
Spreading Activation Simulation with Semantic Network Skeletons

Kerstin Hartig

Technische Universität Berlin, Germany
Email: kerstin.hartig@tu-berlin.de

Thomas Karbe

aklamio GmbH, Berlin, Germany
Email: thomas.karbe@aklamio.com

Abstract—Spreading activation algorithms are a well-known tool
to determine the mutual relevance of nodes in a semantic
network. Although often used, the configuration of a spreading
activation algorithm is usually problem-specific and experience-
driven. However, an excessive exploration of spreading behavior
is often not applicable due to the size of most semantic networks.
A semantic network skeleton provides a comprised summary
of a semantic network for better understanding the network’s
structural characteristics. In this article, we present an approach
for spreading activation simulation of semantic networks utilizing
their semantic network skeletons. We show how expected spread-
ing activation behavior can be estimated and how the results allow
for further effect detection. The appropriateness of the simulation
results as well as time-related advantages are demonstrated in a
case study.

Keywords–Spreading Activation; Simulation; Semantic Net-
work; Semantic Network Skeleton; Information Retrieval.

I. INTRODUCTION
Semantic networks are a well-established technique for

representing knowledge by nodes and connected edges. Widely
used in many areas, their utilization is object of scientific
research itself such as creating, transforming, and searching
these networks. Such networks often tend to be large in order
to profit from the semantic expressiveness of detailed contained
knowledge. Despite their graphic structure, increasing network
size might hinder their comprehensibility, and their usage
might become cumbersome and time-consuming.

Semantic network skeletons are a tool designed for better
understanding a semantic network’s structural properties [1].
A skeleton summarizes basic characteristics of a semantic
network and, thus, focuses on a few essential pieces of
information. Its abstracted and comprised character enables
various analyses.

One essential operation when using semantic networks is
retrieving information, e.g., with semantic search algorithms
such as spreading activation. Spreading activation algorithms
are a long-known tool to determine relevance of nodes in
a semantic network. Originally from psychology, they have
been used in many other application areas, such as databases,
artificial intelligence, biology, and information retrieval [2].

All spreading activation algorithms follow a basic pattern:
chunks of activation are spread gradually from nodes to
neighboring nodes, which marks receiving nodes as being
relevant to a certain degree. However, practically, each known
implementation differs in many details, such as the amount
and distribution of activation. Whether a specific configuration
for such an algorithm leads to useful results depends largely
on two factors: the problem to be solved by spreading and
the structure of the underlying semantic network. Although
there are many working examples of such algorithms, until

now there are almost no guidelines on how to achieve a
good configuration. Knowledge about effects and their causes
facilitates pre-configuration analyses in order to optimize the
settings to retrieve the desired effects. Since semantic networks
tend to be very large, an excessive examination of spreading
behavior with a multitude of configuration settings can be a
time-consuming task.

Therefore, we propose to utilize the comprised structural
summary of a semantic network skeleton for spreading ac-
tivation simulation. In this article, we aim to gain insights
on the spreading activation behavior on a semantic network
by simulating spreading activation on its network’s skeleton.
We present a framework for spreading activation simulation
that supports detailed observations of two basic properties.
First, we observe the activation strength, i.e., the pulsewise
development of activation values within a network. Second,
we track the spreading strength, i.e., the number of nodes that
are activated, which is a measure for activation saturation in
the semantic network. The simulation results can reveal desired
and undesired effects and allow for further pre-configuration
analyses such as sink detection.

In Section II, we will give a short summary about semantic
networks and spreading activation. In Section III, we provide
a formal framework for spreading activation in semantic net-
works, and introduce an extension that we refer to as spreading
modes. Section IV is dedicated to semantic network skeletons
formally and visually. In Section V, we introduce our spreading
simulation approach formally, and provide examples for the
simulation steps. Section VI is dedicated to the evaluation of
the presented simulation approach. We will show that simula-
tion results match their corresponding spreading results at an
appropriate average, and we present time-related advantages.
We finish the article with conclusions and an outlook on future
research potentials regarding spreading activation simulation
and semantic network skeletons.

This article is an extension of a previous paper [1], where
we introduced the concept of semantic network skeletons.
In this article, we extend this approach by showing how
skeletons can be used for simulating spreading activation. We
furthermore show that the simulation results are predictors for
the actual spreading activation on the original network.

II. BASICS AND RELATED WORK
We simulate spreading activation as semantic search tech-

nique on semantic networks. Therefore, we shed some light
on the underlying concepts.

A. Semantic Network
Historically, the term semantic network had its origin in the

fields of psychology and psycholinguistics. Here, a semantic

1

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

network was defined as an explanatory model of human knowl-
edge representation [3][4]. In such a network, concepts are
represented by nodes and the associations between concepts as
links. Generally, a semantic network is a graphic notation for
representing knowledge with nodes and arcs [5][6]. Notations
range from purely graphical to definitions in formal logic.

Technically, among others semantic networks can be de-
scribed by the Resource Description Framework (RDF) and
RDF Schema (RDFS). The RDF data model [6] is defined
to be a set of RDF triples whereas each triple consists of
a subject, a predicate and an object. The elements can be
Internationalized Resource Identifiers (IRI), blank nodes, or
datatyped literals. Each triple can be read as a statement
representing the underlying knowledge. A set of triples forms
an RDF Graph, which can be visualized as directed graph,
where the nodes represent subject and object and a directed
edge represents the predicate [6].

B. Spreading Activation
Spreading activation, like semantic networks, has a histor-

ical psychology and psycholinguistic background. It was used
as a theoretical model to explain semantic memory search and
semantic preparation or priming [3][4][7].

Over the years, spreading activation evolved into a highly
configurable semantic search algorithm and found its applica-
tion in different fields. In a comprehensive survey, Crestani
examined different approaches to the use and application
of spreading activation techniques, especially in associative
information retrieval [2]. Spreading activation is capable of
both identifying and ranking the relevant environment in a
semantic network.

1) Processing: The processing of spreading activation is
usually defined as a sequence of one or more iterations, so-
called pulses. Each node in a network has an activation value
that describes its current relevance in the search. In each pulse,
activated nodes spread their activation over the network to-
wards associated concepts, and thus mark semantically related
nodes [2]. If a termination condition is met, the algorithm
will stop. Each pulse consists of different phases in which the
activation values are computed by individually configured ac-
tivation functions. Additional constraints control the activation
and influence the outcome considerably. Moreover, constraint-
free spreading activation leads to query-independent results [8].
Fan-out constraints limit the spreading of highly connected
nodes because a broad semantic meaning may weaken the
results. Path constraints privilege certain paths or parts of them.
Distance constraints reduce activation of distant nodes because
distant nodes are considered to be less associated to each other.
There are many other configuration details such as decays,
thresholds, and spreading directions.

2) Application Areas: Álvarez et al. introduced the On-
toSpread Framework for the application and configuration of
spreading activation over RDF Graphs and ontologies [9]. They
use their framework for retrieving recommendations, e.g., in
the medical domain [10]. Grad-Gyenge et al. use spreading
activation to retrieve knowledge graph based recommendations
for email remarketing [11]. Crestani et al. applied constrained
spreading activation techniques for searching the World Wide
Web [12]. An approach for Semantic Web trust management
utilizes spreading activation for trust propagation [13]. Another
area of application is the semantic desktop, which aims at
transferring semantic web technologies to the users desktop.

Schumacher et al. apply spreading activation in semantic
desktop information retrieval [14].

