is an open-source system
named Alfresco that provides functionality such as storing,
backing up, archiving, but also ISO standardization, workflows,
advanced searching, signatures and many others [17]. From our
perspective, the problem is that DMSs are mainly focused just
on working with a document as a whole that lacks finer-grained
modularity necessary for evolvability itself.

Knowledge can be gathered, formatted, and maintained in a
Wiki – a website allowing users collaboratively modify content
and structure directly from the web browser [18]. Wikis are
extensible and simple-to-use sets of pages that can be edited in
a WYSIWYG editor or manually with some simple or custom
syntax, e.g., Markdown, reStructuredText, or DokuWiki. The
system keeps track of changes within pages as well as the
attachments, so it enables the comparison differences and see
who changed the document and when they did. Common
extensions of Wikis are tools for exporting to various formats
or extending syntax and other user-friendly functionality [19].
There are many diverse commercial and open-source solutions
with slightly different functionality. Commercial solutions are
often called enterprise content management and consist of a
Wiki system and a DMS to manage documents in a better way
than just with a plain DMS [16].

E. The Normalized Systems Theory
The Normalized Systems theory [3] deals with modularity

and evolvability of systems and information systems specif-
ically. It introduces four principles in order to identify and
eliminate combinatorial effects (i.e., dependencies that are
increasing with the system size):

• Separation of Concerns
• Data Version Transparency
• Action Version Transparency
• Separation of States

Applying the principles leads to evolvable systems com-
posed of fine-grained and reusable modules. In the documents
domain, mainly the first two principles are applicable [5],
because actions and states are workflow-related. There is no
workflow “inside” the document as we know from information
systems, but documents are often subject or object in some
workflow (e.g., passing a document between activities or
approving draft to the final version).

The principles and concepts of the theory have been re-
ported to be used in other domains, such as study programs [4]
and documents [20]. In the paper [5], it is shown in a form
of the prototype, how the theory can be used (especially the
separation of concerns and creating modular structures) in the
domain of documents for study programs. The prototype is
able to combine selected fine-grained independent modules and
to generate a resulting LATEX document.

Theoretical foundations of the Normalized Systems theory
are applicable also in other domains, even those that are non-
ICT related. A typical example of such domain is streets
made of building blocks or multi-stage rockets as described
in [3]. It is fairly easy to find countless examples of everyday-
use systems that could or should be normalized and it gives
opportunities to further research in various domains.

F. Aspect-Oriented programming
Aspect-oriented programming (AOP) is a programming

paradigm that uses the separation of cross-cutting concerns
to modularize software. It has similarities to the Normalized
Systems theory and their solution in terms of so-called join
points. Using this paradigm allows adding new behaviour to
an existing code without changing it directly but plug it into
a specific place in the code. One of the typical examples is
logging as a cross-cutting concern; there can be many different
logging implementations and the chosen one can be plugged
into the code without changing anything else. The final code
is then composed by the weaver that generates object-oriented
code with integrated aspects from the aspect-oriented code.
Apparently, for successful AOP, appropriate and high-quality
tooling and language are necessary [21].

The core ideas of AOP are interesting also for other
domains than software development. Having tools and solu-
tion allowing seamlessly plugging-in additional functionality
undoubtedly increases efficiency. For the documents domain,
this could be reflected as a possibility to add new document-
parts and even new types of document-parts into the existing
document with tools composing everything together in a sim-
ilar way as, for example, it is in LATEX.

G. Source Code Documentation
Basically, for every widely-used programming language,

there are one or more systems for building a documentation
from annotations and comments that are placed directly in a
source code. Such systems are, for example, Javadoc for Java,
Doxygen for C/C++, Sphinx for Python (see Listing 1), or
Haddock for Haskell.

Listing 1. Documentation of Python source code

class Person:
"""This is simple example Person class

You can create new person like this:

.. code::

bd = datetime.datetime(1902, 1, 1)
p = Person("Peter Pan", bd)

:ivar name: Full name of the person
:vartype name: str
:ivar birthdate: Birthdate of the person
:vartype birthdate: datetime
"""

#: Number of people instantiated
people = 0
...

@property
def age(self):
"""Age of the person (birthdate-based)"""
t = date.today()
b = self.birthdate
return self._age_diff(t, b)

The fundamental idea is to place parts of documentation
directly into a documented artefact (a variable, a function,
a class, a module, a source file, etc.). The resulting docu-
mentation is as modular and evolvable as the writer creates

215

International Journal on Advances in Intelligent Systems, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

it according to guidelines and with Don’t Repeat Yourself
(DRY) principle. It is then indeed easy to edit just a part
of documentation related to one concern if the concern is
separated in the source code. Another observation is that such
documentation is composed of reusable parts. Linking the
source file to different project results in its inclusion to a
documentation of a different project, too. [22]

On top of the modularity and evolvability of such docu-
mentation, other advantages can be observed in such systems.
The used style and resulting format (for instance, HTML or
PDF) are picked and specified independently of the textual
content. Furthermore, as it is usually a part of software
development, the tooling and community around these systems
are on a very good level including support in version control
systems [6][22].

The already mentioned Sphinx is a tool designed for cre-
ating intelligent and easy-to-read documentation that is using
reStructuredText syntax together with many customizations.
Originally, it was created for the Python documentation, but
it has excellent support for the documentation of software
projects in other languages as well. However, it is not lim-
ited to software documentation. It is possible to find online
courses, personal websites, or even theses composed using
Sphinx [8][23].

