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Abstract—Video streaming makes most of Internet traf-
fic nowadays, with most video applications transported over
Hypertext Transfer Protocol/Transmission Control Protocol
(HTTP/TCP). Being the predominant transport protocol, TCP
stack performance in transporting video streams plays an im-
portant role, especially with regard to MultiPath Transport
Control Protocol (MPTCP) and multiple client device interfaces
currently available. One overlooked aspect of multipath transport
is the management of all possible paths between sender and
receiver endpoints. In this paper, we study the usage of all
possible paths created by MPTCP vis a vis video streaming
performance on wired networking environments. We show that
a fullmesh path usage may result in degraded video streaming
performance due to common bottlenecks between paths under
a simple (default) path scheduler. We then propose a bottleneck
aware path scheduler, and show its superior performance on
various multipath scenarios. Our results cover both Bottleneck
Bandwidth and Round-trip (BBR) propagation time TCP variant,
as well as CUBIC variant in transporting video streams over
wired networks. We use network performance level, as well
as video quality level metrics to characterize quality of video
streaming over TCP variants.

Keywords—Video streaming; TCP congestion control; Multipath
TCP; TCP BBR.

I. INTRODUCTION

Video streaming nowadays accounts for the majority of
Internet traffic. Regarding streaming applications, video stream
quality is related to two factors: the amount of data discarded
at the client end point due to excessive transport delay/jitter
and data rendering stalls due to lack of timely playout
data. Transport delays and data starvation depend heavily on
how Transport Control Protocol (TCP) handles retransmis-
sions upon packet losses during flow and congestion control.
Moreover, in multipath transport scenarios, it is important
to manage head-of-line blocking across various networking
paths, potentially with diverse loss and delay characteristics.
Head-of-line blocking occurs when data already delivered at
the receiver has to wait for additional packets that are blocked
at another path, potentially causing incomplete or late frames
to be discarded at the receiver, as well as stream rendering
stalls. In addition, the various paths used in transporting the
data may interfere with each other at times. In this paper, we
study interference of multiple transport paths in a full mesh
configuration, where all available networking paths are used
for video transport. As transport delays and data starvation
depend heavily on how TCP handles retransmissions upon
packet losses during flow and congestion control, we analyze
two TCP variants currently widely deployed: CUBIC [1] and
BBR [2].

The paper is organized as follows. Related work is included
in Section II. Section III describes video streaming transport
over TCP, with focus to BBR and CUBIC TCP variants.
Section IV describes the default path scheduler used in Linux
environments, and introduces our new bottleneck aware path
scheduler. Section V introduces these variants. Section VI
characterizes video streaming performance over wired paths
via network emulation. We compare the application and net-
work performance of BBR against CUBIC, using the default
(estimated shortest transmission time), as well as bottleneck
aware path schedulers. Section VII summarizes our studies
and addresses future directions to this work.

II. RELATED WORK

Since MultiPath Transport Control Protocol (MPTCP) has
become available, several multipath transport studies have
appeared in the literature, mostly focusing on throughput
performance of data transfers over mobile networks (see [3]
and related work). [8] introduces path selection techniques,
such as stickness (staying on a same path for as long as
possible), in order to reduce head of line blocking in Video
Streaming applications. Although the study shows improve-
ments on wireless cellular/WiFi topology scenarios, it did not
address interference among available paths.

[9] studies the performance of Adaptive Video Streaming
(Dynamic Adaptive Streaming over HTTP (DASH)) on top
of MPTCP transport. The adaptive bit rate nature of DASH
causes large bit encoding fluctuations when paths of differ-
ent throughput characteristics are present, causing bad video
experience. The authors advocate blocking low throughput
paths in order to stabilize adaptive bit rate and, improving
Quality of Experience. The authors of [4] evaluate throughput
of multipath video streaming over Digital Subscriber Line
(DSL) multipath scenarios, without providing video level
performance measures. Although they also propose a cost
optimized scheduler, the lack of video quality performance
measures limits conclusions about the impact of such a sched-
uler on video quality. Along the same lines, Imaduddin et
al. [5] provide a performance evaluation of Multipath TCP
(MPTCP) using CUBIC and Vegas TCP variants, as well as
minimum Round Trip Time (RTT), round-robin and coupled
Balia schedulers. Finally, Xing et al. [6] propose a new
MPTCP scheduler which they show via network experiments
to lower the number of out-of-order packets. The scheduler
estimates receiver arrival times, and sends redundant packets
to cope with estimation errors. Video streaming is simulated
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via iperf3, and no application layer performance measures are
used.