3) Configuration: A challenge mentioned in spreading
activation related research is the tuning of the parameters,
e.g., values associated with the different constraints as well
as weighting or activation functions. For evaluation of the
prototype WebSCSA (Web Search by Constrained Spreading
Activation) in [12], values and spreading activation settings
are identified experimentally, empirically, or partly manually
according to the experiments requirements. Álvarez et al. state
that a deep knowledge of the domain and the semantic network
is necessary and domain-specific customization configuration
is needed [9]. In a case study from the medical systems
domain, they emphasize the need for automatic support for
proper configuration selection, e.g., by applying learning al-
gorithms [10]. It is a known fact that spreading activation
configuration has a huge impact on the quality of the spreading
results. Currently, there exists no systematic approach for the
determination of proper configuration settings. Moreover, not
even guidelines for the appropriate configuration are available
to potential users. There is a lack of systematic analyses of the
impact and interaction of different settings and parameters. The
simulation approach presented in this article aims at facilitating
such analyses in order to gain helpful insights and support
appropriate configurations.

C. Simulation
The common idea of simulation is to imitate the operation

of real-world processes or systems over time [15]. Simulation
is applied in different domains, such as traffic, climate, medical
science, or engineering [16]. Usually, simulation is performed
on a model, which is an approximation of the item to be
simulated, because real world is often too complex [16].
Simulation on this model facilitates repeated observation of
specific events, which can be utilized for analyses in order to
draw conclusions.

In this article, we aim at simulating the behavior of an
algorithm under different configurations on a specific data
structure, i.e., very large semantic networks. Here, the simula-
tion model is the semantic network skeleton, which is used to
approximate the behavior of the spreading algorithm on the un-
derlying semantic network. Another approach uses simulation
of algorithms, for example, in the context of signal processing
[17]. Here, simulation was performed on a MATLAB model
in order to optimize parameters such as sampling rates or filter
designs before implementing the algorithm in hardware. In
[18], the authors describe the necessity of tuning coordination
algorithms for robots and agents as well as the challenge
of finding proper configurations due to a large configuration
space. They use simulation to collect data to train neural
networks in order to optimize performance data.

Our approach also aims at tuning configuration parameters.
However, our simulation method does not target direct configu-
ration optimization, but indirectly targets approximated results
to better understand the beforementioned interdependence.

III. SPREADING ACTIVATION IN SEMANTIC
NETWORKS

Spreading activation based algorithms follow a common
principle but may vary in detail. Therefore, we present a
framework that we will use as foundation for the simulation
approach introduced in Section V. We focus on the basic
pure spreading approach and describe three well-established

2

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

constraints. Additionally, we introduce an extension that we
refer to as spreading modes.

A. Semantic Networks
Let L be a set of labels. The semantic network G (here also

source network) is a directed labelled multigraph and defined
by

G = (N,E, s, t, l, ω)

where
• N is a non-empty set of nodes,
• E is a set of edges,
• s : E → N is the edge source mapping,
• t : E → N is the edge target mapping,
• l : N ∪ E → L is the labelling,
• ω : E → R is the edge weight mapping.

B. Basic Spreading Activation Functions
The principle of spreading activation is a combination

of pulse-wise computations of the three spreading activation
functions. For n ∈ N , e ∈ E, and spreading pulse p ≥ 0:
• the output function out : N ×E×R→ R determines

the state of output activation o(p)n for node n at pulse
p,

• the input function in : N × E × R → R determines
the state of input activation i(p)n,e for node n via edge
e at pulse p,

• the input function in : N × N → R determines the
state of input activation i(p)n for node n at pulse p, and

• the activation function act : R × R → R determines
the activation level a(p)n for node n at pulse p.

These functions are computed in each spreading pulse p ≥
0, where p = 0 denotes the initial state and, therefore, the
starting point of the algorithm. The computations in each pulse
follow a specified order. A new pulse starts with calculating the
output activation utilizing the latest activation level from the
previous pulse. Subsequently, the input activation of all nodes
are determined from the output activation, which is finally used
for calculating the new activation level.

A node is defined to be activated as soon as it received any
activation value in a spreading activation step. In subsequent
steps, the strength of a node’s activation may increase, but a
node can not be deactivated.

On Spreading Directions: Spreading activation can con-
sider or ignore the direction of edges. Neglecting edge di-
rections is more intuitive since the direction solely reflects
the reading direction of an edge’s property. Redirecting an
edge does not change the semantic meaningfulness between
the connected nodes, e.g., x hasMalfunction y can be read as
y isMalfunctionOf x. Spreading activation based algorithms
utilize semantic relatedness within semantic networks sym-
bolized by their structure. Therefore, we present spreading
activation functions that ignore edge directions and spread
activation over all edges connected to a node, referred to as
undirected spreading in the remainder of this article. However,
the presented algorithms can easily be adapted to adhere to the
assigned edge property directions.

Output activation function: The state of output activation
o
(p)
n for node n ∈ N , e ∈ E at each pulse p > 0 is determined

by the output function:

o(p)n = out(n, e, a(p−1)n), (1)

where in pure undirected spreading

out(n, e, a) :=

{
a if s(e) = n ∨ t(e) = n,

0 else.
(2)

Input activation function: The input activation i
(p)
n,e for

nodes n,m ∈ N via edge e ∈ E at each pulse p > 0 is
determined by the input function:

i(p)n,e = in(n, e, o(p)m), (3)

where in pure undirected spreading

in(n, e, o) :=

os(e) · ω(e) if t(e) = n,

ot(e) · ω(e) if s(e) = n,

0 else.

(4)

The consolidated input activation of a node n received via
all edges can be combined:

i(p)n = in(n, p), (5)

where

in(n, p) :=
∑
e∈E

i(p)n,e. (6)

Activation function: The activation level a(p)n for node
n ∈ N describes the current assigned activation value at each
pulse p ≥ 0, where a(0)n denotes the initial activation level of n.
For p > 0, the activation level is determined by the activation
function:

a(p)n = act(i(p)n , a(p−1)n), (7)

where in pure spreading the input activation is added directly
to the latest activation level of node n:

act(i, a) := i+ a. (8)

The definition of spreading activation functions can be
versatile. Additional computations can be applied such as
normalization functions. Here, only basic spreading activation
functions are presented. However, we apply some well-known
constraints and several newly defined spreading modes that
will be integrated in the output activation function.

Constraints: There are various known spreading configu-
ration parameters, also called constraints, applied in several
applications and presented in information retrieval research
work [2]. Constraints allow for additional control of the three
kinds of activation functions. In this article, we chose three
known constraints, and show how we include them into our
spreading approach. Other parameters are known and can be
applied in the same manner.

First, the activation threshold controls whether or not nodes
with only very low activation values under a specified threshold
are excluded from spreading their activation in the specific
pulse. Since the activation value is a measure for the relevance
of a node, it impedes semantically non-relevant nodes to con-
tribute in the spreading process. Here, the activation threshold
is controlled by τ : N → R. If no activation threshold is
applied, τ = 0.

3

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Second, the fan-out constraint provokes the splitting of out-
going activation due to the assumption that highly connected
nodes have a broad semantic meaning and, therefore, may
weaken the informative value of the spreading result. This
punishes highly connected nodes by reducing the activation
value to be passed, mostly by splitting the activation equally
to those nodes. Whether or not the fan-out constraint is applied
is controlled by the boolean parameter fanout.

Third, the pulse decay decreases the transported activation
over the amount of activation steps, i.e., pulses. On the one
hand, this punishes distant nodes. On the other hand, it curbs
the overall activation distribution over the iterations. The pulse
decay is controlled by the decay factor d. If the pulse decay
constraint is not applied, d = 1.

