International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http.//www.iariajournals.org/intelligent_systems/

13

Architectural Backbone Evaluation for Data Stream
Processing within the WINNER Datal.ab
A Project Focused Point of View

Sebastian Apel*, Florian Hertrampf', and Steffen Spithe?

Chair for Software Engineering
Friedrich-Schiller-University Jena
D-07745 Jena, Germany
Email: sebastian.apel @uni-jena.de*, ﬂorian.hertrampf@uni-jena.deT, steffen.spaethe@uni—jena.dei

Abstract—Smart platforms for the integration of sensor and actor
networks require collecting, analysing and evaluating data. Our
research project WINNER aims to integrate systems which cover
electromobility, energy consumption within residential areas,
local energy production, e.g., with photovoltaic systems, and
storages for local smart grids. WINNER wants to use such a
platform to optimise the energy consumption. Every actor within
a residential area has to be considered, and integration into
a centralised data stream process is necessary. As a non-hard
real-time system, the platform has to solve enterprise application
integration problems, looking at complex event processing and
knowledge discovery in data. This paper targets to analyse
possible architectural backbone technologies. Out of a wide
range of potential technologies Node-RED, Apache NiFi and
Apache Camel are selected and compared. Those technologies
with a diverse field of application are used to implement a
comparable test setup. Furthermore, they are analysed through
their characteristics of processing, execution, usability and
simplicity. As measured, Node-RED, Apache Camel and Apache
NiFi indicate stable and fast message processing, especially in the
case of raising message throughput. Node-RED surprises with
constant memory and CPU loads and seems to be an exciting
option in rapid prototyping.

Keywords—System Architecture; Stream Processing; Message
Routing; Complex Event Processing; Renewable Energy; Smart
Grid.

I. INTRODUCTION

Local energy networks in modern residential areas are used by
additional installations such as charging stations for electric
vehicles, local energy production (e.g. with photovoltaic
systems) and energy storage systems. The installations could
operate independently and contribute. However, an increase in
efficiency would be conceivable if those installations worked
in a coordinated manner. An integration platform required for
this could collect and process information from all installations
and influence an entire system to operate an optimised
overall setup. Our research project “Wohnungswirtschaftlich
integrierte netzneutrale Elektromobilitat in Quartier und
Region” (WINNER) [2] aims to integrate such systems and
wants to use such a platform to optimise the local energy
consumption.

Therefore, three main tasks have to be considered and
brought together by our so-called WINNER DatalLab (WDL).
At first, we collect all the produced data and store them in
a meaningful way. After that, potentials have to be found,

e.g., correlating weather forecasts, electricity consumption,
specific time information, and the usage characteristic of
electric vehicles (EVs) to optimise external energy purchase for
charging batteries. In the end, we have to optimise operation.
So we could control and accumulate electric energy locally or
supply it to the grid. Maybe it is superior or necessary to get
energy from another grid operator, e.g., in case of too less
output of the local energy production.

The facts as mentioned earlier imply an information
flow managed by data streams. These must be routed and
checked for mistakes. Beyond various data sources have to
be integrated, like Representational State Transfer (REST)
interfaces based on Hypertext Transfer Protocol (HTTP) or
mail services, as well as other proprietary transport and
communication protocols.

According to backbone technologies, we have to discuss
the potentials of tools made for message routing and analysing
within the WDL. We focus on event-based approaches and easy
integration of external components. In the end, we ask for a
tool that offers the possibility of routing messages and analysis
of the contained data without dropping information. For the
decision-making process, a unified prototype was realised in
a selection of possible tools, compared and considered under
load. This publication summarises our decision process. We
want to explicitly outline, that our aim is not to benchmark the
preselected tools in detail. We want to observe the memory
usage development as well as the CPU consumption of the
tools while processing an increasing amount of messages. So,
we can get an idea of the behaviour of the message processing
systems.

In Section II, related work about terms and projects related
to our approach are discussed. Section III presents the level O
view of our WDL, and the following Section IV lists the
requirements we impose on this system. As a result of that,
a short overview of possible tools is presented in Section V.
Furthermore, three tools are used to implement and compare a
uniform task in Section VI and analysed them in Section VII
by using measurement values of latency, memory consumption
and CPU load. Finally, we discuss the results in Section VIII.

II. TERMS AND RELATED WORK

The WDL seems to be far away from traditional database
management systems. The WDL should be usable as a
platform for data scientists for mining knowledge as well as a

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

platform to attach analyses for already known behaviours and
relationships directly on data streams. Furthermore, the WDL
should consume data from different kinds of systems as well
as produce data to optimise the usage of those systems.

Connecting various types of applications by using their
provided data and processes belongs to the term of
enterprise application integration (EAI) [3, P. 3]. Within the
area of application integration terms like message-oriented
middleware (MOM) and service-oriented architecture (SOA),
as well as enterprise service bus (ESB), describe how to
challenge those use cases [4, S. 1][5]. As a traditional
approach, MOM describes how to use asynchronous messages
to decouple applications based on messaging systems
[5]. SOA, on the other hand, represents an architectural
concept where applications publish their precisely defined
functionalities within reusable services [5]. Finally, ESB draws
an open standard, which merges those ideas and defines a
distributed architecture used to integrate applications. The
architecture itself describes calls and distribution of messages
between integrated applications [5].

Within the scope of EAI, the enterprise integration patterns
(EIPs) are the base of tools to solve integration problems. The
EIPs describe a set of reusable patterns without a particular
technology reference. Base concepts within these patterns are
the usage of “routing” and “messages” [6].

Beside the application integration itself, activity tracking,
sensor networks and analysing of market data is a central topic
within the so-called complex event processing (CEP). CEP
describes a general term for methods, techniques and tools.
CEP helps to process events while they happen [7, S. 163].

Bringing together EAI, MOM, SOA, ESB and CEP seem
to be not distinctly possible. Currently, there are multiple terms
to describe the problem of integration, routing, processing
and analysing. The first one, Information Flow Processing,
is described in [8]. This term focuses on event processing
in combination with data management to “collect information
produced by multiple, distributed sources, to process it in a
timely way” [8]. Another term, streaming data system, focuses
on processing data streams within “a non-hard real-time system
that makes its data available at the moment a client application
needs it” [9].

While EAI, MOM, SOA, ESB and CEP are concepts
to assemble setups based on already known behaviours and
relationships between messages (or events), data sciences
utilise tools to mine knowledge based on already available
data. This part within the WDL uses concepts from knowledge
discovery in databases (KDD), which describes methods to
statical analyses, applications within the field of artificial
intelligence (Al), pattern recognition and machine learning [10,
S. 3].