III. OUR APPROACH

Our approach to investigate and understand the problem
domain of evolvable documents is to split it into four separate
key areas and to build conceptual models of the domain in an
ontologically rich language OntoUML based on them. Next,
we suggest possible solutions that can be based on them and
could lead to improvement of documents evolvability.

A. Key Document Viewpoints
After the brief overview of current approaches in the ICT

support for documents, this section introduces various key
viewpoints that are limited to electronic documents but are
typical for documents in any form. Each of them is briefly
described, and a possible implication in the computer science
domain follows. The viewpoints are defined with respect to
the semiotic ladder that introduces several steps from the social
world to the physical world: pragmatics, semantics, syntactics,
and empirics [24].

Pragmatics and semantics, that are related to the meaning
and intentions, are covered within the first three subsections.
Syntactics is related to the last subsection called Structure.
Encoding the document in the physical world, as other parts of
empirics, is out of the this work’s scope as we are on different
abstraction level than character encoding or printing.

1) Meaning: Apparently, the meaning is the key part of
a document, as the purpose of the document is to store and
carry a piece of information that can be retrieved in the
future [25]. As the well-known triangle of reference [26]
says, the meaning is encoded in symbols of some language
via concepts. The common problem is that in the case of
documents, the language is a natural language. Because of
that, documents are hard to be understood by computers
effectively in the sense of their true meaning, i.e., lacking a
property nowadays called as machine-actionability as opposed
to human-readability. Advanced methods in data mining and

text processing disciplines try to address this [27]; however,
sometimes the meaning is hard to be decoded even by human
beings themselves.

Meaning, purpose, concern, and other content information
may be provided as metadata of the document or its standalone
part. Considering such metadata, there should be a simple,
single and flexible model for the description of documents
for an easy automated processing. If a meaning of a text is
captured in a machine-readable way, then it is possible to
extract desired information, compare the meaning of different
documents, find logical dependencies, and many others with
an automated processing. [28][29]

The most basic form of captured meaning are triplets
that consist of subject, predicate, and object [29]. Such an
assertion is very simple but powerful. For specific languages,
it is possible to derive them more easily than from the others
(e.g., English with its stable sentence structure vs. Slavic
languages); text mining may also be used for derivation [27].
The assertions can naturally have relations between themselves
and form a swarm of assertions, which is helpful for comparing
different sources of information. The information storing based
on triplets is typical especially for life sciences. Of course,
encoding a natural sentence into several connected assertions
is excellent for machine-actionability but not suitable for a
regular reader that is used to enjoy the beauty of fluffy
sentences.

2) Concerns: Writing a document happens with a concern
in mind, and typically there are multiple concerns across a
document. We can understand a concern in a document as a
principle that binds sentences in a paragraph, paragraphs in
a section, and sections in a document together. The whole
document then speaks about the highest-level concern that is
then split into parts recursively, until we reach some atomic
level such as paragraphs containing a set of statements. Lower-
level concerns can act as a separator of document modules,
and higher level concerns are then composed by multiple
submodules. It indicates that splitting the concerns further is
not intended by the author.

For example, considering a manual for a product, the top-
level concern is about the product in general with sub-concerns
installation, usage, license, and warranty. The usage can be
then again split into concerns related to usage of specific parts
of the product. On the other hand, the warranty might not have
any further sub-concerns.

3) Variants: Apart from the primary concerns in a docu-
ment, there are also cross-cutting concerns that are not related
to meaning and information inside a document, but rather to its
usage. Such cross-cutting concerns are an intended audience,
specific ways to describe the concern in respect to the essence
of the document, a language, a form of document (slides,
handout, book, etc.), and so on. Those represent variants of a
single document. They are a source of possible combinatorial
effects and also highly affect the content of the document.

For instance, teaching a course requires a textbook and
lecture slides which are, of course, very closely related. When
you do some update in the textbook, you need to update
the affected slides. Now, imagine teaching the course in two
languages with some classes for seniors and some for juniors.
So, you have 8 different documents and adding one more
language would lead to another 4. Apparently, it is becoming

216

International Journal on Advances in Intelligent Systems, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

«Role»
Rendered
Document

«Relator»
Representation

{ordered}

«Subkind»
Atomic

Concern

«Subkind»
Complex
Concern

Data Version
Transparency

Separation of Concerns

Meaning & structuring

Design & format separated

«Kind»
DocModule

Content

«Kind»
Template

«Kind»
DocModule

Variant

«Role»
Cross-cutting

concern

«Kind»
Concern

«powertype»
DocModule

«Collective»
Document

«mediation»
1..*

1

«material»
/rendered with 0..* 1..*

{complete, disjoint}

{essential}
1

1

«mediation»
0..*

1

subconcern of

0..*

1..*

classified by
0..*

1

creates
1..* 1

is about
0..* 1

M 0..* 1..*

Figure 1. Conceptualization of concern-based document modularization in the OntoUML ontologically well-founded language

hard to manage these separate documents correctly. This is
the core challenge, where combinatorial effect-free documents
should help. Ideally, we want to work on sum of reusable
variants (2 + 2 + 3 = 7) but get a product of possible final
documents (2 · 2 · 3 = 12). Although that is hard to manage
for documents, it is crucial to use variants for the lowest level
concerns to maximize the advantage.