The three presented constraints affect the level of output
activation and must be considered in the output activation
function. The constraints-aware output functions are defined
as follows:

The output function with a pulse decay and a decay factor
d is defined by:

out(n, e, a) :=

{
d · a if s(e) = n ∨ t(e) = n,

0 else.
(9)

The output function with an activation threshold τ :

out(n, e, a) :=

{
a if s(e) = n ∨ t(e) = n, a ≥ τ,
0 else.

(10)

The output function with a fan-out constraint that equally
divides the available activation by the outgoing edges:

out(n, e, a) :=

{
a

deg(n) if s(e) = n ∨ t(e) = n,

0 else,
(11)

with the degree of a node n ∈ N when ignoring edge
directions:

deg(n) := |{e ∈ E|s(e) = n ∨ t(e) = n}|. (12)

Constraints can be combined in the output function, e.g.,
choosing all three presented constraints results in the output
activation:

out(n, e, a) :=

d · a if s(e) = n ∨ t(e) = n,

a ≥ τ,¬fanout,
d·a

deg(n) if s(e) = n ∨ t(e) = n,

a ≥ τ, fanout,
0 else.

(13)

C. Extension - Spreading Activation Modes
The processing of spreading activation based algorithms

in information retrieval applications can follow manifold con-
ceptions of how the activation is supposed to spread over
networks. Mostly, the processing of spreading activation is
based on the assumption that in each pulse every activated node
of the network is allowed to spread its activation (or part of it)
to neighbor nodes. In that case, whether or not a node indeed
provides output activation only depends on restrictions coming
from additional constraints such as an activation threshold.

However, we see potential in an extended and more dis-
tinguished treatment of nodes by deciding whether a node
gets permission to spread (and receive) activation. Therefore,
we distinguish between various so-called spreading modes.
Such modes define spreading rules and, therefore, control the
paths taken during the activation process. Moreover, we can
distinguish between the edges that transport activation, e.g., a
node does not necessarily have to be allowed to spread via
each of its connected edges. Formally, each spreading mode
affects the output activation by the spread permission function
ϕ. The spread permission function can be applied to any output
activation function. Here, we introduce three intuitive modes.
The mode- and constraint-aware output activation function is
defined by

out(n, e, a, ϕ) := ϕ · out(n, e, a). (14)

The presented modes ignore edge directions since output
functions carry this information already before mode-aware
extension. We distinguish between the following spreading
modes.

1) Basic Mode: As mentioned before, the basic spreading
mode allows each node to spread activation to all neighbors in
each pulse, regardless of the edge’s directions. Of course, only
activated nodes with activation values greater than zero can
generate an amount of output activation for spreading. How-
ever, this is controlled by the output function. The permission
function is defined as:

ϕ(n, e) := 1. (15)

This means that each node is theoretically allowed to
spread via all edges. Practically, a node is usually not con-
nected with all edges. Note, that for a non-connected edge e
of node n, the spreading permission is repealed by the non-
existing output activation on,e.

2) Recent Receiver Mode: Another mode solely allows
nodes that were receivers of activation in the last pulse to
spread activation to their neighbor nodes. The permission
function is defined as:

ϕ(n, e, p) :=

1 if p = 0,

1 if i(p−1)n > 0, p > 0,

0 else.

(16)

3) Forward Path Mode: Another mode evolves when
nodes may not directly spread back to the nodes they just
received activation from. The permission function is defined
as:

ϕ(n, e, p) :=

1 if p = 0,

1 if i(p−1)n,e = 0, p > 0

0 else.

(17)

In Figure 1, the spreading paths of the three presented
modes are depicted. Not each activated node must necessarily
be permitted to spread to neighbor nodes. While in basic
mode each activated node is permitted to spread over all
connected edges, the figure reveals that in recent receiver mode
the spreading permission of node A and D will pulse-wise
alternate. In forward path mode, we observe that spreading
back is only permitted on circular paths, e.g., A-B-C-A, but not

4

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A

EB

C

D

A

EB

C

D

A

EB

C

D

A

EB

C

D

A

EB

C

D

(a)

(b)

(c)

A

EB

C

D

A

EB

C

D

p = 0
(initial)

p = 1 p = 2

Non-Activated Node

Permitted Spreading
Activated Node

Legend:

Direction

Figure 1. Mode-Aware Permitted Spreading Behavior in three Activation
Pulses in a) Basic Mode b) Recent Receiver Mode c) Forward Path Mode.

directly A-D-A. Here, circular paths are priviledged since they
might incorporate special semantic meaning whereas back-
spreading of linear paths is impeded. Different modes are a
measure that may impede extended oscillated spreading by
means of a sophisticated spreading permission system.

In contrast to constraints, spreading modes can not be
combined. Exactly one mode must be chosen, where the basic
mode can be seen as a default mode.

IV. SEMANTIC NETWORK SKELETON
As stated before, proper configuration of a spreading

activation algorithm is a challenging task. One important
influencing factor for a good configuration is the structure of
the underlying semantic network. Often however, semantic net-
works tend to be very large, and therefore hard to comprehend.

We propose a tool called semantic network skeleton, intro-
duced in [1], which is supposed to summarize the structure
of a semantic network. Therefore, using a skeleton shall make
it easier to comprehend their structural properties and draw
conclusions for configurations.

A. Skeleton Introduction
A skeleton of a semantic network is a directed graph that

has been derived from a semantic network. We will call the
semantic network from which the skeleton has been derived
the source (network).

Generally spoken, the skeleton shall represent the semantic
structure of the source. Therefore, similar nodes and edges are
grouped and represented by single node representatives and
edge representatives in the skeleton. Thus, the skeleton hides
all the parts of the source which are similar, and it makes the
structural differences in the network more explicit.

Often, a semantic network contains also nodes and edges
that carry little semantic value and therefore should be ignored
by a spreading activation algorithm. An example from the RDF
Specification are blank nodes, which by definition carry no
specific meaning. Therefore, before creating a skeleton from
a source, one first has to define the semantic carrying set of
nodes and edges. This choice is very problem-specific, and

therefore cannot be generalized. We call the semantic carrying
subnetwork of the source the spread graph.

Since the skeleton is based on the spread graph, it repre-
sents only semantic carrying nodes and edges. The skeleton
usually contains three types of node representatives: classes,
instances, and literals. Since the relationships between instance
node representatives carry the most structural information
about the semantic network, we call this part the skeleton core.

B. Types of Semantic Network Skeletons
We distinguish between two types of skeletons regarding

their completeness and detail level: the maximum and the
effective skeleton of a network.

A maximum skeleton contains all potential nodes and rela-
tions of the source. It is comparable with a UML class diagram
in the sense that it shows everything that is theoretically
possible in that network. However, it does not transport any
information about the actual usage of classes/instances in the
source network. Therefore, the maximum skeleton might con-
tain nodes and relationships that have never been instantiated
in the source.

An effective skeleton represents the structure of a specific
instance of a semantic network. Therefore, it contains only
nodes and relations that are actually part of the source network.
This means that a class that is part of an RDF schema, but that
has not been instantiated in a concrete instance of that RDF
schema would have a node representation in the maximum
skeleton, but not in the effective skeleton.

By comparing maximum and effective skeletons, we find
advantages and disadvantages for both of them: The maximum
skeleton is the more generalized skeleton version, and therefore
it applies to many different network instances of the same RDF
schema. However, its generality also means that it carries less
specific information about each single instance, and therefore,
conclusions drawn from a maximum skeleton are weaker than
those drawn from an effective skeleton. The effective skeleton
is specific to one instance of a semantic network. Thus, it
cannot be reused for other instances, but it results in more
precise conclusions.