In addition to this classification of concepts within our field
of application, related work targeting onto architectural drafts
in data grids and smart grids can be used. Chervenak et al. [11],
e. g., describes basic principles for designing data management
architectures and Tierney et al. [12] introduce concepts how
to monitor such grids. Furthermore, Appelrath et al. describe
in [13] the process of developing an IT-architecture for smart
grids as a result of a German research project, and Rusitschka
et al. [14] present a computing model for managing real-time
data streams of smart grids within the scope of the energy

International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http.//www.iariajournals.org/intelligent_systems/

14

market. But, these approaches are not directly applicable to
our use case. Either they are large-scale, or focusing on data
storing and mining. However, they can be considered within
our architecture, which has to fill the gap between smart grids,
data storing, possibilities for data mining as well as non-hard
real-time event processing.

Besides the mentioned, more general architectures for the
internet of things (IoT) are discussed in [15] and [16]. They
point out that a flexible layered architecture is necessary
to connect many devices. As an example, classical three-
and five-layer architectures are mentioned here, e. g., as used
within [17] and [18], as well as middleware or SOA-based
architectures. Besides this discussion about architectures, [19]
demonstrates the integration of IoT devices within a service
platform which uses the micro-service architecture for this
approach, which can be understood as a specific approach for
SOA [20, P. 9].

In addition to IoT, measurement systems for IoT can
also be considered. They also have to integrate different end
systems. Further, they have to record different measured values
and provide interfaces for analyses and calculations. For this,
approaches like SOA or event-driven architecture (EDA) can
be taken up, as demonstrated in [21]. This approach uses SOA
and EDA in combination with an ESB. Using the micro-service
architecture can be seen in [22] and [23] as loosely coupled by
using the EAI [3, P. 3]. They describe a reference architecture
using micro-services for measurement systems, which connects
required data adapters as well as calculation and storage
services, one more time through an ESB.

III. ARCHITECTURAL DRAFT

The WDL is a platform to gather, analyse and provide
information to optimise the operation of the WINNER-project
setup. Until now, this platform seems to be a data streaming
platform which has to solve various integration tasks. At this
point, the level 0 view of the WDL is discussed. Taking a
look at the data sources and data sinks help to get a better
understanding of what the WDL should do.

At first, there are external services. They are sending
messages to the WDL, or it acquires data from them.
These data packages have to be assumed as heterogeneous,
e.g., carsharing data of a booking system the WDL
is connected to. That means the WDL gets information
on bookings like start time and end time. Out of that,
current state updates on a reservation such as an earlier
beginning or a defect vehicle can be received. Another data
source offers messages containing information on the current
electrical power consumption. The actual electricity price
is obtained by an interface of European Energy Exchange
(EEX). Data of photovoltaic systems or batteries are gained
through System, Mess- und Anlagentechnik (German solar
energy equipment supplier) (SMA) interfaces. The German
Meteorological Service [24] offers historical information on
the past weather, an application programming interface (API)
of the online service OpenWeatherMap [25] is available for
weather forecasts.

A system working with time series, forecasts and master
data must be created. As visualised in Figure 1, the WDL
is positioned between the sources above, and at least five
data sinks. These refer to controllable devices like a charging
station, a battery or Smart Home systems. On the other hand,

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

«component» E] «component» E]
Carsharing Status E-Mail SMA Battery
«component» E] «component» E]
Carsharing Booking «Subsystem» =] Smart Home
Information | DataLab
— «components =]
«component» L Carsharing
Current Measurement
«componenty =]
«component» =] | Charging
EEX | Station
«component» =] «componenty]
OpenWeatherMap Database
«component» E] —
DWD CDC
«component»
SMA PV Power Plant
«component» =l
SMA Battery

Figure 1. Level O view of the WDL.

data is delivered to the carsharing service and dumped to a
database. Within our setup, a KairosDB is used as our data
storage interface as it is suitable for working with larger time
series and quite easy to use in combination with a Cassandra
backend for storage.

An unanswered question is how the different components
can be integrated and how analysis, as well as event processing,
can be handled. The WINNER project focuses on the
integration of components of the residential area into the Smart
Grid. That means predictions must be made to get an overview
of the future power consumption and the electricity production.
Either one charges the batteries or one uses the stored energy
to overcome load peaks. The prediction mechanism might
be implemented by using artificial neural networks (ANNs)
or regression methods. Thinking about energy production
predictions, it might be neccessary to receive information from
hardware components like SMA-devices and weather services.
These specific data formats require reshaping to use them in
prediction mechanism. Using input filters, output filters, and
stream routing the arriving information is transformed and sent
to the prediction and dump units. These units save the data,
send commands or just forward data to external devices.

IV. REQUIREMENTS

One can divide up the list of requirements into three subsets.
The first one refers to the system in general; the second touch
the various components and the third covers the aspects of
architecture and functional groups.

Thinking of the system in general shows that the ability
to process time series data is required. An incoming message
contains a time value referring to a point and a value, e.g.,
the result of a measurement. The WDLs task on an incoming
message is to associate the arriving values with a data source.
Possible data sources are photovoltaic installations, batteries,
power consumption measurement devices or actual weather
data. Out of that, the system must handle forecast data. They
are unique because a complete time series and a time value,

International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http.//www.iariajournals.org/intelligent_systems/

15

which refers to a validity point are included. At the time
this point describes the time series is valid. Contemplable
data sources are weather forecast services or EEX. The
last category covers master data without time dependencies.
Booking information or general data on devices and services
belong to this group. This data may be very unstructured like
text-only entries.

Focusing on technical aspects derived from our
architectural draft in SectionIll, the WDL needs the
ability to process JSON, XML and CSV values. Out of that
proprietary formats have to be handled as well. Especially
photovoltaic and smart metering installations tend to send
production data in proprietary formats.

Central non-functional requirements are scalability and
reliability. The latter refers to interfaces receiving data from
external services and devices. On occurring errors incoming
and shortly arrived messages should not get lost. Referring to
the message rates previous estimations showed, that our system
has to process about 30 messages per second on average.
Thinking of peak times, we estimate a message occurrence
higher than the average by a factor of 10. Especially, if external
information-providing services use caches to buffer data and
send them shortly afterwards or in case of network problems
this may happen.

Keeping the interfaces in mind, one has to think of the
necessary contact points to other services or the environment
in general. The consumer interfaces of the WDL have to
accept HTTP requests, especially while communicating with
REST services. Similarly, FTP servers must be communicated
with. The WDL must receive and process e-mails as well.
Likewise, a file-based data transfer is needed. Finally, there are
interfaces to external services using proprietary communication
formats via TCP or UDP. The developed system has to enable
the reception of messages sent by them. In contrast, the
message producing components of the WDL primarily need
to communicate via HTTP. Particularly the interface to a
database can be made up of simple REST client services
sending HTTP-based messages.

After paying attention to input and output components,
the internal processes of routing and filtering shall be
characterised. Asynchronous processing describes an essential
requirement. Message queues or small buffer databases may
decouple various components so they can work without waiting
for each other to terminate. Furthermore, incoming messages
caused by occurring events have to be converted into an
internal format. To achieve this, the WDL can extend these
data packages with additional information. However, after
processing unneeded contents must be removed as well.
Alongside external descriptors have to be mapped to internal
descriptors and vice versa.