4) Structure: A structure of a document is essentially a
hierarchy of the document composition: chapters, sections,
subsections in various levels, paragraphs, and parts of para-
graphs. Then there are also other block elements, such as lists,
tables, figures, code examples, equations and similar. Next, we
distinguish so-called inline elements, which are parts of text
inside a block to capture the different meaning of words (e.g., a
link, important, math, a quote, a superscript, etc.) or to provide
additional information, for example, a reference or a footnote.
Notice that we do not state anything about the style here.

The naming of document parts or structural elements can be
different based on the template. For example, in a template for
presentation, we can expect to have a group of slides, slide,
slide section, and bullet instead of sections and paragraphs.
It can be totally custom and innovative but always with the
same purpose to encode the text within a logical structure that
reflects the composition of concerns that are carried in the
content, not always necessarily by natural language.

The flexibility of a document structure is an enabler of
evolvability. Aligned with the notion of modules in program-
ming, every modular unit should be loosely coupled with
remaining parts and allowed to be moved to a different place
even in a different document. A heading level represents a
typical problem: there is a level of the unit involved, and it
gets more complicated with cross-references. Cross-reference
to a different internal document part can be easily switched
to external reference pointing to a separated document part
or even its labelled encapsulated content. It goes even deeper
when we consider that its position in a document may form a
list of prerequisites that the reader should know beforehand.

Finally, we would expect a possibility to define a new
custom element, based on those already specified in the
structure, to increase usability and flexibility. That indicates

the need for multilevel modelling in the document structure.
For example, a table with predefined rows and columns can
be used for invoices, a link to some resources that changes to
the best possible mirror server, or a special type of paragraph
can indicate the higher importance of content for readers.

B. Conceptualization of Documents

Based on the previous considerations, we can now as-
semble the conceptual models. We use already mentioned
language OntoUML which uses high-level and well-defined
terms from the Unified Foundational Ontology (UFO) as
stereotypes and significantly enhances semantics and expres-
siveness of basic Unified Modelling Language (UML). Details
about the language and the ontology are fully explained in [2].
The connector of all the introduced models is the document
content, the carrier of information. All models are connected,
compatible, and describe different viewpoints introduced in the
previous section. Moreover, NS patterns and modularization
are well observable in the following models.

1) Concern-Based Document Modularization: Figure 1
shows the diagram of the conceptual model with the separation
of concerns pattern for documents. A document is a modular
structure composed of module variants that encapsulated the
content. Module variants are instances of document module,
thus we use the powertype stereotype [30]. Concerns as the
drivers of modularization are naturally binding elements of
documents to groups. A concern can be composed of sub-
concerns and that makes it complex concern, otherwise, it is
atomic.

Cross-cutting concerns are then the special case of general
concerns in case they produce variants of document modules,
i.e., for one or more module variants the concern is in a role
of the cross-cutting concern. The model allows a case when
module variant is about a concern that is also the cross-cutting
concern for the very same module variant.

Documents can be rendered using many templates, while
the content is still the same. That separates a used style and
typography from the actual content. We call the document
rendered if it is represented by using a certain template.

217

International Journal on Advances in Intelligent Systems, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For example, in a manual for a software product, there
are the following concerns: installation, usage, and warranties.
Some of those have sub-concerns, which creates submodules,
e.g., installation for various platforms. A cross-cutting concern,
in this case, can be the language. Variants of “installation” are
formed by using different natural languages. The manual is
an ordered collection of various variants. Thus it is possible
to have a multi-language manual, but also language-specific
manual, or just installation manual in English and then reuse
these module variants easily. Finally, the manual can be then
rendered with a template for printing, website, annotated XML,
eBook, and so on.

Language is a typical cross-cutting concern in documents,
but it can also be a case of general concern for creating
modules. Consider a document about some ancient language.
Probably some top-level module will be about the language
concern with sub-concerns related to different parts of the
language. Such document can be published in many languages
as a cross-cutting concern as well.

2) Document Content Structuring: The task of document
content structuring has been addressed many times through
syntax for composing documents and systems like the already-
mentioned Pillar, LATEX, or Sphinx. For our purpose, the
conceptualization is designed on a higher abstraction level, as
shown in Figure 2. A content of the module is composed of
document elements that can be either block or inline. Block
element contain other block elements and/or plain content.
Plain content can be a decorated part by some inline elements,
for example, marked as important or quoted.

Those types of elements are similar to document modules
powertypes [30] in the conceptualization, and their instances
are particular usages of them. For example, the most common
instance of a block element is a paragraph, and an instance of
a paragraph is a particular paragraph containing a particular
text, which is covered by the atomic content kind that is not
further subdivided in our model. It works similarly for figures,
pieces of data, file imports, and so on.

Element type instances can be the well-known unordered
or ordered lists, tables, definition lists, links, forms, cross-
references, figures, quotes, external references, and others. On
top of that, using powertypes allows defining new structural
elements with different semantics, e.g., an important para-
graph, specific table combined with a form, or external file.
Metadata for each module content and document element can
be provided. Content may be maintained as revisions that allow
keeping track of changes.

3) Meaning in Nanopublications: The way a meaning
is encoded within a document module content is shown in
Figure 3. A content is formed by natural sentences, which
are essential for the content as a whole, for a writer to express
thoughts, and for a reader to perceive them. In a sentence, there
can be one or more encoded and usually tightly connected
assertions, which are triplets in a simplified view: subject,
predicate, and object. It is possible to form multiple assertions
with the same meaning by using synonyms, and by switching
subject with the object while using predicate for opposite
direction (e.g., Peter likes sushi and sushi is liked by Peter).