C. Annotations
While the skeleton structure helps to understand the basic

structure of the source network, a detailed analysis often
requires more information: It might be useful to know, how
many node or edges are subsumed by a node or edge rep-
resentative in the skeleton; The average number of incoming
or outgoing edges for all represented nodes could indicate a
certain spreading behaviour; Maybe there are 10.000 edges
of the same type subsumed by one edge representative, but
actually they all originate in only 10 different nodes. To capture
such (often numerical) information, skeletons can be enhanced
by annotations. Typically, there are four types of annotations:
those that describe node or edge representatives and those that
describe the source or target of an edge representative.

Since effective and maximum skeletons carry different
information, this also applies to annotations on them. While
annotations on an effective skeleton refer to a concrete network
instance of an RDF Schema (e.g., the concrete count of
instances of a node type), annotations on a maximum skeleton
describe potential values. Thus, an instance count could have
the value ∗, meaning that any number of instances is possible.

5

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Syntax
Let LS be a set of labels. A Semantic Network Skeleton

S is defined by

S = (NS , ES , s, t, l, ω),

where
• NS is a non-empty set of node representatives,
• ES is a set of edge representatives,
• s : ES → Ns is the edge source mapping,
• t : ES → NS is the edge target mapping, and
• l : NS ∪ ES → LS is the labelling,
• ω : ES → R is the edge weight mapping.
The node and edge representatives each represent a set

of nodes/edges of the same type from the original semantic
network. Each edge representative e ∈ ES has a source
node representative s(e) and a target node representative t(e).
Furthermore, all node and edge representatives have a label
l(n)/l(e) assigned.

Given a semantic network skeleton S =
(NS , ES , s, t, l, ω), and let n1, n2 ∈ NS , e ∈ ES , s(e) = n1,
and t(e) = n2. Then the triple

TS = (n1, e, n2)

is called a skeleton triple of S. A skeleton triple represents all
corresponding RDF triples of the source network.

For a skeleton S the skeleton annotation AS is defined as

AS = (An, Ae, As, At),

where
• An : K ×NS → V is the node annotation,
• Ae : K × ES → V is the edge annotation,
• As : K×ES → V is the edge source annotation, and
• At : K × ES → V is the edge target annotation.

Here, K stands for a set of annotation keys, and V stands for
a set of annotation values.

E. Graphical Notation
The graphical notation for the skeleton corresponds to the

graphical notation of RDF Graphs. In Figure 2, the proposed
graphical notation is depicted. A node representative n ∈ N
is represented by a circle with its label l(n) denoted over
the circle. An edge representative e ∈ E is represented by
an unidirectional arrow with its label l(n) denoted next to
the arrow center. An arrow must connect two circles, with
the arrow start connecting to the circle that represents the
source and the tip of the arrow connecting to the circle that
represents the target. Annotations are denoted in the circles,
or near the start, middle, or end of the arrow, depending on
their annotation type (node, edge, edge source, or edge target
annotation).

F. Formal Notation of Graphical Example
A skeleton S = (NS , ES , s, t, l, ω) that contains among

others the node and edge representatives depicted in Figure 2
would be formally denoted by
• the labels Function, Malfunction, hasMalfunction ∈

LS ,
• two nodes n1, n2 ∈ NS with l(n1) = Function, and

l(n2) = Malfunction,
• an edge e ∈ ES with l(e) = hasMalfunction, s(e) =

n1, and t(e) = n2.

Annotations

6434
20 64

hasMalFunction
64

MalFunctionFunction

Labels

Node
Representative

Node
Representative Edge

Representative

Figure 2. Graphical Notation for Skeletons.

Additionally, the skeleton annotation AS = (An, Ae, As, At)
would contain the following mappings:
• An(nc, n1) = 34,
• An(nc, n2) = 64,
• Ae(ec, e) = 64,
• As(src rep, e) = 20, and
• At(tgt rep, e) = 64.

Here, nc and ec are the numbers of nodes/edges (node count
and edge count) that have been subsumed by a node/edge
representative. The source and target annotations src rep and
tgt rep are the number of represented nodes that are part of
represented RDF triples. Thus, 20 of the 34 nodes represented
by n1 are connected to nodes represented by n2 via an edge
represented by e. For the sake of brevity, we use the annotation
keys similar as functions in the remainder of this article.

G. Skeleton Retrieval
Semantic network structures are as diverse as their po-

tential applications and user-specific design decisions. Gen-
erally, skeletons can be retrieved from all kinds of semantic
networks. However, transformation rules must guarantee that
the semantic definition described in Section IV-A holds. We
focus on retrieving skeletons from semantic networks based on
RDF and RDF Schema. More specifically, we utilize the RDF
statements from the corresponding RDF Graph. Technically,
different approaches are possible from successively parsing
RDF Statements to utilizing query languages such as SPARQL
[19]. We offer an abstract retrieval description focusing on
semantic compliance as introduced in [1].

H. Creating Effective Skeletons
For retrieving the effective node and edge representatives

from the spread graph, we apply the following abstract method.
1) Each resource that is an RDF class becomes a node

representative in the skeleton.
2) All instances of one class are subsumed by one node

representative.
3) All literals are subsumed by one node representative

in the skeleton.
4) For each statement, an edge representative is added

(if not yet existent) for the predicate between the
node representative of the statement’s subject and the
node representative of the statement’s object in the
skeleton.

Additionally, during the skeleton retrieval process, the desired
annotation values can be computed. We propose to subsume
all literals by one node representative in the skeleton. In
RDF, the literals of the class rdfs:Literal contain literal values

6

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

such as strings and integers. A literal consists of a lexical
form, which is a string with the content, a datatype IRI, and
optionally a language tag. It is, of course, possible to further
distinguish depending on datatype, or even analyzing value
equality instead of term equality. However, the content string
of the lexical form seems to be most important and sufficient
for the application.

I. Creating Maximum Skeletons
For creating a maximum skeleton, we apply the following

method to retrieve node and edge representatives from a spread
graph.

1) Each resource that is an RDF class becomes a node
representative in the skeleton. Additionally, a node
representative for instances of this class must be
created. For resources that are classes themselves and
subclasses of another class all properties must be
propagated from its superclass.

2) Find all properties and their scope (range, domain).
For each property add (if not existent yet) an edge
representative from the node representative for the
instances of the specified domain to the node repre-
sentative for the instances of the specified range. For
each subproperty p1 of a property p2 edge representa-
tives must be created between all node representatives
connected via p2.

Again, required annotation values can be computed during the
skeleton retrieval process.

V. SIMULATING SPREADING ACTIVATION
BEHAVIOR WITH SEMANTIC NETWORK

SKELETONS
Structural network properties as well as spreading acti-

vation constraints and configuration settings affect spreading
activation results. Knowledge about spreading activation ef-
fects and their causes supports pre-configuration analyses in
order to optimize the settings to retrieve the desired effects.
Since semantic networks tend to be very large, an excessive
examination of spreading behavior with a multitude of configu-
ration settings can be a time-consuming task. Therefore, we
utilize the comprised structural summary of semantic network
skeletons to simulate the spreading activation behavior of its
represented semantic network. In this section, we formally
introduce the spreading activation simulation approach. For
better comprehensibility, we apply selected simulation steps
to an example.

A. Simulation Method
Spreading Activation on a network skeleton requires care-

ful mapping of the algorithm to the new graph structure. Since
the skeleton contains representatives for nodes and edges,
we introduce an averaging approach in order to simulate the
expected spreading behavior and approximate the activation
strength and spreading strength for each simulation step.