The WDL has to transform the incoming data into an
internal format for further processing. Additionally, the WDL
has to be capable of providing data for doing manual statistical
evaluations and analysis. Furthermore, the WDL has to be
capable of triggering automatic evaluations and forecasts as
additional components. This work is done while keeping the
CEP pattern in mind.

Within this paper, we leave out the specific aspect of data
storage. That means different databases are not discussed or
compared. The built prototype uses a KairosDB to persist

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. TOOL OVERVIEW AND CLASSIFICATION. CLASSIFICATION IS
BASED ON TOOLS TO HANDLE EAI, CEP KDD AND RE.

Name EAI CEP KDD RE
Apache Camel v
Apache Storm v
Apache Spark v
Apache Hadoop v
Apache ServiceMix v
Apache NiFi v
Siddhi
ESPER
WSO2 CEP
RapidMiner v

KNIME v
Node-RED v
JBoss Fuse v

ANRNENESEAN

v)

v

StreamLine

Hortonworks SAM v

NSNS

v

time series data. It was chosen because of an existing simple
HTTP-based interface that provides easy access.

Furthermore, security and data protection with regard to the
sensitive information collected is not taken into account in this
analysis. The efforts required for this influence the resulting
data throughput but are not relevant for this evaluation.

V. TooL OVERVIEW

The WDL requirement analysis illustrates an EAI task with
KDD topics. Furthermore, results gathered from KDD could
result in CEP related tasks, which have to be considered as
well. The following list of tools covers these tasks. Of course,
this list is not complete. There are a lot of tools available to
handle specific tasks within the area of EAI, KDD or CEP.
Our selection focuses on widely used, platform independent
and easily accessible tools with suitable licenses models. Thus,
the list of our selection contains mainly open source tools.

Selected tools will be classified into at least one of our
primary topics: (1) tools to handle KDD related tasks, (2)
tools to solve EAI related tasks and (3) tools to implement
CEP related tasks. Additionally, there are (4) tools providing
runtime environments for executing solutions solved with tools
from class (1), (2) and (3).

Table I lists our selection of considered tools. Furthermore,
this table classifies them within our previously identified main
topics. Apache Camel is an open source lightweight framework
to solve EAI problems based on an implementation of EIPs in
[6]. Furthermore, a lot of components are available to extend
the functionality of Apache Camel [26]. Apache Storm is an
“open source distributed realtime computation system” with
a lot of use cases like “realtime analytics, online machine
learning, continuous computation”. This scalable environment
can handle a lot of data streams within a specific Storm
topology [27]. Apache Spark [28] and Apache Hadoop [29]
are tools for knowledge discovery in data. They differ in
performance as well as their internal approaches in data storage
and processing. Apache Service Mix [30] and JBoss Fuse
[31] are integration containers, which include other tools like

International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http.//www.iariajournals.org/intelligent_systems/

16

Apache Camel. Apache NiFi [32] provides a web interface for
configuring directed graphs, which represent the processing of
incoming messages. It uses so-called flow files for information
representation. Siddhi [33] and ESPER [34] are CEP engines
and can be used as standalone tools as well as the integration of
tools like Apache Camel. WSO2 CEP is a runtime environment
for the CEP engine Siddhi, which adds user interfaces for
external and internal usage [35]. RapidMiner [36] and KNIME
[37] are tools for knowledge discovery in already existing data.
It is also possible to integrate interfaces to access data streams
and use a wide range of algorithms to analyse collected data.
Finally, Node-RED is a message processing framework with
IoT roots and can be used to solve application integration
problems quickly. This framework is based on Node.js, can
be extended with additional packages and deployed into cloud
services like Bluemix [38]. StreamLine and Hortonworks
Streaming Analytics Manager (SAM) are aimed to develop and
deploy Streaming Analytics applications visually. Therefore,
Hortonworks SAM and StreamLine provide bindings for
different streaming engines, a rich set of streaming operators
as well as operational lifecycle management [39].

VI. PROTOTYPE

According to [1] we have selected three tools based on our
preselection in SectionV and our experience. We want to
use the tools within a uniform test setup. This selection
focuses on tools from different fields of application: (1)
Node-RED because of its simplicity within the field of IoT,
(2) Apache NiFi because of its easily configurable data flow
and (3) Apache Camel as the reference implementation for
EIPs in combination with Wildfly as Java EE based runtime
environment.

The comparison is done with a uniform test setup with
a simplified task. This setup combines the integration of a
REST-based data source which encodes data with JSON,
a KairosDB based data sink with HTTP interface which
consumes JSON encoded data as well, and a calculation
of the mean according to a particular sender device, e.g.,
a photovoltaic station, has to be calculated across multiple
messages. The time window of these multiple messages is ten
seconds. That means if sender “Station A” sends a message at
10:00:00 am the values “Station A” sent between 09:59:50 am
and 10:00:00 am are used for calculating the mean. The result
is delivered via HTTP request to an external service which
consumes JSON encoded data as well as the data source and
KairosDB.

The data source in our test setup gets its messages from a
generative photovoltaic data endpoint in configurable intervals.
This source device transmits structured data like the tuple
“(time, energy, station, id)”. The first value of the generated
data tuple represents a long value as a point in time, the
second value a double based energy value of solar insolation.
Furthermore, a tag containing the string based station name
is included. Finally, the last value is a string based identifier
of this single message for further time measurements. The
identification value does not contain any relevant information
in the context of energy data aggregation. It is only used to
register and match the outgoing and incoming messages on the
peripheral systems around the measurement environment.

The KairosDB endpoint of this setup gets its message as
structured data like the tuple “(name, value, tags, time, id)”.

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http.//www.iariajournals.org/intelligent_systems/

17

Figure 2. Visualisation of our general prototype based on EIP notation.

This tuple corresponds to the structure of data that are
sent to a KairosDB instance for storing also. The included
ID is not needed for the process of storing the data but
necessary for matching the messages afterwards. Finally, the
aggregation endpoint of this test setup gets its message
as the same structured data like the data source tuple
“(time, energy, station, id)”.

The internal message routing has to be implemented
across Node-RED, Apache NiFi and Apache Camel as shown
in Figure2. This figure illustrates the test setup and its
components by using the notation of EIPs. First, there is
an endpoint called “pvReceiver”’, which receives incoming
messages and pushes them to a transformation step using
an asynchronous message queue. Out of that, the endpoint
ensures that the sender gets an acknowledge message. After
transforming the information into an internal format, a
multicast happens. So, one incoming message is sent to two
other endpoints. These are the aggregate and the database
endpoint. Before the data is sent, it is transformed to a
matching database message format (“Transform to KairosDB
Message” in Fig. 2) or the information is aggregated ((“Energy
Aggregator” in Fig. 2)).

The selected transformation and routing steps refer to the
already mentioned requirements in Section IV and architectural
draft in SectionIII to cover some data source, transformation,
processing, reverse transformation as well as dumping.