Regarding full mesh path selection, [10] studies the in-
terference between paths sharing bottleneck resources, from
a goodput performance perspective. They characterize inter-
path positive and negative interference, and propose a ”least
interpath contention” path management strategy, where they
limit the multipath transport to use only disjoint paths. They
then use emulated single hop client/server testbed topology to
evaluate full-mesh vs path disjoint goodput results vis a vis
various couple and uncoupled congestion control schemes. In
contrast, our work focuses on the intelligent path management
taking into account common resources along fullmesh paths.
Our path selection then strives to select paths in a timely
manner so as not to cause interference even though paths may
intersect.

III. VIDEO STREAMING OVER MPTCP

A video application over Hypertext Transfer Proto-
col/Transmission Control Protocol (HTTP/TCP) starts at an
HTTP server storing video content. At the transport layer, a
TCP variant provides reliable transport of video data over
IP packets between server and client end points (Figure 1
(a)). Upon HTTP video request, a TCP sender is instantiated
to transmit packetized data to the client machine, connected
to the application via a TCP socket. At the TCP transport
layer, a congestion window is used at the sender to control
the amount of data injected into the network. The size of the
congestion window (cwnd) is adjusted dynamically, according
to the level of congestion experienced on the network path,
as well as space available for data storage (awnd) at the
TCP client receiver buffer. Congestion window space at the
sender is freed only when ACK packets acknowledging data
packets are received. Lost packets are retransmitted by the TCP
layer to ensure reliable data delivery. At the client, in addition
to acknowledging arriving packets, the TCP receiver informs
the TCP sender about its current receiver available space, so
that cwnd ≤ awnd condition is enforced by the sender at
all times to prevent receiver buffer overflow. At the client
application layer, a video player extracts data from a playout
buffer, which draws packets delivered by the TCP receiver
from the receiver TCP socket buffer. The playout buffer
hence serves to smooth out variable network throughput and
delay. Multiple path transport brings communication reliability
enhancements, as well as bandwidth increase. The challenge
is video rendering degradation due to increase frame discards
and buffer underflows originated from head of line blocking.

A. MPTCP

MPTCP is an Internet Engineering Task Force (IETF) exten-
sion of TCP transport layer protocol to support data transport
over multiple concurrent TCP sessions when multiple inter-
faces are available [7]. The network multipath transmission of
the transport session is hidden from the application layer by
a legacy TCP socket exposed per application session. At the
transport layer, however, MPTCP coordinates concurrent TCP
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Figure 1. Video Streaming over TCP/MPTCP.

sessions on various subflows (paths), each of which is itself
unaware of the multipath nature of the application session. In
order to accomplish multipath transport, a path scheduler con-
nects the application socket with transport subflows, extract-
ing packets from the application facing the MPTCP socket,
selecting a subflow for transmission, and injecting packets
into the selected subflow. The MPTCP transport architecture
is depicted in Figure 1 (b).

The first and most used path scheduler, called default
scheduler, selects the path with shortest RTT among paths
with currently available congestion window space for new
packets. Other path schedulers have appeared recently. These
path schedulers can operate in two different modes: uncoupled,
and coupled. In uncoupled mode, each subflow congestion
window cwnd is adjusted independently of other subflows.
On the other hand, in coupled mode, the MPTCP scheduler
couples the congestion control of the subflows, by adjusting
the congestion window cwndk of a subflow k according to
the current state and parameters of all available subflows.
Although many coupling mechanisms exist, we focus on the
performance study of BBR [2] TCP variant over uncoupled
schedulers in this work.