Knowlet, or so-called nanopublication, is such an assertion
with additional information and provenance as characteriza-
tions. Nanopublications are widely used within semantic webs

Figure 2. Conceptualization of structuring document module content

and Resource Description Framework (RDF) in general, as
described in [27] and [31]. Each instance of a word should be
uniquely identifiable, in semantic web this problem is solved
by the use of Uniform Resource Identifier (URI). For example,
even with a simple assertion like cat is white, we need to know
which cat the assertion is about, or if it is about all cats. The
context is crucial for assertions, but it is hard to be adequately
captured [27].

This expression of meaning could allow machines to read
and understand the content in a more efficient way rather than
it is possible with text mining. Moreover, a semantic search,
comparison, or reasoning can be built in a more straight-
forward way. It could lead to easier work with the documents,
their parts and changes, and significant resource savings. With
a definition of opposite words, a contradiction in sentences,
for example, cat is dead and cat is alive with same-URI cats,
can be indicated.

IV. CASE STUDY: EVOLVABLE ONTOUML
DOCUMENTATION

In this part, we are going to demonstrate the previously
described ideas from our conceptualization on a very specific
sort of document – the OntoUML documentation. We chose
this topic for several reasons. First, it is needed in the On-
toUML community, since the information is spread among
various papers and theses. The documentation of OntoUML
has many concerns including cross-cutting concerns, can be
semi-structured, and it describes some solid assertions that
must be valid and consistent across the documentation. Also,
we have used OntoUML for our conceptualization, it might
help the reader to understand how OntoUML works.

218

International Journal on Advances in Intelligent Systems, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Instances need to be
uniquely identified and/or
carry the related context.

{disjoint}

«formal»
/antonym

«Kind»
DocModule

Content

Instance of sentence is the
composition of assertions
and can be reused (with
the same context).

«characterization»

«characterization»

«Mode»
Publication Info

Provenance

«Kind»
Natural Sentence

«Kind»
Knowlet

(Nanopublication)

«Role»
Predicate

«Role»
Object

«Kind»
Assertion

«Subkind»
Verb

«Kind»
Word

«Subkind»
Noun

«Role»
Subject

{essential}

0..*

1..*
1

1
1

1

0..*1
{essential}

0..* 1..*

*

1

*

1

*

1

«formal»
/opposite_direction

*

*

«formal»
/synonym

*

**

*

«Mode»

Figure 3. Conceptualization of meaning encoded in nanopublications

A. Concerns of OntoUML
The OntoUML documentation should cover many different

top-level concerns such as introduction with general informa-
tion about OntoUML, core concepts, class stereotypes, rela-
tionship stereotypes, and complex examples. They represent
the very first level modularization of the answer to “What
is the OntoUML documentation about?”. The selection and
order are mainly given by the OntoUML properties, but reader
experience should be considered as well.

1) Concerns Composition: Those top-level concerns are (in
accordance with the conceptualization) further composed of
sub-concerns in multiple levels. For example, class stereotypes
concern consists of Kind, Subkind, Role, Phase, and other
stereotypes as leaves that can be used when defining an entity
type, but there is a hierarchy separating sortals and non-sortals
and then there is grouping by rigidity. It can be expected
that concerns can be added or removed as well as change its
position in the hierarchy in the future.

2) Cross-Cutting Concerns: For each of the stereotypes we
have concerns that “cut through” these sub-concerns:

• textual description,
• metamodel fragment (structured information),
• constraints,
• frequently asked questions (FAQ),
• assertions (rules and logical laws),
• examples,
• related patterns and anti-patterns.

Those special cross-cutting concerns apply also to each of
the relationship stereotypes. Also, some are applicable to other
top-level concerns, such as examples of core concepts or FAQ
about OntoUML in general. At some positions a cross-cutting
concern can be mandatory and at other positions the same
cross-cutting concern can be optional. Again, cross-cutting
concerns may be added, removed, or changed in the future.

B. Architecture of the Prototype
The most challenging part of the prototype is to de-

vise the prototype’s architecture. It must allow simple usage
with standard tools (to avoid reinventing the wheel), capture

concern-based modularization described in the conceptual-
ization (Section III-B1). The document content structuring
conceptualization (Section III-B2) affects the choice of docu-
ment composer that allows separation of graphical design and
markup functionality extensions, as well as composing docu-
ment from various parts together. Such extensibility then easily
enables implementation of the meaning encoding captured with
nanopublications from the final one of our conceptual models
(Section III-B3). The architecture is depicted in Figure 4 as
further described.

1) Directory Structure and Files: The core principle, sep-
aration of concerns, is realized in a very straight-forward way
– the directory structure and files. Folders represent concerns
as they are also an example of the composite pattern, they
allow sub-concerns as subfolders and form internal nodes
of the document tree. As leaves, there are files of various
types and purposes representing the lowest-level cross-cutting
concerns, i.e., DocModule Variant. They encapsulate sub-
modular structuring and carry the specific DocModule Content
as its essential part.

Aside from these files with content such as plain text,
figures, tables, datasets, laws, or code fragments, two special
types of files need to be present to describe the structure and
metadata. First is a classical index file that acts just as the
table of contents for the single atomic concern. The second
type – called descriptor – contains the definition of DocModule
(modelled as a powertype in the conceptualization).

2) DocModule Descriptors: The DocModule descriptor
is a definition with basic information about the module. It
specifies the content using easy-to-read and to process Ain’t
Markup Language (YAML). The main information included in
a descriptor is:

• name and a short description of the concern,
• list of cross-cutting concerns involved and their role

for the current concern or sub-concerns,
• list of sub-concerns and their restrictions (multilevel

specification).