A. Node-Red

Node-RED is a JavaScript-based message processing
framework with IoT roots and can be used to solve
application integration problems quickly. The framework
is executed with Node.js and uses NPM for dependency
management. Implementing the test setup mentioned above
within Node-RED web client can be done by using a bunch
of function nodes, nodes to create HTTP endpoints as well
as change nodes. Change nodes are designed to modify the
structure of our currently handled message object. Function
nodes, on the other hand, are designed to execute custom
scripts onto a particular message. Finally, there are nodes to
create HTTP endpoints. Examples are HTTP server nodes to
some path which can be called, HTTP response nodes which
have to be placed within a message processing path which

starts with an HTTP server node and HTTP client nodes to
call external resources.

The implemented setup is shown in Figure3. As
mentioned, the messaging pipe starts with “PV Receiver” to
create an HTTP server endpoint for “/endpoints/pvenergy”.
The message is piped onto an HTTP response node as well as
to the primary processing path. The path starts with a function
node to clean, enrich and transform incoming messages into
the internal format. The result is forwarded to the database
handling as well as the aggregation processing. Our database
handling creates KairosDB compatible messages by using a
template node and submits the resulting message by using
an HTTP client node. The aggregation processing utilises the
other function node to implement the aggregation function.
This function node describes a simple memory to persist
messages within a time window of ten seconds as well as
calculating the mean within this window for the particular
installation. The aggregation handling is finalised with a switch
node to determine “NaN” values and an HTTP client node.

Summarising, Node-RED is a platform which is quickly
providable for fast prototyping which can integrate various
data sources as well as data sinks. But, it is tricky to
develop collaboratively. Well, each developer can maintain its
environment, but Node-RED itself manages Node-RED-Flows;
synchronising them between different development platforms
is hard. Furthermore, any particular use case, e. g., aggregating
values from messages has to be implemented manually or by
using additional NPM-based components which can be added
directly in Node-RED. However, it is possible to integrate
a broad range of endpoints with standardised formats and
protocols. Handling proprietary endpoints requires more efforts
in development.

B. Apache NiFi

Apache NiFi is a tool that runs within a Java Virtual Machine
(JVM). A graphical user interface is offered within the web
browser. Multiple of the so-called “Processors” can be used
for standard tasks like receiving and sending HTTP requests
(“PVReceiver” or “PostToKairos” in Fig.4). Out of that, one
can use custom processors by providing external JavaScript
files (transform nodes in Fig.4) or external java packages
(“EnergyAggregator” in Fig. 4).

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http.//www.iariajournals.org/intelligent_systems/

18

Figure 3. Node-RED implementation of the example from Section VI.

PVReceiver

HandleHttpRequest 1.4.C

org.apachenif - nif-standard-nar 1
In 0 (0 bytes) 5min
Read/Write 0 bytes /0 bytes 5min
out 0 (0 bytes) 5 min
Tasks/Time 0/00:00:00.000 5min

Name success
Queued 0 (0 bytes)

v TransformTolnternalMessage [

ExecuteScript
org.apache.nifi - ifiscripting na

In 0 (0 bytes) 5min Name success In 0/(0 bytes)

Read/Write 0 bytes /0 bytes 5min Queued 0 (0bytes)

out 0 (0 bytes) 5min out 0 (0 bytes)

Tasks/Time 0/00:00:00.000 5 min

Name success
Queued 0 (0 bytes)

Ei
M,

In 00 bytes) e Name success o 0 (0 bytes)
Read/Write 0 bytes /0 bytes 5 min Queued 0 (0 bytes)
Out 0 (0 bytes) 5min out 0 (0 bytes)

Tasks/Time 0/00:00:00.000 min

Name success
Queued 0 (0 bytes)

TransformToKairosDB
Ex S 4.0

Read/Write 0 bytes /0 bytes

Tasks/Time 0/00:00:00.000

'mToAggregation
0

ript 1.4

Read/Write 0 bytes /0 bytes

Tasks/Time 0/00:00:00.000

HandleHttpResponse
HandleHttpR 140
org.apache.nif

In 0 (0 bytes) 5min

Read/Write 0 bytes /0 bytes 5min

out 0 (0 bytes) 5min

Tasks/Time 0/00:00:00.000 5min

rd-nar

SendToKairosDB

In 0/(0 bytes) 5 min
5 min Read/Write 0 bytes /0 bytes 5 min
5min out 0/(0 bytes) min
5 min Tasks/Time 0/00:00:00.000 min

Name success
Queued 0 (0 bytes)

5 min

SendToAggregation

PostHTTP 1.4.0
5 min (e CrEes In 0/(0 bytes) min
S min Queued 0 (0 bytes) . Read/Write 0 bytes /0 bytes min
5 min out 0 (0 bytes) 5 min

Smin Tasks/Time 0/00:00:00.000 min

Figure 4. Message processing using Apache NiFi.

The “PVReceiver”
sent to the matching
on port 8000. The

JSON-formatted data
protocol (IP) address
processors “SendToKairos” send
two different message formats to two different
destinations (“http://nifireceiver:1880/dbmessages™ and
“http://nifireceiver:1880/averagemessages”). After receiving
a message via POST request, it is answered by the
“HandleHttpResponse” processor. The message is transformed
into an internal format and processed on two different paths.
The upper one (Fig.4) transforms the message to another
format and sends it to a Kairos endpoint. The lower branch
aggregates the energy values of the messages in a way as
mentioned above and sends them to the database as well. In
contrast to our general setup (Fig.2), we used an additional
formatting step before publishing to the aggregation endpoint.
So, we were able to separate the calculation from the
formatting step.

accepts
internet

We have to mention some application-specific facts. The
incoming information is distributed within Apache NiFi by
using so-called “Flowfiles”. These contain attributes added by
the processors like HTTP header data. Out of that, the user
can add attributes to custom scripts. So, we use the attributes
to map the energy and time values that should be processed
within our use case. In the end, the “TransformToKairos”
processors (Fig.4) take the matching attribute values and put
them into the outgoing message. The “EnergyAggregator”
(Fig.4) internally uses a map to calculate station-specific
averages over the last ten seconds. Thus, a list of measurement
values and timestamps is managed for each station. Old values
are removed from the list, so each calculation happens on the
actual values.

We configured the “PVReceiver” with an internal queue

size of 1000 requests. Out of that, every queue between the
processors is configured with a “maxWorkQueueSize” of 10°
and a “maxWorkQueueDataSize” of 1 GB. If we had not done
that, overfull queues would cause the preceding processors to
pause their work. In theory, this “maxWorkQueueSize” enables
Apache NiFi to keep all incoming messages within one single
queue.

Finally, we can say, that Apache NiFi provides a nice
workflow for creating custom processors and integrating
own functions. JavaScript can be used via external script
files. Furthermore, a Maven template can be used to create
processors using Java. Every manipulation of the data flow
graph within the web browser causes a history file, which
is stored in an archive directory. So, a rollback can be done
quickly. We want to outline, that there were no problems of
dockerizing this application. It is easy to provide the script files
and processor archives by using volumes and corresponding
configuration files.