In Figure 3, one challenge of this mapping can be observed.
A spreading activation step on a skeleton triple needs to
simulate spreading activation on the underlying bipartite graph.
The explicit annotations are advantageous for the approach. We
can identify how many represented nodes are not connected
to a represented edge, and consequently can be identified
as unreachable. Additionally, we can make estimations about
the number of represented edges a represented node can be
expected to be connected to. However, we do not have full

810
8 e

8

n2
n1

4

output input

output

input

Unreachable
Represented Node
Reachable Represented
Node

Legend:

Figure 3. Spreading Activation on a Skeleton Triple.

information about the connectedness of the represented nodes
and edges. Moreover, we have to pay attention to the actual
state of expected activation in every pulse. For example, there
is a difference for both input and output function if one node
represented by n1 is expected to be already activated, or if all
of the 10 represented nodes are expected to be activated. We
refer to the ratio of activated nodes in the set of represented
nodes as saturation. The overlapping of already activated
nodes and newly activated nodes needs to be considered as
well, e.g., how many of the new ones are expected to be
contained in the set of the already activated nodes. Therefore,
we include combinatorial considerations into our spreading
activation function mapping.

1) Local And Global Simulation Steps: We distinguish
between two kinds of spreading steps that we refer to as local
and global simulation steps. This differentiation supports the
comprehensibility of the required adaptations. Figure 4 depicts
local and global simulation areas.

Local Simulation
Area
Global Simulation
Area

Legend:

(a) Local (b) Global

Figure 4. Simulation Areas.

In a local simulation step, each node-edge pair of the skele-
ton is examined. For each of these pairs, the expected outgoing
as well as expected incoming activation are calculated.

Since a node representative may receive activation via
various edge representatives, a consolidation of incoming
activation is necessary. In a global simulation step, each node
is examined and the results from the local observations are
consolidated. Thus, we obtain the expected and incoming
activation as well as the new expected overall activation level
for each node in the skeleton.

7

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Simulation Input: Spreading activation simulation re-
quires the corresponding semantic network skeleton to the
source network that the spreading is simulated for. We ad-
ditionally need the same configuration settings, e.g., selected
from constraints and spreading modes presented in Section
III-B and III-C. Starting point for the simulation has to be
the node representative(s) of the starting node(s) in the source
network.

3) Simulation Results: Two aspects of activation distribu-
tion are of special interest. First, the expected growth of the
number of activated nodes represented by each skeleton node.
It reveals the spreading strength and answers the questions
how fast activation probably reaches representatives of skeleton
nodes in the underlying semantic network. More importantly,
it examines the pulse-wise growth of the number of activated
nodes represented by each skeleton node and provides an
estimation about the proportion of already activated nodes
represented by its representative, which we call the activation
saturation. Second, we are interested in expected growth of
the activation values of the nodes represented by a skeleton
node. This reveals the activation strength and answers the
question how fast activation values can be expected to increase
in the underlying semantic network. Therefore, we calculate
for each skeleton node the expected number of activated nodes
and the expected activation value for each simulated spreading
activation step.

B. Mapping Spreading Activation Functions for Simulation
Purposes

The basic idea is to adapt the beforementioned three
components of the spreading activation computation, i.e., out-
put activation, input activation, and activation level, to an
averaging approach for approximating the activation value
development. Therefore, we introduce the following spreading
activation simulation functions along with the corresponding
levels of expected activation. For n ∈ NS , edge e ∈ ES , pulse
p ≥ 0, for local simulation steps:
• the aggregated output function out : NS×ES×R→ R

determines the expected total output activation of node
n via edge e, denoted by o(p)n,e,

• the counting output function ˆout : NS×ES×R2 → R
determines the expected number of nodes represented
by n to be activated via edge e from node n, denoted
by ô(p)n,e,

• the aggregated input function in : NS ×ES ×R→ R
determines the expected total input activation of node
n via edge e, denoted by i

(p)
n,e ,

• the counting input function în : NS × ES × R3 → R
determines the expected number of nodes represented
by n to be newly activated via edge e, denoted by î(p)n,e,

and for global simulation steps:
• the aggregated input function in : NS × N → R

determines the expected total input activation of node
n via all connected edges of node n, denoted by i

(p)
n ,

• the counting input function în : NS × N → R
determines the expected number of nodes represented
by n to be newly activated via all connected edges,
denoted by î(p)n ,

• the aggregated activation function act : R2 × R→ R
determines the expected total activation of node n,
denoted by a(p)n ,

• the counting activation function âct : R2 → R
determines the expected number of nodes represented
by n to be newly activated, denoted by â(p)n .

The skeleton triple and its underlying bipartite graph de-
picted in Figure 3 reveal two important facts. First, we can
obtain the connection rate of a node represented by n ∈ NS

to be connected with a represented edge of e ∈ ES . This
connection rate con : NS × ES → R can be calculated as
follows:

con(n, e) :=

src rep(e)

nc(n) if s(e) = n,
tgt rep(e)

nc(n) if t(e) = n, s(e) 6= n,

0 else.

(18)

We want to point out that loops are handled by the first case
and restricted from the second case such that only one con-
value per node and connected edge exists, i.e., in the reading
direction of the edge’s property.

Second, the expected spread factor fac : NS × ES →
R denotes the number of edges represented by e ∈ ES that
each connected node represented by n ∈ NS is expected to be
connected to.

fac(n, e) :=

ec(e)

src rep(e) if s(e) = n,
ec(e)

tgt rep(e) if t(e) = n ∧ s(e) 6= n,

0 else.

(19)

Figure 5 depicts an annotated skeleton triple with two node-
edge pairs, each for a local simulation step in the output and in
the input direction. This will be the example for the following
simulation step descriptions.

8
e

n2

4

î 4n2

con(n2,e) = 0.5

fac(n2,e) = 3

10
8

12

n1
con(n1,e) = 0.8

ô 4
n1

fac(n1,e) = 1.5

o4
n1 i 4n2

a 3
n1=1.2

â 3
n1 =4

a 3
n1=3.5

â 3
n1 =2

Figure 5. Annotated Skeleton Triple with expected activation levels assigned.

1) Local Calculation of Expected Total Activation: The
expected total output activation can be calculated by an adapted
constraints- and mode-aware output function. The spreading
modes presented in this article and the associated permission
function ϕ do not require adaptations when used for spreading
activation simulation, as well as pulse decay and activation
threshold. The fan-out constraint requires adapting the fan-out
factor, since spreading in the skeleton follows an averaging
approach. Here, we do not consider the degree of a node to be
of interest but the expected spread factor of all edges connected
to a node, defined by fac : NS → R. We define on1,e to be the
expected total activation that might be passed from the nodes
represented by n1 via the connected edges represented by e.
Therefore, we need to consider the connectivity rate as well as
the spread factor in the aggregated output function. The total
output activation value is determined by:

o(p)n,e = out(n, e, a(p−1)n), (20)

where

8

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

out(n, e, a) :=

d · a · con(n, e) · fac(n, e) if s(e) = n ∨ t(e) = n,

a ≥ τ,¬fanout,
d·a·con(n,e)·fac(n,e)

fac(n)
if s(e) = n ∨ t(e) = n,

a ≥ τ, fanout,
0 else,

(21)

where

fac(n) :=
∑

e∈ES ,s(e)=n∨t(e)=n

fac(n, e). (22)

The expected total input activation i
(p)
n,e for node n,m ∈ NS

via edge e ∈ ES at each pulse p > 0 is determined by the
input function without further adaptations:

i
(p)
n,e = in(n, e, o(p)m) (23)

where

in(n, e, o) :=

o · ω(e) if t(e) = n,

o · ω(e) if s(e) = n,

0 else.