An important thing to emphasize is that those lists con-
taining both types of related concerns are ordered. The order
is important for the reader’s understanding, for example, a

219

International Journal on Advances in Intelligent Systems, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

description should come before an example in the most cases.
For the sub-concerns, a logical order is preferred: from basic to
more advanced concepts that also contain more references to
the previously described. This part of descriptors also enables
simple reordering.

document concern

top-level concerns

subconcerns

cr
os

s-
cu

tt
in

g
co

n
ce

rn
s

CC1
CC2
CC2a
CC2b
...

OntoUML specification

i d i d

A B

i d

C

i d

A1

i d

A2
i d

B1 i d

B2

i d

B2a

i d

B2b

CA A1 A2 B B1 B2 B2a B2b

i d

concerns

intro theory

classes
patterns

...

kind
rigidity

phase
memberOf

folder
index
descriptor

...

examples
lawsdescription

metamodel ...

Figure 4. OntoUML evolvable documentation architecture

3) Text Parts: As described already in Section II, there are
many markup languages and – in terms of evolvability – simple
and extensible formats with plain-text human readability that
are a suitable option. Thus, all textual modules will be en-
coded in reStructuredText. It allows all basic markup, figures,
references, various block types, and tables. Using Sphinx tool,
it can be easily extended with custom document elements (i.e.,
define Document Element Type) as shown in Figure 2 of the
conceptualization [8].

4) Metamodel fragments: The main part of the OntoUML
documentation is the definition of the modelling language
metamodel. For this purpose, YAML files will be used to spec-
ify the metamodel fragments based on atomic concerns such as
single stereotypes. For these YAML files, appropriate schema
provides a simple way of validation. The core idea is to provide
multilevel modelling – class stereotype schema describes what
properties can be described in the class stereotype descriptor.
This part of the work is highly influenced by the structure of
UML profiles.

5) Assertions and Laws: In the OntoUML specification, a
lot of assertions are made that need to be consistent across
whole documentation. A simple markup extension should
allow defining triples in the text parts of the document. It

should clearly define what assertions there are as a conclusion
from a paragraph or a figure. It allows semantic queries over
the documentation with widely used tools, but also simplifies
understanding for the reader.

On top of that, important OntoUML properties are specified
as modal logic formulas. Similarly to assertions, those formu-
las need to be presented as rendered mathematical expressions
to a reader but also kept in a machine-readable format for
reasoning and contradictions revealing. An example of such
reasoning is a validation of OntoUML models that uses a
specific version of metamodel from the documentation. In
the OntoUML 2.0 paper [32], the TPTP Logic Specification
Format is used to encode the formulas and it can be used for
the evolvable documentation, as well.

6) Figures and Model Examples: Since model examples
are essential for the OntoUML documentation, it needs to be
done in an evolvable way, as well. Problems appear when an
exported diagram is used as a figure in the document, as it
gets separated from the model in an editable format. Instead
of exported graphics, there needs to be a way how to connect
the model into the document through its source file (e.g., XML)
and to generate a figure when the document is composed. A
new custom extension should solve this problem.

C. Tooling
After the design of the document encoding into concern-

based modules of various types and supporting metafiles, the
next step is to propose a workflow of how to build and
work with the document using appropriate tools. Many useful
services and tools that were already mentioned in Section II are
going to cover requirements for this use case. Other custom
tools have to be designed and implemented because of the
uniqueness and novelty of the solution (for instance, exporting
an encoded metamodel as a UML profile). Figure 5 shows the
realization with specific formats and tooling.

1) Documentation Weaver: Using reStructuredText leads
to using Sphinx as the tool for building the documentation.
It acts similarly to the weaver in AOP for our case study. It
takes all linked DocModule Variant, forms internally a merged
Document that is then rendered using selected Template and
output format as described in Figure 1. Predefined or custom-
made Template can be used, including possibility of creating
a document Representation in form of a classical document,
website, or presentation [23].

2) Sphinx Extensions: Sphinx easily allows to develop
custom extensions in the Python programming language and
since it is a widely-used tool, many useful extensions already
exist. First, autosectionlabel provides a simple way
how to reference concerns simply by using headings. More
interesting is ifconfig that allows incorporating conditional
blocks in the documentation, for example, some parts of textual
description visible just when building presentations from it.
This extension will also be used to easily exclude concerns
from the document composition. Other community extensions,
such as builders for different formats including docx, will be
used, as well [23].

3) Concern Query Tools: In the documentation constructed
as described above, there is a precise definition of concerns,
cross-cutting concerns, and their relations. Thanks to that,
another support tool can be developed to inform the writer

220

International Journal on Advances in Intelligent Systems, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

rst
yaml TPTP

png xmi
csv

OntoUML EvoDocs

Sphinx pdfhtml

LaTeX docx

UML profile
Rendered document

xmi

consistency
checks

formal
validation

concerns

cross-cutting
concerns

template

Custom
export

owl

concern
queries

extensions

Figure 5. Selected formats and tools in overall architecture

about possible change propagation through referencing. For
example, if the metamodel specification of the Role stereotype
is changed, then the writer should be notified to revisit textual
description of Role, examples, and possibly other stereotypes
tightly related to the Role. There are important questions
then, for example, how much are they related, can it be
simply measured by the number of references or denoted with
special annotation. Other similar queries are straightforward to
implement with this architecture.