C. Apache Camel and Wildfly

Apache Camel is a Java-based EAI-framework, which
is lightweight and extendable. It can be executed as a
standalone routing system or within middleware infrastructures
like Spring, Java EE, Apache ServiceMix or JBoss Fuse.
Implementing the test setup mentioned above within Apache
Camel can be done by utilising a REST endpoint and
describing a route which channels incoming messages to our
HTTP database and aggregation endpoints. Apache Camel
offers a large number of implemented patterns, which are
described in [6], as well as the option to implement custom
processes, for example within “Beans”. Furthermore, it is
possible to extend the framework with own components for

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TransformToKairosDbMessage
RouteBuilder

+prepare(message : EnergyData) : Metric

+configure()

TransformTolnternalMessage

+handle(message : PvReceiverData) : EnergyData

EnergyAggregator

+mean(data : EnergyData) : EnergyData

DatalLabRouteBuilder

PvReceiverData EnergyData Metric
-station : String -station : String -name : String
-time : String -energy : String -time : long
-energy : double -time : long -value : double

+setStation(station : String)
+getStation() : String
+setTime(time : String)
+getTime() : String
+setEnergy(energy : double)
+getEnergy() : double

+isValid() : boolean
+setStation(station : String)
+getStation() : String
+setEnergy(energy : String)
+getEnergy() : String
+setTime(time : long)
+getTime() : long

+setName(name : String)
+getName() : String
+setTime(time : long)
+getTime() : long
+setValue(value : double)
+getValue() : double
+setTags(tags : Tags [1])
+getTags() : Tags [1]

-tags |1

Tags

-station : String

+setStation(station : String)
+getStation() : String

Figure 5. Apache Camel implementation of the example from Section VI.

further functionalities.

Fig.2 visualises general and the finally implemented
route within Apache Camel. Its components are shown
in Fig.5. The route itself is implemented by using the
so-called “Java Domain Specific Language (Java DSL)”
in Apache Camel. This route is implemented within
“Datal.abRouteBuilder” and describes the REST endpoint,
which uses a servlet to process a specific resource and
utilises SEDA to decouple incoming message flows from
database and aggregation flows locally. SEDA is a lightweight
in-memory message queue component within Apache Camel.
The decoupled route contains the transformation and
enrich bean “EnrichPvReceiverData” to transform external
“PvReceiverData” into internal “EnergyData” as well as a
multicast to handle the database and aggregation route. The
database route contains another bean ‘“KairosDbPrepare” to
transform internal “EnergyData” into “Metric” datatypes for
“KairosDb”. The aggregation route includes the aggregation
bean “AggregationByInstallation” itself, which is implemented
as stateful bean to save messages within a time window of
ten seconds and finally calculate the mean for a particular
installation. Both routes are completed with an HTTP client
call onto the respective external endpoint.

Finally, Apache Camel is easy to use, primarily when used
in combination with Maven as build and deployment tool. It
is possible to describe routes within Java DSL, as we did, or
use XML-based description to build those routes. Furthermore,
Apache Camel is primarily a routing engine. Any particular
use case, e.g., aggregating values over messages, has to be
implemented manually or by using additional libraries.

International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http.//www.iariajournals.org/intelligent_systems/

19

1. Request Test Run
with Endpoint Address,
Messages per Second,

Starter Runtime and Delay Sender
Test Subject)
Either Apache Camel, 1.1 Send @
Apache NiFi or Node-
RED Container @

Receiver
Kairos
Endpoint
Aggregate
Endpoint

Figure 6. Visualisation of the test setup and the resulting communication
steps.

1.1.1 Send Message to
KairsoDB Endpoint

1.1.2 Send Message to
Aggregate Endpoint

D. Comparison

Table II compares our three prototypes. The characteristics
regard the type of development, how to configure the data flow,
the programming language for development, available scripting
languages, possibilities for extension, resulting artefacts and
containerization abilities were compared. Differences between
the tools and the prototypes result primarily in the type of
development, which is either based on source code (Apache
Camel) or a web-based GUI (Apache NiFi and Node-RED), as
well as in the resulting artefacts. Apache Camel is packaged
and run as a traditional JAR archive; thus, it can run in
execution environments with installed Java. In the case of
Apache NiFi and Node-RED, however, the deployment mainly
revolves around the description of the processing (flow file)
and the associated dependencies or any self-implemented
extensions.

VII. RUNTIME MEASUREMENTS

In this section, we want to test the prototypes mentioned above.
Guaranteeing constant conditions for every application and
run, Docker containers are executed on the same machine.
These containers encapsulate the runtime environment as well
as the prototype itself. Our test machine runs on Debian
GNU/Linux 9.3 Stretch using an Intel(R) Core(TM) i5-4570
CPU @ 3.20GHz. We chose this machine because we target
to reach the hardware limitations faster. Because of the main
task of our prototypes is routing messages, some exclusions
are necessary. First, the application sending information to the
routing engine is installed on another machine. Furthermore,
the service which receives information sent by the routing
engine is placed on another machine too. This setup admits
for quantifying the response time, memory consumption and
CPU load of the various Docker containers or the applications
within them omitting the aspect of additional load of sending
and receiving applications.

The setup used for the test execution can be found under
[40] as a source code repository and is visualised in Fig. 6.
Within the repository, you can find various docker-compose
files [41], which start the different tools and a so-called

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http.//www.iariajournals.org/intelligent_systems/

20
TABLE II. Prototype comparison.
Characteristic Apache Camel Apache NiFi Node-RED
Development Source code Web-based GUI Web-based GUI
Possible to include external configuration,
- . . . - . Embedded in flow, has to be edited by using Embedded in flow, has to be edited by using
Configuration default flow described and configurated in GUI GUI
DSL with Java or XML
Programming Java Java JavaScript
Language
Scripting gt(g;re, ECMAScript, Groovy, Lua, Python, JavaScript
API available, has to deployed as JAR
Extending and 1r.101uded in classpath, glso possible to API ava_nlable, deployed as JAR and has to be API available, installed via NPM
use simple Java Beans without any API placed in classpath
dependency
Artifacts Packed as JAR archive Flow file and dependency JARs Flow file and dependency list
Containerise Common workflow with Maven and Docker, Use Docker, add flow and dependency JARs Use Docker, add flow and dependency list to
! use Java runtime environment to existing Apache NiFi container existing Node-RED container
g Ap g
“Starter Container”. This one sends a message to the sender, part and processed all messages we sent. On higher

transmitting the destination IP address of the tool container, a
time delay and the duration of the sending process. Afterwards,
the starter container is powered off. Using this approach, the
tool to evaluate and the test configuration can take place on
the test machine. The measurement process is started by it too,
and a script automates the whole process.