Regardless of the path scheduler used, IETF MPTCP proto-
col supports the advertisement of multiple IP interfaces avail-
able between two endpoints via specific TCP option signalling.
IP interfaces may be of diverse nature (e.g., Wi-Fi, Long term
evolution (LTE)). In addition, multipath transport requires an
MPTCP stack at both endpoints for the establishment and
usage of multiple paths. MPTCP signalling allows for a full
mesh of connecting paths between two transport endpoints.
That is, if there are N interfaces at the client and M interfaces
at the server available, each N x M combination of interfaces
constitutes a viable path.

IV. PATH SCHEDULERS

In this section, we use MPTCP default scheduler as a spring-
board to propose a novel bottleneck aware path scheduler.

A. Default scheduler

An overview of the default scheduler algorithm is shown
in Figure 2. The default scheduler (Linux kernel Version
6.1) selects the subflow that takes the least amount of time
(linger time) to transmit all packets in the subflow buffer
(Figure 3(a)). This time is calculated as:

linger time =
wmem

pace
(1)
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Data: Set of subflows S
Result: Selected subflow Sbest

1 Initialization:
2 Set best linger time← 232 − 1, Sbest ← ∅ ;
3 if Last used subflow Slast is available then
4 return Slast ;
5 end
6 foreach subflow Sn ∈ S do
7 linger time← wmem

pace ;
8 if linger time < best linger time then
9 Sbest ← Sn ;

10 best linger time← linger time ;
11 end
12 end
13 return Sbest ;

Figure 2. Default scheduler Algorithm.
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where Pace rate (pace) is the available transfer volume per
second, and write memory data (wmem) is the value of the
queued data volume in the subflow send buffer. Because pace
is dynamically adjusted with Round Trip Time (RTT) and
congestion control, it can prevent head-of-line blocking while
maintaining high throughput at all subflows. However, the
default scheduler has one deficiency in full-mesh connection.
If there are multiple subflows sending packets to the same
destination and there is a common bottleneck link on the
route, packets can cause buffering delays at the bottleneck link
(Figure 3(b)). TCP congestion control will then back off from
injecting new traffic, causing subflows to the same destination
to interfere with each other, resulting in a long time before
a new packet is injected on interfering flows. This problem
is most likely to occur in TCP variants’ congestion control
where many packets are continuously sent, such as CUBIC.
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Figure 4. Buffer limitation method.

B. Bottleneck aware path scheduler

To solve the aforementioned problem, there is a need to limit
the amount of packets injected on each subflow before too
much queueing builds up at bottlenecks. A Bottleneck aware
path scheduler is a scheduler with a limit on the amount of
buffer used by each subflow, in addition to the short RTT
mechanism of the default scheduler. The upper limit of the
buffer used (max wmem) is initially set to the amount of data
that can be transmitted during 500 ms at the post-connection
pace rate (ini pace) (Eq:(2)). The reason for setting the initial
maximum buffer amount to 500 ms of the pace rate is to ensure
that all subflows do not slow down too much immediately after
the start of the connection, as it is not known whether there are
shared bottleneck links before transmission yet. Subsequently,
if the smooth RTT (sRTT ) is less than twice the minimum
RTT (min RTT ), then twice the amount of data (snd data)
returned in ACK out of the data size transmitted between
the previous and current subflow selection and the previous
max wmem are compared and the larger one is adopted
(Eq:(3)). If sRTT exceeds twice min RTT and then returns
to less than twice that value again, the smaller amount of
data that can be transmitted per second with ini pace or
the previous max wmem is adopted (Eq:(4)). By keeping
max wmem when sRTT is more than twice min RTT and
updating it when sRTT becomes less than twice again, the
buffer size can be optimized while maintaining the throughput
of each subflow.

• Initialization

max wmem = ini pace ∗ 0.5 [byte] (2)

• If sRTT < 2 ∗min RTT

max wmem = max(max wmem, 2∗snd data) [byte]
(3)

• If sRTT >= 2 ∗min RTT → sRTT < 2 ∗min RTT

max wmem = min(max wmem, ini pace ∗ 1) [byte]
(4)

Iterating equations (3) and (4) during the transport session
prevents excessive transmission, leading to a situation where
too many packets accumulate in the subflow’s buffer. This
allows subflows with the same destination address to use paths
that do not harm each other while satisfying the bandwidth of
the bottleneck link (Figure 4).