4) Custom Exports: OntoUML is a UML profile and all the
needed information is part of the documentation. One of the
custom tools will enable to build UML profile specification in
XML Metadata Interchange (XMI) standard from the YAML
descriptors. Basically, the tool is a simple translator between
two formats. In the future, new exports may be easily made
from existing specification or with enriching it by additional
cross-cutting concern.

D. Sharing and Collaboration

Everything needed is encoded in multiple simple text
formats structured nicely with directories and subdirectories
according to document outline. On top of that, there are
some metadata about the document to enable easier composing
and understanding. Thanks to all that, is it possible and also
beneficial to use Git for version control and collaboration on
the document.

1) Editing the Documentation: Thanks to the selected
formats, any text editor can be used to edit the documentation.
Support for auto-completion, syntax highlighting, on-the-fly
preview, and other nice-to-have features is very good due to
the selected formats that are standard and widely-used. For
reStructuredText, there are also WYSIWYG editors, even in
an online in-browser version.

2) Branches and Versions: OntoUML specification is ex-
pected to be developed in various branches as new proposals
based on scientific researches or practical use cases emerge.
Then there should be also the main branch with the official
specification. Separate branches can be developed by anyone
and mechanism for incorporating changes in the main branch
should be possible with allowing discussion and reviews of
experts. In all branches, version tags are needed to enable
referencing for models (e.g., this model is designed using

OntoUML v1.0.5). All of these features are covered by Git
and GitHub as already discussed in Section II.

3) External Services: Choosing GitHub as a hosting for
the Git repository with the documentation enables the use of
a lot of integrated external services. Aside from Travis CI
for automatic building the documentation and sending it to a
web server, for Sphinx documentation, there is readthedocs.org
service that directly publishes the documentation that is cur-
rently in the repository. Another example of a very useful
integration for OntoUML specification case is Zenodo that
provides Digital Object Identifier (DOI) assignment to the
repository content. With the GitHub API, it is possible to build
custom integrations in the future, when they are needed.

E. Prototype Implementation and Evaluation
According to the previously described conceptualization

and the proposed solution, we implemented the prototype
of the OntoUML evolvable documentation and published it
in the repository github.com/OntoUML/OntoUML with auto-
matic tests checking consistency and on-change documentation
publishing on ontouml.readthedocs.org.

1) Implementing the Solution: After setting up the repos-
itory with Sphinx boilerplate, as the initial documentation,
the previous OntoUML Wiki from the community portal was
translated from HTML into reStructuredText and split by the
mentioned concerns and sub-concerns. For this translation,
Pandoc tool was very useful although it had to be completed by
person mainly because of relative links and particular reStruc-
tuedText environments giving the text more semantics than pre-
vious HTML encoding. Concerns and sub-concerns are directly
linked via a table of contents or include features of Sphinx.
Consistency and ability to build the complete documentation
was set up through Travis CI and automatic deployment of the
documentation as a website through ReadTheDocs (both free
thanks to the open-source license of the project).

2) Previous Solutions and Comparison: Previous to this
solution, we ran the community portal ontouml.org that was
intended to be the central point of OntoUML knowledge
(that is spread across multiple papers and websites). At our
faculty, students used the portal to study OntoUML and
reported possible mistakes by email to teachers. These report-
ings needed a discussion and duplicate reports were regularly
occurring. Although over a hundred of users were registered

221

International Journal on Advances in Intelligent Systems, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in the portal, almost no one preferred to use the forum for
discussion of problems nor reporting them. After two months
of new OntoUML documentation, students are communicating
instensively by creating and maintaining issues on GitHub and
some even directly propose changes via pull requests.

All changes are transparently visible and are possible to
discuss widely. Thanks to the separation into smaller modules
by concerns and the use of suitable file formats, changes are
easy-to-do directly in the GitHub editor within a web browser.
Tracking changes and comparison of OntoUML documentation
versions and branches is now possible. All changes including
those proposed by externals are automatically tested for consis-
tency and can be reviewed by an expert before merging to the
official branch. Those advantages resulted in dropping original
Wiki in the portal and linking the evolvable documentation
instead.

3) Community Adoption: As described, the new documen-
tation brought advantages in its evolvability and ability to
validate and also the adoption by the OntoUML community
is positive. Since the prototype is still under development and
as such we have not notified broader community yet, it is a
positive sign that we have more than three times more visitors
in our new documentation system over the same time span
according to Google Analytics; of course there may be other
aspects involved.

4) Future Development Plans: As it is a prototype, there
is still a lot to implement and enhance. In the near future,
more cross-cutting concerns, their validations, and additional
tools will be added to the documentation making it more com-
plex but still easily evolvable. Examples are: temporal logic
description and its validation, generating OntoUML hierarchy
from the specification of stereotypes, and improved automatic
checks of documentation consistency. The community feed-
back provided is also about the form as well: We will improve,
for example, rendering of stereotype overviews and implement
customized documentation templates for presentations and
PDF export. Such plans would be impossible or inadequately
hard to do with the previous Wiki-based technology in the
portal.

F. Case Study Summary
The solution described in this case study is an early

prototype implementing our initial conceptualization with a
focus on the evolvability patterns and principles. Thanks to
that, the contribution in form of simple but smart evolvable
documentation is promising and can be enhanced or used for
other domains in the future.