The sending device transmits JSON-based structured data
tuples like “(time, energy, station, id)”. One could think of a
solar power system with a particular station identifier sending
the actual energy production. The frequency of transmitted
messages is configurable and initially set to 200 per second.
Later we increased the rate up to 800 messages. This procedure
supplements the measurements of the formerly published paper
[1]. The sending process itself had a duration of 600 seconds.
After this sending time, we waited for 600 seconds for later
arriving responses. So, our measurement phases took 1200
seconds overall.

The JVM for our Apache NiFi CEP instance and the
Apache Camel prototype are fixed to 6 GB of space, which
is fully allocated on startup. The “MaxPermSize” is set to
1 GB. We use the measured values of “jstat” for calculating the
memory consumption of the tools mentioned above with a time
resolution of one second. Furthermore, we sum up the usage
of survival space (“SOU” and “S1U”), eden space (“EU”),
old space (“OU”), metaspace space (“mu”), and compressed
class space (“‘ccsu”). A node.js module measures the memory
consumption of Node-RED, i.e., the “heapUsed” value. Out
of that, the CPU load is measured by the “top” command
every second. We get the response times of the various systems
by measuring the time of sending and the time of receiving
messages in milliseconds. The arrival timestamps of messages
corresponding to database operations and aggregations are
measured separately.

The following results are presented first in an error-specific
manner. We refer to individual behaviour and found error
cases. Afterwards, the tools are compared to each other.

A. Results

By sending 200 messages per second, we did not find
any errors in message processing. Every tool did its

message rates Node-RED did not act like the other tools.
Beginning with a rate of 400 messages per second it
did not answer the requests appropriately. About 602 of
239601 messages we tried to send were not answered,
i.e., our sender delivered errors. The rate of 800 messages
per second caused about 226,303 TCP-related errors, like
“EADDRNOTAVAIL”, “ECONNRESET” or “ETIMEDOUT”
while 480,001 messages were sent overall. For this high
message rate, we can state, that Node-RED was able to
process only the half of the messages correctly. Apache
NiFi shows another behaviour. Sending 800 messages to it,
about 63,000 messages of 479,201 cannot be processed. In
contrast to Node-RED, we got the HTTP error 503 for a not
available service, i.e., the message could not be processed at
all, database and aggregation message. Apache Camel always
answered all messages send to it.

We were caused by the error messages to research more
intensively on the mistakes happen. We can state that the
TCP handshake for Node-RED did not happen in the right
way. We checked the amount of opened ports of the involved
Docker containers and the machines, but there is no lack. We
state, that the Javascript event processing loop itself needs that
much CPU and memory, that not all requests of the sender get
handled quick enough. So, many messages the sender tries
to dispatch are not delivered to the processing parts within
Node-RED.

Summarizing we can say, that our measurements got
difficult because of instabilities of the Docker Engine. Further
analyses may use a more clean Docker setup, i.e., shutting
down the service or restarting the test machine before each
series of measures.

B. Comparison

The memory consumption (Fig.7(a) and Fig.9(a)) does not
change much across all measurements (200 up to 800
messages per second). A factor of 10 is between the memory
consumption of Apache Camel or Node-RED and Apache
NiFi. The “S1U” value measured by “jstat” is the main cause
of the higher RAM consumption of Apache NiFi. We want
to mention the decreasing memory usage of Apache Camel

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http.//www.iariajournals.org/intelligent_systems/

[T P PP PPPPPPN

LT

4e+06 [----

3e+06

2e+06

le+06
3e+05

memory used [kB]

2e+05

le+05

ApacheNifi —a—
NodeRED —e— |’

| ApacheCamel —e— |.

0e+00
0

6e+06

5e+06
4e+06
3e+06
2e+06

le+06

memory used [kB]

2e+05

le+05

4e+05 -

3e+05 -

450 600

time [s]

750

(a) Memory Consumption

cpu load [%]

21

1 T TP PTPTPP
ApacheNifi —a—
NodeRED —e—

120 A g .
ApacheCamel —e—

150 300 450 1200

600
time [s]

(b) CPU Usage

Figure 7. Memory consumption and CPU load while sending 200 messages per second (values aggregated over 20s).

ApacheNifi —a—
NodeRED —— |’

ApacheCamel —e— |-

0e+00
0

6e+06 -
5e+06
4e+06
3e+06
2e+06

le+06
4e+05

3e+05

memory used [kB]

2e+05

le+05

1 1 1 1 f h f)
150 300 450 600 750 900 1050 1200
time [s]

(a) Memory Consumption

cpu load [%]

250

200

ApacheNifi —a—
NodeRED —e—

ApacheCamel —e— |

450 900 1050 1200

600
time [s]

(b) CPU Usage

Figure 8. Memory consumption and CPU load while sending 400 messages per second (values aggregated over 20s).

ApacheNifi —a—
NodeRED —— |’

ApacheCamel —o— |-
X

0e+00
0

f
1050

150

300 450 600

time [s]

750 900 1200

(a) Memory Consumption

cpu load [%]

350

300

ApacheNifi —a—
NodeRED —e—

ApacheCamel —e—

450

750 1200

600
time [s]

(b) CPU Usage

Figure 9. Memory consumption and CPU load while sending 800 messages per second (values aggregated over 20s).

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http.//www.iariajournals.org/intelligent_systems/

22

328219

327151

ApacheNiFi]
NOdeRED [T ...
ApacheCamel

ApacheNiFi]
NOERED [...
ApacheCamel BEXXH

100000 H

100000 H

10010 6109 - ocerveeoreceroseananans 1010 G117 <+ovecsrrorarerosseracane

101

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 1o N

mean response time [ms]

400 800
Amount of messages per second

(a) KairosDB Endpoint

mean response time [ms]

10T e e L O b §2-eererereenesesaress
33
17
9
10 e cgeeeel S] KOCRK eee
1 1

800

400
Amount of messages per second

(b) Aggregate Endpoint

Figure 10. Mean response times of tested systems with various message frequencies for database (a) and aggregation (b) messages.

while processing messages. According to the former published
paper [1] we state, that “eden space utilisation” causes the
less memory consumption while processing a more significant
amount of messages. This finding is also present this time.

Watching the CPU graph (Fig.9(b)) we can state, that
Apache NiFi forces a much higher load than the other tools.
Apache Camel showed an expectable process from a CPU
usage of approximately 22 % for 200 messages per second
up to 40 % for 400 messages per second and 80 % for the rate
of 800 messages. In contrast, Node-RED reached the limit of
a CPU usage of 100 % by processing 400 messages per second
(Fig. 8(b)) and kept this behaviour on 800 messages. Apache
NiFi showed the highest usages of the CPU. At this point,
we want to mention, that the higher CPU usages (more than
100 %) in Fig.7(b) and Fig.9(b) are caused by the usage of
Java. Apache Camel and Apache NiFi are able to use multiple
threads so that the sum of CPU usages can sum up to more
than 100 %. Node-RED, in contrast, is limited to one single
thread, as we would expect for a Nodejs application.