(24)

The example in Figure 6 shows that without any constraints
the assigned expected activation value of n1 is expected to be
passed by 8 nodes represented by n1 where each is expected to
be connected to 1.5 of the represented edges. Therefore, the
total expected output activation can be expected to be 1.44.
Since there is no edge weights assigned, in this example the
total expected input activation can be expected to be the total
output activation 1.44.

8
e

n2

4

î 4n2,e1

con(n2,e) = 0.5

fac(n2,e) = 3

10
8

12

n1
con(n1,e) = 0.8

ô 4
n1,e1

fac(n1,e) = 1.5

o4
n1,e1 i 4n2,e1

a 3
n1=1.2

â 3
n1 =4

a 3
n2=3.5

â 3
n2 =2

o4
n1,e1

= 1.2*0.8*1.5
= 1.44

i 4n2,e1
= 1.44

Unreachable
Represented Node
Reachable Represented
Node

Legend:

Figure 6. Example: Local Expected Total Activation.

2) Local Calculation of Expected Number of Activated
Nodes : The expected number of activated output nodes can be
calculated by an adapted mode- (and constraint) aware output
function:

ô(p)n,e = ˆout(n, e, â(p−1)n , o(p)n,e), (25)

where

ˆout(n, e, a, o) :=

a · con(n, e) · fac(n, e) if s(e) = n ∨ t(e) = n,

o > 0,

0 else.
(26)

In contrast to the computation of expected total activation,
the local expected number of activated nodes does not directly
depend on the spreading activation constraints. Indirectly, the
restriction in the first case requires an expected total output
activation greater than zero to be transported via edge e,
and input activation respectively (which indirectly may be
influenced by the algorithm settings).

The expected input activation number can be calculated by
an adapted and constraint aware input function.

î(p)n,e = în(n, e, â(p−1)n , ô(p)m,e, i
(p)
n,e) (27)

The input function needs to take into account that we
have no knowledge about the actual connections between
represented nodes and edges. When a certain number of edges
reaches nodes, there are several potential combinations. In
order to estimate how many represented nodes are reached by a
number of activation passing edges, we follow a combinatorial
approach. The function split determines how the number
activation passing edges needs to be reduced regarding their
receiving nodes. It represents a combinatorical approach to
get the average number of buckets (y) that have a ball, when
distributing x balls to them.

split(x, y) :=
1− (y−1y)x

1− (y−1y)
(28)

î(p)n,e = în(n, e, a, o, i) :=
split(o, src rep(e)) · (1− a

nc(n)) if s(e) = n, i > 0,

split(o, tgt rep(e)) · (1− a
nc(n)) if t(e) = n, i > 0,

0 else
(29)

Figure 7 depicts the example calculation for this simulation
step. Only already activated and connected nodes can spread
via the expected number of connected edges per node. After
split reduction, the remaining nodes need to be checked for
potential overlapping with already activated nodes. As a result,
we can expect 2.25 nodes to be newly activated after this local
simulation steps.

C. Global Simulation Step - Consolidation of Local simulation
Steps

After examining each node-edge pair in the local simula-
tion step, we must consolidate them for each node because one
node may receive input via many edges.

1) Global Calculation of Expected Total Activation : The
complete expected input activation value of a node n via
all edges can be determined by the adapted input activation
function:

i
(p)
n = in(n, p), (30)

9

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Expected output:
3.2 nodes via 4.8 edges

8
e1

n2

4

î 4
n2,e1

con(n2,e) = 0.5

fac(n2,e) = 3

10
8

12

n1
con(n1,e) = 0.8

ô 4
n1,e1

fac(n1,e) = 1.5

o4
n1,e1 i 4

n2,e1

a 3
n1=1.2

â 3
n1 =4

a 3
n2=3.5

â 3
n2 =2

src_rep

nc –
src_rep

Overlap:
1.2 out of 4.8 nodes
already activated
Expected input:
2.25 out of 3 nodes newly
activated

â 3
n1 =4 â 3

n2 =2

10 represented nodes 8 represented nodes

Split:
4.8 edges split to 3 edges

tgt_rep

nc –
tgt_rep

Activated and
Connected Node
Unconnected
Nodes

Legend:

Overlap
Newly Activated
Nodes

Figure 7. Example: Local Expected Number of Activated Nodes.

where
in(n, p) :=

∑
e∈ES

i
(p)
n,e. (31)

The complete expected activation level value of a node n
via all edges can be performed by the activation function, no
further adaptations needed:

a(p)n = act(i
(p)
n , a(p−1)n). (32)

Figure 8 depicts an example calculation. All expected input
activation values for a node are aggregated and then used for
the calculation of its new expected total activation.

8

n2

i 4n2,e1

i 4n2,e2

i 4n2,e3

=1.44

=0.73

=2.3

a 3
n2=3.5

(a) Total Input Activation

8

n2
a 3
n2=3.5

i 4n2=4.47

a 4
n2 =3.5+4.47

= 7.97

(b) Number of Activated Nodes

Figure 8. Example: Global Expected Activation.

2) Global Calculation of Expected Number of Activated
Nodes: When consolidating, we have to take into account
that the expected number of activated nodes transported via
all connected edges to a node might contain overlap. First, a
represented node that gets activated may already be contained
in the set of activated nodes of the target node representa-
tive. Second, potentially newly activated nodes coming from
different edges may have an overlap as well. Therefore, the
consolidated expected number of potentially newly activated
nodes should not contain the nodes that are expected to be not
activated.

The number of non-activated represented nodes non act :
NS → R of a node representative n in a pulse p is defined as

non act(n, p) := nc(n)− â(p−1)n . (33)

The number of represented nodes that are expected to be
neither activated nor part of any overlap is denoted by idle :
NS → R:

idle(n, p) := non act(n, p) ·
∏

e∈ES

(1− î
(p)
n,e

non act(n, p)
).

(34)
The expected input activation number via all edges is

denoted by
î(p)n = în(n, p), (35)

where
în(n, p) := non act(n, p)− idle(n, p). (36)

Computation of the complete expected number of activated
represented nodes of a node n can be performed by the
activation function, no further adaptations needed.

â(p)n = act(̂i(p)n , â(p−1)n) (37)

Figure 9 depicts an example calculation. All expected input
activation values for a node are aggregated and then used for
the calculation of its new expected total activation.

8

n2

=2.25

=0.8

=1.5

î 4n2,e1

î 4n2,e1

î 4n2,e1

=2.25î 4n2,e1 =0.8î 4n2,e2 =1.5î 4n2,e3
Consolidation

Expected:
2.44 nodes out of 6 nodes
stay non-activated

Expected:
3.56 nodes out of 6 nodes
newly activated

6 non-activated nodes

Figure 9. Example: Global Expected Number of Newly Activated Nodes.

VI. EXPERIMENTS
A. Appropriateness of Simulation Results

Predictive precision is a key property of a good simulation.
Similarly, this should apply for spreading simulation on a
semantic skeleton. To understand the quality of the predictions
made by spreading simulation, we will compare pulses of a

10

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

simulation on skeleton triples with real spreading pulses on
the underlying network.

When simulating a pulse, we are mainly interested in
a good prediction for the number of activated nodes and
for the total activation of the receiving node representative.
However, there are many other values that can be predicted
by the simulation as well, such as the number of edges that
transported activation from source to target and how much
activation has been transported by them.