1) Evolvability of OntoUML documentation: The intro-
duced design and selected tools bring advantages in terms
of evolvability. Adding new or editing existing concerns and
cross-cutting concerns (for example, new class stereotype or
a new aspect of all relationship stereotypes) to the existing
OntoUML specification is easy and will not cause problems
via combinatorial effects.

2) Usability: Proposing new changes or variants of the On-
toUML is using well-known Git (and GitHub) workflows with
branches and pull requests including community discussion,
authorized peer reviews, incorporating suggested improve-
ments, and automatic checks. Encoding of the documentation
is suitable for human readers and it is machine-actionable

without any vendor locking to specific text editors or text
processing tools. On the other hand, the support of selected
formats in form of libraries, parsers, or editors is very good
thanks to their global popularity [6][8].

3) Future Work: This case study describes the overall
evolvable design, encoding schemas, and basic implementa-
tion of the needed tools and the sketched further work will
follow. First, the OntoUML community including the authors
must be involved to incorporate their knowledge and use it
for designing future version and branches of the language
specification. For this, a lot of communication and setting up
contribution guidelines is necessary. Thanks to inviting other
contributors, new additional ideas for necessary extensions will
likely emerge.

V. NEXT STEPS TOWARDS EVOLVABLE DOCUMENTS

The final part of this paper is about the next steps that
are suggested to be done in the near future as a sequel to
the introduced conceptualization. Of course, the domain of
documents is changing rapidly and so is the computer science
that affects it significantly. Therefore, there is not just a single
possible way how to achieve evolvability in documents and
other options can be explored and evaluated. The described
steps seem to us very promising based on an extensive review
and our own experience.

1) A Prototype of Evolvable Documents System: Designing
and developing a prototype of an extensible DMS for evolvable
documents based on ideas in this paper would be a suitable
next step. The result should be generally usable in any domain.
The prototype would serve to find proof(s) of concept and to
uncover new challenges.

The process of prototype development would be based on
the provided conceptualization and it could explore missing,
incorrect or unnecessary concepts using standard well-known
design science method (Figure 6). It is desirable that the system
itself is evolvable and developed according to the Normalized
Systems theory. A simple user interface is also important for
daily usage.

The case study as an example of a domain-specific applica-
tion could be used as an initial step for gathering generic needs
for domain specific extensions. On the other hand, it should
simplify the work with an evolvable document for regular users
who have no expertise in programming, command line, and
various markup languages when compared to the case study.

2) A Methodology for Evolvable Writing: During the re-
search cycles of the prototype, some form of generic guidelines
for creating evolvable documents may emerge. However, the
possibility of writing evolvable documents is highly affected
by selected tools and formats. It is desirable to strive for a
modular solution based on existing open standards and tools
such as the mentioned Git, Pandoc, LATEX, Markdown, XML,
GitHub, and Pillar. The presented case study is an example of
such an implementation for a specific domain.

VI. CONCLUSION

In this paper, we present our extended approach to evolv-
able documents based on the principles of Normalized Systems
theory but, compared to the related work, our approach is
applicable for any domain thanks to avoiding any domain-
specific aspects. The presented conceptualization is the basis

222

International Journal on Advances in Intelligent Systems, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Application Domain
• People
• Organizational Systems
• Technical Systems
• Problems & Opportunities

Build Design Artifacts & Processes

Evaluate

Design
Cycle

D
es

ig
n
 S

ci
en

ce
R
es

ea
rc

h
E
n
vi

ro
n
m

en
t

Relevance Cycle
• Requirements
• Field Testing

Foundations
• Scientific Theories & Methods
• Experience & Expertise

• Meta-Artifacts
(Design Products & Design Processes)K

n
ow

le
d
g
e

B
as

e

Rigor Cycle
• Additions to KB
• Grounding

Figure 6. Hevner’s design science research cycles [33]

of this generality. By incorporating modularization based on
the semiotic ladder and the NS concepts together with the
ontology-driven conceptual modelling language OntoUML,
we uncovered different aspects and challenges in the docu-
ments domain. The described tightly-related conceptual mod-
els demonstrate the power of modularization and they can
become a foundation for further discussion and building of
a methodology or a system prototype using the model-driven
development (MDD) methods. As we have shown in the case
study, the ideas from the conceptualization together with neatly
selected tooling can be used to devise a simple but smart
solution for domain-specific evolvable documents. Advantages
of the proposed solution over classical monolithic documents
are self-evident and hopefully will be used in the OntoUML
community for building the language specification. Research
topic of applying Normalized Systems theory in the documents
domain is very broad and our contribution is one of the first
steps towards achieving evolvable documents.

ACKNOWLEDGMENTS

This research was supported by the CTU grant
No. SGS17/211/OHK3/3T/18. The included case study was
supported as a project in the field of pedagogical activities
(RPP) at the Faculty of Information Technology, CTU in
Prague, and was partially done during Normalized Systems
Summer School ’18 organized by the University of Antwerp.
This work also contributes to the CTU’s ELIXIR CZ Service
provision plan.

REFERENCES

[1] M. Suchánek and R. Pergl, “Evolvable documents – an initial concep-
tualization,” in Proceedings of the Tenth International Conference on
Pervasive Patterns and Applications (PATTERNS). IARIA, 2018, pp.
39–45.

[2] G. Guizzardi, Ontological foundations for structural conceptual models.
CTIT, Centre for Telematics and Information Technology, 2005.

[3] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design. Kermt (Belgium): Koppa, 2016.