We researched more intensively on the behaviour of
Apache NiFi. As visualised in Fig. 11(a), the response time
increases rapidly after 150 seconds. The step pattern up to this
point in time may cause by small garbage collecting processes,
which clean the memory from processed message objects. At
this time, Fig. 11(b) shows a nearly full available RAM. So,
from this time Apache NiFi needs much time to process the
incoming messages, because of a quiet full memory and the
corresponding more comprehensive garbage collections. Out
of that, shown in Fig.11(a) on the lower right (plotted as
negative values), the HTTP endpoint delivers errors to the
sending component. The corresponding points in Fig. 11(b)
show a drop in memory consumption. We state that Apache
NiFi prevents its processors from overfilling the memory, even
if not all messages can be received. Finally, it can see that the
figures in Fig. 11 both correspond to each other. While we can
see the ordinary memory behaviour of a java program on the
right after 1080 seconds, we see the highest response times
on the left at approximately 410 seconds. This timespan is
approximately the time after the end of sending (600 seconds)
when the memory consumption takes a regular course.

Other essential measurement values are the response

times of the various tools, i.e., the time between sending
a message and getting the calculated result for aggregation
or the reformatted database message. As mentioned above
(Section VII-A) not all messages were answered. We calculated
the mean response times overall sent and received messages.
So, Fig. 10 must be considered from the point of view that
Apache NiFi was not able to process about one-eighth of the
messages (63357 of 479201) at the highest rate. Out of that,
Node-RED caused errors for the half of the messages (226734
of 480001) the sender tried to transmit. The results show
quite similar times for database (Fig.10(a)) and aggregation
messages (Fig. 10(b)). However, especially while watching the
logarithmic scale, we can state, that Apache Camel answers
our requests very fast, even for high loads. Apache NiFi
needs more time for high message rates, i.e., four orders of
magnitude, but answers the requests in case of a not available
service with a well-formed error code. Node-RED causes
errors in the sending process and needs a higher answer time
(two orders of magnitude) than Apache Camel.

We tested Apache NiFi in an additional setup. The
incoming messages had to be passed through without any
manipulation. The tool only had to accept a request and send
the message content to an HTTP interface. The measured
response times were in the range of 9 milliseconds (200
messages per second) up to 390 milliseconds (800 messages
per second) by processing every message correctly. Even
without aggregating or reformatting any message, Apache NiFi
is slightly slower than Apache Camel.

VIII. DISCUSSION

Within this section, we do not discuss the measurements,
but the process of measurement itself. Some peculiarities
were referring to, e.g., the network connection. At first, we
have to state some problems referring to our measurement
setup. We used a common SoHo-router for our initial test
setup. But, sending 800 messages per second caused network
problems of the router itself, so a complete reboot was
necessary. Afterwards, we changed our network setup to a
common network switch. The sender and the test machine
were configured with static IP addresses. We got a more stable
network infrastructure in that way. Overcoming this problem,

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

BOOOOO [- - - e

Aggregation

500000 H
Error —e—

400000

300000

200000

response time [s]

100000

-100000 I L L L L)
0 300

time [s]

(a) Response Time

International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http.//www.iariajournals.org/intelligent_systems/

N

5e+06

4e+06

3e+06

2e+06

memory used [kB]

le+06

0e+00 L L 1 L L L L

300 450 600 750 900 1050
time [s]

(b) Memory Consumption

Figure 11. Response times of Apache NiFi along the sending process of 800 messages per second (a) (3200 values aggregated, i.e., four seconds) and the
corresponding memory consumption of Apache NiFi (b) (values aggregated over 4 s).

we found, that our sending node did not work correctly for
high message rates (800 messages per second), at least in
combination with the Node-RED test setup. Not all messages
we prepared for sending produced log entries. Missing TCP
responses caused this, the sender did not get them. So, we
restructured our sending process to use multiple threads and to
produce more log entries, i.e., for creating a message, starting
of sending process and logging errors. Referring to Apache
NiFi, we may decrease its response time by using custom
processors for message formatting instead of JavaScript using
script executors. In total, to say is that a message rate of
800 ones per second forces our test setup. Especially Fig. 9(a)
shows irregular time distances of the Apache NiFi data. This
irregularity is caused by lags of the measurement tool itself,
which is created using Java. Furthermore, the docker daemon
on the test machine itself caused an unidentifiable error, which
forced us to reboot the Docker Engine. We were not able to
call commands within our test container or copy the locally
created measurement files for memory and CPU usage. Our
assumption referring to this is a broken docker process. For
further measurements, we should think of regular reboots.
Maybe a process controlled by Wake-On-LAN is more suitable
for this use case because we would restart the entire machine
instead of single processes, that can cause errors.

IX. CONCLUSION

The WDL has to be able to handle data streams as mentioned
in different manners. Beside the integration and routing itself,
there are tasks in the area of complex event processing as well
as knowledge discovery in data. This is our second reflection
of architectural backbone technologies covering those aspects.
We tested high message rates forcing the test machine up
to the limit of the hardware. Based on our experiences and
measurements gathered from this test setup, we can make some
decisions. In the case of a complex heterogeneous environment
with different kinds of interfaces, Apache Camel seems to be
a right choice. It is used within a wide range of conditions
and able to handle many technologies to cover integration
problems. Furthermore, this tool can manage high message
rates by using reasonable memory.

Node-RED is a well-suited tool for rapid prototyping
and IoT. On higher loads, it causes errors that are hard
to handle. So, a conceivable approach could be inventing
message processing using Node-RED at first. Afterwards, a
more efficient implementation could be done using tools like
Apache NiFi or Apache Camel. Node-RED might be usable
as front-end system to easily integrate standardised external
interfaces as well as an additional platform for experiments
within a productive setup. Nevertheless, everything which can
be done with Node-RED seems to be possible with Apache
Camel too. The main difference can be found in the usability,
the deployment process and the underlying language. Adapting
knowledge discovery in such setups, independent of which
routing engine is used, should be possible by using a database
and route messages as required or by integrating available
public interfaces from tools for knowledge discovery within
Apache Camel or Node-RED. Apache NiFi shows a stable
behaviour, even in case of high loads. If the processing of a
message cannot be guaranteed, we get an HTTP error code and
can try to send the information later. Furthermore, it seems to
be quickly integrable with Apache ZooKeeper to run it within
a cluster. Such a setup may be possible with Apache Camel
or Node-RED.

Further research could be done on the possibility of
using the considered tools within a clustered environment.
This environment could overcome load peaks and increase
the availability of the system. Additionally, topics regarding
security and privacy should be taken into consideration.

X. ACKNOWLEDEMENTS

The research project WINNER is funded by the Federal
Ministry for Economic Affairs and Energy of Germany under
project number 01ME16002D.

REFERENCES

[1] Sebastian Apel, Florian Hertrampf, and Steffen Spithe.
Evaluation of architectural backbone technologies for
winner datalab. In Proceedings of the Sixth International
Conference on Smart Cities, Systems, Devices and
Technologies, pages 35-43, Venice, June 2017.