To compare simulation and spreading results, we gener-
ated 5000 pairs of skeleton triples TS = (n1, e, n2) with
their corresponding underlying networks, and used each pair
with the same activation values. To observe a high number
of diverse cases, we decided for rather large triples with
An(nc, n1) = 100, An(nc, n2) = 130, and Ae(ec, e) being
randomly generated, averaging at around 200. We kept the
number of edges low in order to guarantee examples with
connected and unconnected nodes, and therefore, to avoid
trivial examples. On average, we assigned initial activation
between 0.0 and 10.0 to 40% of the represented nodes of n1.
In order to observe the local consolidation, we assigned initial
activation 0.0 and 10.0 to 20% of the represented nodes of n2.

For our initial experiment, we decided to use pure spread-
ing, i.e., a threshold of 0.0, a decay of 1.0, and no fanout. We
collected the mean and standard deviation of the spreading
results, the simulation results, and of the difference between
spreading result and simulation result in Table I. Additionally,
we calculated the difference mean as well as the difference
standard deviation relative to the spreading result (shown as
% diff).

Table I shows that total activation values can be predicted
with high accuracy. The mean prediction error is far below
1% of the spreading average for total edge activation as well
as right total activation. The standard deviation of the error is
also very acceptable for simulating pulses. Predicting activated
node counts is less precise, with up to −7% mean error.
Nevertheless, this value improved at the end of the pulse to
−4.7%. Altogether, the simulation shows a very good estimate
of the total activation of n2 after the pulse, and a good estimate
of the number of activated nodes.

After the base experiment, we examine some variations
in order to see if they affect the accuracy of the predictions.
In the second experiment (see Table II), we activated the
fanout constraint. Thus, nodes will spread less activation,
depending on their connectivity. As we can see, the simulation
also predicts this fanout parameter well. There is even an
improvement on the standard deviation of the error, which is
half the deviation of the base example.

In the third experiment (see Table III), we activated the
decay factor and set it to 0.5. Thus, again, nodes will spread
less activation, but this time independent of other factors.
Again, the simulation predicts this parameter well, but there is
no significant change compared to the base experiment.

In Experiment 4 (see Table IV), we set the activation
threshold to 3.0. So, this times less nodes will spread activa-
tion. The experiment indicated that thresholds are a bit harder
to predict, with a mean error of −0.3%. Still, this value is a
very good prediction.

Experiment 5 (see Table V) combines the three parameters
of experiments 2-4. The mean error didn’t change too much,
but interestingly, the standard deviation of the error dropped
further to 2.6%

TABLE I. Experiment 1: Base

total edge activation opn1 mean standard deviation
spreading 399.696 78.992
simulation 400.078 66.428
diff 0.382 42.684
% diff 0.095% 10.679%

active edge count ôpn1
spreading 79.807 13.084
simulation 79.891 11.160
diff 0.083 6.753
% diff 0.105% 8.462%

right receiving node count
split(ôpn1, tgt rep(e))
spreading 59.758 7.724
simulation 55.389 5.460
diff -4.369 4.659
% diff -7.311% 7.797%

right new active node count îpn2
spreading 47.804 6.899
simulation 44.316 4.810
diff -3.488 4.305
% diff -7.297% 9.006%

right total activation ap
n2

spreading 529.567 83.178
simulation 529.949 71.584
diff 0.382 42.684
% diff 0.072% 8.060%

right active node count âp
n2

spreading 73.801 6.935
simulation 70.313 5.045
abs. diff -3.488 4.305
% diff -4.727% 5.833%

TABLE II. Experiment 2: Fanout

right total activation ap
n2 mean standard deviation

spreading 303.203 39.914
simulation 303.273 38.196
diff 0.070 10.445
% diff 0.023% 3.445%

right active node count âp
n2

spreading 73.912 7.034
simulation 70.356 5.092
abs. diff -3.557 4.402
% diff -4.812% 5.956%

TABLE III. Experiment 3: Decay

right total activation ap
n2 mean standard deviation

spreading 330.468 48.010
simulation 330.159 43.124
diff -0.309 21.607
% diff -0.094% 6.538%

right active node count âp
n2

spreading 74.037 7.152
simulation 70.365 5.146
abs. diff -3.672 4.429
% diff -4.959% 5.983%

TABLE IV. Experiment 4: Threshold

right total activation ap
n2 mean standard deviation

spreading 495.542 83.702
simulation 494.037 70.426
diff -1.504 44.059
% diff -0.304% 8.891%

right active node count âp
n2

spreading 62.666 7.351
simulation 60.187 5.038
abs. diff -2.479 4.903
% diff -3.956% 7.824%

11

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE V. Experiment 5: All Parameters

right total activation ap
n2 mean standard deviation

spreading 209.716 31.117
simulation 209.390 30.425
diff -0.327 5.580
% diff -0.156% 2.661%

right active node count âp
n2

spreading 62.527 7.362
simulation 60.152 5.101
abs. diff -2.375 4.895
% diff -3.798% 7.828%

Altogether, the results look promising, and it seems like
using all parameters pushes the predictive power of the simu-
lation.

B. Time-Related Advantages
Besides increased comprehensibility, another main moti-

vation for the concept of semantic skeletons and spreading
simulation is the expected time gain for potential applications.
Of course, we do not aim at replacing spreading activation but
propose bypassing potential applications whenever the averag-
ing simulation results are sufficient. Therefore, we examined
the run time of both spreading activation on a semantic network
and spreading simulation on it’s skeleton.

1) Experimental Setup: The semantic network under in-
vestigation is taken from our related research on an advisory
system for decision-making support for hazard and risk anal-
ysis in the automotive domain [20]. This analysis is strongly
expert-driven, and therefore expensive, time consuming, and
dependent from the individual experts opinion. Therefore, the
advisory system aims at providing useful recommendations
for expert users when conducting such safety analyses. The
semantic search within this network is performed by spreading
activation. This advisory system will be utilized for our time-
related experiments.

The network contains the knowledge taken from more than
150 concluded safety analyses from the domain. It contains
more than 257.000 edges (representing 45 properties) con-
necting more than 61.800. The retrieved effective network
skeleton only consists of 136 skeleton triple containing 45 node
representatives and 136 edge representatives.

For the experiments, we examined 36 input variants using
combinations of the different constraints and spreading modes
presented in this article. Each input variant was executed
for two different starting node situations. The experiments
are conducted in the same running environment for both the
spreading and the simulation approach.

2) Results: Figure 10 depicts the elapsed average time for
the spreading activation runs as well as for the simulation
runs. The simulation’s lead in performance is obvious. The
graph shows a gradual increase of run time over the pulses
for the simulation runs. In contrast, the spreading activation
graph reveals a sharp rise in execution time. One reason, why
simulation can be performed faster is the smaller network
size of a skeleton. We also observe differences regarding their
configurations. Since both the simulation and the spreading
runs are performed with the same input, we assume that it
does not favor any of the both.

The results support our motivation to bypass the difficul-
ties caused by extensive semantic network sizes by taking
advantage of the skeleton’s compactness. We conclude that
whenever the averaging results from the simulation approach

0 5 10 15 20 25 30
0

0.5

1

1.5
·105

Number of Pulses

Av
er

ag
e

El
ap

se
d

T
im

e
in

m
s

Spreading Activation
Simulation

Figure 10. Average Elapsed Time for Spreading Activation and Spreading
Simulation Runs.

are sufficient for a specific application or analysis, e.g., effect
detection in pre-configuration analyses, the use of skeletons
can save time.