[4] G. Oorts, H. Mannaert, P. De Bruyn, and I. Franquet, “On the evolvable
and traceable design of (under) graduate education programs,” in
Enterprise Engineering Working Conference. Springer, 2016, pp. 86–
100.

[5] G. Oorts, H. Mannaert, and I. Franquet, “Toward evolvable document
management for study programs based on modular aggregation pat-
terns,” in PATTERNS 2017: the Ninth International Conferences on
Pervasive Patterns and Applications, February 19-23, 2017, Athens,
Greece/Mannaert, Herwig [edit.]; et al., 2017, pp. 34–39.

[6] B. Duyshart, The Digital Document. Taylor & Francis, 2013.

[7] P. Lord, “Adventures in text land,” An Exercise in Irrelevance, 2014.
[Online]. Available: http://www.russet.org.uk/blog/3020

[8] D. Goodger, “reStructuredText Markup Specification (rev. 8205),”
Docutils Project Documentation Overview, 2017. [Online]. Available:
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html

[9] T. Arloing, Y. Dubois, S. Ducasse, and D. Cassou, “Pillar: A versatile
and extensible lightweight markup language,” in Proceedings of the
11th edition of the International Workshop on Smalltalk Technologies.
ACM, 2016, p. 25.

[10] M. Dominici, “An overview of pandoc,” TUGboat, vol. 35, no. 1, pp.
44–50, 2014.

[11] S. Kottwitz, LaTeX Cookbook. Packt Publishing, 2015.

[12] Wikipedia, Template Engines: JavaServer Pages, WebMacro, ASP. NET,
Template Engine, Web Template System, Web Template Hook Styles,
Haml, Template Processor. General Books, 2011.

[13] K. Ram, “Git can facilitate greater reproducibility and increased trans-
parency in science,” Source code for biology and medicine, vol. 8, no. 1,
p. 7, 2013.

[14] S. Chacon and B. Straub, Pro Git, ser. The expert’s voice. Apress,
2014.

[15] E. Westby, Git for Teams: A User-Centered Approach to Creating
Efficient Workflows in Git. O’Reilly Media, 2015.

[16] K. Roebuck, Document Management System (DMS): High-impact
Strategies - What You Need to Know: Definitions, Adoptions, Impact,
Benefits, Maturity, Vendors. Lightning Source, 2011.

[17] V. Pal, Alfresco for Administrators. Packt Publishing Ltd, 2016.

[18] B. Leuf and W. Cunningham, The Wiki Way: Quick Collaboration on
the Web. Addison-Wesley, 2001.

[19] A. Porter, WIKI: Grow Your Own for Fun and Profit. XML Press,
2013.

[20] G. Oorts, H. Mannaert, and P. De Bruyn, “Exploring design aspects
of modular and evolvable document management,” in Enterprise Engi-
neering Working Conference. Springer, 2017, pp. 126–140.

[21] R. Filman et al., Aspect-oriented Software Development, 1st ed.
Addison-Wesley Professional, 2004.

[22] C. Bunch, Automated Generation of Documentation from Source Code.
University of Leeds, School of Computer Studies, 2003.

[23] G. Brandl, “Sphinx documentation, release 1.8.0+,” 2018. [Online].
Available: http://sphinx-doc.org/sphinx.pdf

[24] R. K. Stamper, “Applied semiotics,” in Proceedings of the Joint ICL/U-
niversity of Newcastle Seminar on the Teaching of Computer Science,
Part IX: Information, B. Randell, Ed., 9 1993, pp. 37–56.

[25] B. Frohmann, “Revisiting ”what is a document?”,” Journal of Docu-
mentation, vol. 65, no. 2, pp. 291–303, 2009.

[26] C. K. Ogden and I. A. Richards, “The meaning of meaning: A study
of the influence of thought and of the science of symbolism,” 1923.

223

International Journal on Advances in Intelligent Systems, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/intelligent_systems/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[27] B. Mons, H. van Haagen, C. Chichester, J. T. den Dunnen, G. van
Ommen, R. Hooft et al., “The value of data,” Nature genetics, vol. 43,
no. 4, pp. 281–283, 2011.

[28] E. Duval, W. Hodgins, S. Sutton, and S. L. Weibel, “Metadata principles
and practicalities,” D-lib Magazine, vol. 8, no. 4, 2002. [Online].
Available: http://www.dlib.org/dlib/april02/weibel/04weibel.html

[29] R. Cyganiak, D. Wood, and M. Lanthaler, “RDF 1.1 concepts and
abstract syntax. W3C Recommendation,” 2014. [Online]. Available:
https://www.w3.org/TR/rdf11-concepts/

[30] G. Guizzardi, J. P. A. Almeida, N. Guarino, and
V. A. de Carvalho, “Towards an ontological analysis of
powertypes,” in JOWO@IJCAI, 2015. [Online]. Available:
http://ceur-ws.org/Vol-1517/JOWO-15 FOfAI paper 7.pdf

[31] T. Kuhn, P. E. Barbano, M. L. Nagy, and M. Krauthammer, “Broadening
the scope of nanopublications,” in Extended Semantic Web Conference.
Springer, 2013, pp. 487–501.

[32] G. Guizzardi et al., “Endurant types in ontology-driven conceptual
modeling: Towards ontouml 2.0,” 2018. [Online]. Available: https:
//www.inf.ufes.br/∼gguizzardi/ER2018-OntoUML.pdf

[33] A. Hevner, “A Three Cycle View of Design Science Research,” Scan-
dinavian Journal of Information Systems, vol. 19, no. 2, Jan. 2007.