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1200

[2] Chemnitzer Siedlungsgemeinschaft eG.
WINNER-Projekt, 2017. Website http://www.win
ner-projekt.de; 2018-02-01.

[3] D.S. Linthicum. Enterprise Application Integration.
Addison-Wesley information technology series.
Addison-Wesley, 2000. ISBN 9780201615838.

[4] David Chappell. Enterprise Service Bus. O’Reilly, 2004.

[5] Falko Menge. Enterprise service bus. In Free and Open
Source Software Conference, 2007.

[6] Gregor Holpe. Enterprise integration patterns. In
Proceedings of 9th Conference on Pattern Language of
Programs, September 2002.

[7] Michael Eckert and Francois Bry. Complex event
processing (cep). Informatik Spektrum, 32(2):163-167,
20009.

[8] Gianpaolo Cugola and Alessandro Margara. Processing
flows of information: From datastream to complex event
processing. ACM Computing Surveys, 44(3):1-70, 2012.

[9] Andrew G. Psaltis. Streaming Data - Understanding the
real-time pipeline. Manning Publications Co., 2017.

[10] Christian Gottermeier. Data mining: Modellierung,
methodik und durchfiihrung ausgewihlter fallstudien mit
dem sas enterprise miner. Diplomarbeit, Universitét
Heidelberg, 2003.

[11] Ann Chervenak, Ian Foster, Carl Kesselman, Charles
Salisbury, and Steven Tuecke. The data grid: Towards an
architecture for the distributed management and analysis
of large scientific datasets. Journal of Network and
Computer Applications, 23(3):187 — 200, 2000. ISSN
1084-8045. doi: 10.1006/jnca.2000.0110.

[12] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany,
V. Taylor, and R. Wolski. A grid monitoring architecture,
2002.

[13] Hans-Jiirgen Appelrath, Petra Beenken, Ludger Bischofs,
and Mathias Uslar. IT-Architekturentwicklung im Smart
Grid. Springer Gabler, Heidelberg, Germany, 2012.

[14] S. Rusitschka, K. Eger, and C. Gerdes. Smart grid data
cloud: A model for utilizing cloud computing in the
smart grid domain. In 2010 First IEEE International
Conference on Smart Grid Communications, pages
483-488, Oct 2010. doi: 10.1109/SMARTGRI
D.2010.5622089.

[15] A. Al-Fugaha, M. Guizani, M. Mohammadi, M. Aledhari,
and M. Ayyash. Internet of things: A survey on
enabling technologies, protocols, and applications. /IEEE
Communications Surveys Tutorials, 17(4):2347-2376,
Fourthquarter 2015. ISSN 1553-877X. doi: 10.1109/
COMST.2015.2444095.

[16] G. Choudhary and A. K. Jain. Internet of things: A survey
on architecture, technologies, protocols and challenges.
In 2016 International Conference on Recent Advances
and Innovations in Engineering (ICRAIE), pages 1-8,
Dec 2016. doi: 10.1109/ICRAIE.2016.7939537.

[17] Miao Wu, Ting-Jie Lu, Fei-Yang Ling, Jing Sun, and
Hui-Ying Du. Research on the architecture of internet
of things. In 2010 3rd International Conference on
Advanced Computer Theory and Engineering(ICACTE),
volume 5, pages V5-484-V5-487, Aug 2010. doi:
10.1109/ICACTE.2010.5579493.

[18] Zhihong Yang, Yingzhao Yue, Yu Yang, Yufeng Peng,
Xiaobo Wang, and Wenji Liu. Study and application on
the architecture and key technologies for iot. In 20171

International Journal on Advances in Intelligent Systems, vol 11 no 1 & 2, year 2018, http.//www.iariajournals.org/intelligent_systems/

24

International Conference on Multimedia Technology,
pages 747-751, July 2011. doi: 10.1109/ICMT
.2011.6002149.

[19] A. Krylovskiy, M. Jahn, and E. Patti. Designing a
smart city internet of things platform with microservice
architecture. In 2015 3rd International Conference on
Future Internet of Things and Cloud, pages 25-30, Aug
2015. doi: 10.1109/FiCloud.2015.55.

[20] Sam Newman. Building Microservices. O’Reilly, 2015.

[21] Jean-Louis Maréchaux. Combining service-oriented
architecture and event-driven architecture using an
enterprise service bus. IBM Developer Works, pages
1269-1275, 2006.

[22] M. Vianden, H. Lichter, and A. Steffens. Towards
a maintainable federalist enterprise measurement
infrastructure. In 2013 Joint Conference of the 23rd
International Workshop on Software Measurement and
the 8th International Conference on Software Process
and Product Measurement, pages 63-70, Oct 2013. doi:
10.1109/IWSM-Mensura.2013.20.

[23] M. Vianden, H. Lichter, and A. Steffens. Experience
on a microservice-based reference architecture for
measurement systems. In 20714 21st Asia-Pacific Software
Engineering Conference, volume 1, pages 183—-190, Dec
2014. doi: 10.1109/APSEC.2014.37.

[24] Climate Data Center. Website http://www.dwd.de/DE/k
limaumwelt/cdc/cdc_node.html; 2017-01-06.

[25] OpenWeatherMap, 2017. Website http://openweathermap
.org/price; 2017-01-06.

[26] Apache Camel, 2015. Website http://camel.apache.org;
2016-06-22.

[27] Apache Storm, 2015. Website http://storm.apache.org;
2017-02-28.

[28] Apache Spark, 2015. Website http://spark.apache.org;
2017-02-28.

[29] Apache Hadoop, 2014. Website http://hadoop.apache.org;
2017-02-28.

[30] Apache ServiceMix, 2011. Website http://servicemix.apa
che.org; 2017-02-28.

[31] Jboss Fuse, 2016. Website https://developers.redhat.com
/products/fuse/overview/; 2017-02-28.

[32] Apache NiFi, 2018. Website https://nifi.apache.org/;
2018-02-19.

[33] Siddhi Complex Event Processing Engine, 2017. Website
https://github.com/wso2/siddhi; 2017-03-05.

[34] Esper, 2016. Website http://www.espertech.com/esper/;
2017-03-01.

[35] WSO2, 2017. Website http://wso2.com/products/comple
x-event-processor/; 2017-01-06.

[36] RapidMiner, 2017. Website https://rapidminer.com/;

2017-03-05.

[37] KNIME, 2017. Website https://www.knime.org;
2017-03-05.

[38] Node-RED, 2017. Website https://nodered.org;
2017-01-06.

[39] StreamLine - Streaming Analytics, 2017. Website https:
//github.com/hortonworks/streamline/; 2018-02-28.

[40] Architectural backbone evaluation source code, 2018.
Website https://github.com/winner-potential/smart-2017;
2018-02-28.

[41] Docker, 2017.
2017-12-05.

Website https://www.docker.com/;

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