VII. CONCLUSION AND FUTURE WORK
In this article, we extended previous work on the concept

of semantic network skeletons by an approach that utilizes
skeletons for simulating spreading activation. We presented a
framework for spreading activation simulation that supports
detailed observations of two basic properties: the expected
pulsewise development of activation values, and the number of
nodes that are expected to be activated, which is a measure for
activation saturation in the semantic network. The approach is
based on a careful mapping of the spreading activation func-
tions to the specific characteristics of a skeleton. Averaging
and combinatorial methods are used in order to estimate the
spreading and activation behavior for the represented nodes
and edges.

Through randomized experiments, we showed that the
simulation results are good predictors for the actual spreading
activation on the original network. We furthermore showed
in time-related experiments that spreading simulation on a
skeleton outperforms spreading activation on its represented
semantic network.

We claimed that proper configuration is crucial and re-
quires special attention for the useful application of spreading
activation as a semantic search method in most application
areas. Simulation results can reveal valuable information about
spreading and activation behavior, e.g., the effects that may
occur under certain influences from the algorithm and network
settings. We showed that simulation can be performed on
the comprised structure of a skeleton in a more efficient and
sufficiently approximated way. Therefore, we conclude that it
enables more efficient pre-configuration analyses.

The skeleton is not a tool to avoid spreading activation
on semantic networks, but it poses an alternative to enhance
working with vast networks that are difficult to manage.
The objective is to use a skeleton’s capabilities, i.e., time
advantage and comprehensibility, to improve processes in the
background in order to make spreading activation activities in
the foreground easier to use with better results.

12

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The semantic skeleton offers many opportunities for further
applications and advanced extensions. Follow-up research can
set up catalogs of potential structural and configurational
influences as well as their effects in a systematic way in order
to identify correlations and interdependencies. The resulting
guidelines can be of direct use for finding proper configurations
by including desired effects or excluding undesired effects.
This may replace the momentary experience-driven controlling
of such algorithms and may support a consistent rise in
the quality of semantic search algorithms. Applicability and
usability of spreading activation approaches may increase since
manual adaptions often pose obstacles.

However, we have the futuristic vision of an adaptive self-
configuration approach that automatically determines alleged
good or bad configurations. For this long term goal, networks
that change in size and structure should be treated flexibly
such that disadvantages coming from hard-coding algorithm
parameters can be discarded.

Skeletons can be valuable beyond utilization in the context
of spreading activation. The compressed and summarized
character of network skeletons might be useful for cognate
disciplines also dealing with large semantic networks.

REFERENCES
[1] K. Hartig and T. Karbe, “Semantic Network Skeletons - A Tool to

Analyze Spreading Activation Effects,” in The Eighth International
Conference on Information, Process, and Knowledge Management
eKNOW 2016, C. Granja, R. Oberhauser, L. Stanchev, and D. Malzahn,
Eds., 2016, pp. 126–131.

[2] F. Crestani, “Application of Spreading Activation Techniques in Infor-
mation Retrieval,” Artificial Intelligence Review, vol. 11, no. 6, 1997,
pp. 453–482.

[3] M. R. Quillian, “Semantic Memory,” in Semantic Information Process-
ing, MIT Press, Ed., 1968, pp. 216–270.

[4] A. M. Collins and E. F. Loftus, “A Spreading-Activation Theory of
Semantic Processing,” Psychological Review, vol. 82, no. 6, 1975, pp.
407–428.

[5] J. F. Sowa, Principles of Semantic Networks: Exploration in the
Representation of Knowledge, J. F. Sowa and A. Borgida, Eds. Morgan
Kaufmann, Jan. 1991.

[6] “RDF 1.1 Concepts and Abstract Syntax,” W3C, W3C Recommenda-
tion, Feb. 2014.

[7] J. R. Anderson, “A Spreading Activation Theory of Memory,” Journal
of Verbal Learning and Verbal Behavior, 1983, pp. 261–295.

[8] M. R. Berthold, U. Brandes, T. Kötter, M. Mader, U. Nagel, and
K. Thiel, “Pure Spreading Activation is Pointless,” in Proceedings of
the 18th ACM Conference on Information and Knowledge Management
CIKM 2009, New York, NY, USA, 2009, pp. 1915–1918.

[9] J. M. Álvarez, L. Polo, and J. E. Labra, “ONTOSPREAD: A Framework
for Supporting the Activation of Concepts in Graph-Based Structures
through the Spreading Activation Technique,” Information Systems, E-
learning, and Knowledge Management Research, vol. 278, 2013, pp.
454–459.

[10] J. M. Alvarez, L. Polo, W. Jimenez, P. Abella, and J. E. Labra,
“Application of the spreading activation technique for recommending
concepts of well-known ontologies in medical systems,” in Proceedings
of the 2nd ACM Conference on Bioinformatics, Computational Biology
and Biomedicine - BCB 2011, R. Grossman, A. Rzhetsky, S. Kim, and
W. Wang, Eds. New York, New York, USA: ACM Press, 2011, pp.
626–635.

[11] L. Grad-Gyenge, H. Werthner, and P. Filzmoser, “Knowledge Graph
based Recommendation Techniques for Email Remarketing,” Interna-
tional Journal on Advances in Intelligent Systems, vol. 9, no. 3&4,
2016.

[12] F. Crestani and P. L. Lee, “Searching the web by constrained spreading
activation,” Information Processing & Management, vol. 36, no. 4, 2000,
pp. 585–605.

[13] C.-N. Ziegler and G. Lausen, “Spreading Activation Models for Trust
Propagation,” in IEEE International Conference on e-Technology, e-
Commerce, and e-Services EEE 2004. Los Alamitos and Piscataway:
IEEE Computer Society Press, 2004, pp. 83–97.

[14] K. Schumacher, M. Sintek, and L. Sauermann, “Combining Fact and
Document Retrieval with Spreading Activation for Semantic Desktop
Search,” in Proceedings of the 5th European Semantic Web Conference,
ser. Lecture Notes in Computer Science, S. Bechhofer, M. Hauswirth,
J. Hoffmann, and M. Koubarakis, Eds. Springer, 2008, vol. 5021, pp.
569–583.

[15] J. Banks, Ed., Handbook of Simulation: Principles, Methodology,
Advances, Applications, and Practice. New York, NY, USA: Wiley,
1998.

[16] J. A. Sokolowski and C. M. Banks, Eds., Principles of Modeling and
Simulation: A Multidisciplinary Approach. Hoboken N.J.: John Wiley,
2009.

[17] M. D. Haselman, S. Hauck, T. K. Lewellen, and R. S. Miyaoka,
“Simulation of Algorithms for Pulse Timing in FPGAs,” IEEE Nuclear
Science Symposium conference record. Nuclear Science Symposium,
vol. 4, 2007, pp. 3161–3165.

[18] J. Polvichai, P. Scerri, and M. Lewis, “An Approach to Online
Optimization of Heuristic Coordination Algorithms,” in Proceedings
of the 7th international joint conference on Autonomous agents and
multiagent systems AAMAS 2008 - Volume 2, L. Padgham, D. C.
Parkes, J. Mueller, and S. Parsons, Eds. Richland, SC: International
Foundation for Autonomous Agents and Multiagent Systems, 2008, pp.
623–630.

[19] “SPARQL 1.1 Query Language,” W3C, W3C Recommendation, Mar.
2013.

[20] K. Hartig and T. Karbe, “Recommendation-Based Decision Support for
Hazard Analysis and Risk Assessment,” in The Eighth International
Conference on Information, Process, and Knowledge Management
eKNOW 2016, C. Granja, R. Oberhauser, L. Stanchev, and D. Malzahn,
Eds., 2016.

13

International Journal on Advances in Intelligent Systems, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/intelligent_systems/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