V. CUBIC AND BBR TCP VARIANTS

The TCP protocol has evolved into different variants, im-
plementing different congestion window adjustment schemes.
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TCP protocol variants can be classified into delay and loss
based congestion control schemes. Loss based TCP variants
use packet loss as primary congestion indication signal, typ-
ically performing congestion window regulation as cwndk =
f(cwndk−1), which is ACK reception paced. Most f functions
follow an Additive Increase Multiplicative Decrease (AIMD)
window adjustment scheme, with various increase and de-
crease parameters. In contrast, delay based TCP variants use
queue delay information as the congestion indication signal,
increasing/decreasing the window if the delay is small/large,
respectively. Delay based congestion control does not suffer
from packet loss undue window reduction due to random
packet losses, as experienced in wireless links.

CUBIC TCP Congestion Avoidance: CUBIC TCP is a
Loss-based TCP that has achieved widespread usage as the
default TCP of the Linux operating system. During congestion
avoidance, its congestion window is adjusted as follows (5):

AckRec : cwndk+1 = C(t−K)3 +Wmax

K = (Wmax
β

C
)1/3 (5)

PktLoss : cwndk+1 = βcwndk

Wmax = cwndk

where C is a scaling factor, Wmax is the cwnd value at time
of packet loss detection, and t is the elapsed time since the
last packet loss detection. The K parameter drives the CUBIC
increase away from Wmax, whereas β tunes how quickly cwnd
is reduced on packet loss. This adjustment strategy ensures that
its cwnd quickly recovers after a loss event.

BBR TCP Congestion Avoidance: BBR is a bandwidth
delay product based TCP that has achieved widespread usage
as one of available TCP variants in the Linux operating system.
BBR uses measurements of a connection delivery rate and
RTT to build a model that controls how fast data may be
sent and the maximum amount of unacknowledged data in
the pipe. Delivery rate is measured by keeping track of the
number of acknowledged packets within a defined time frame.
In addition, BBR uses a probing mechanism to determine
the maximum delivery rate within multiple intervals. More
specifically, BBR regulates the number of inflight packets
to match the bandwidth delay product of the connection, or
BDP = BtlBw × RTprop, where BtlBw is the bottleneck
bandwidth of the connection, and RTprop its propagation
time, estimated as half of the connection RTT. These quantities
are tracked during the lifetime of the connection, as per
equations below (6):

rttt = RTpropt + ηt
ˆRTprop = RTprop+min(ηt) (6)

= min(rttt)∀t ∈ [T −WR, T ]
ˆBtlBw = max(deliveryRatet)∀t ∈ [t−WB , T ]

where ηt represents the noise of the queues along the path,
WR a running time window, of tens of seconds, and WB a
larger time window, of tens of RTTs. This adjustment strategy
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Figure 5. Experimental environment scenarios.

TABLE I. EXPERIMENTAL NETWORK SETTINGS

Element Value
Video size 225 MBytes
Video rate 5.24 Mb/s
Playout time 6 mins
Video Codec H264 MPEG-4 AVC
MPTCP variants BBR, CUBIC
MPTCP schedulers 1. Default (Estimated shortest transmission time)

2. Bottleneck aware

TABLE II. EXPERIMENTAL NETWORK SCENARIOS
Scenario Emulator (BW, Packets Loss, Delay)

A: Fullmesh A-1...BW: 3Mb/s, Loss: 0.1%, Delay: 60ms
A-2...BW: 3Mb/s, Loss: 0.1%, Delay: 120ms

B: Parallel BW: 3Mbps, Loss: 0.1%, Delay: 60ms

seeks to tune its cwnd to a number of packets equivalent to
the connection bandwidth delay product.

VI. VIDEO STREAMING PERFORMANCE

Figure 5 describes the network testbed used for emulating
network paths with wired links. An HTTP Nginx video server
is connected to two L3 switches. In order to support multiple
network scenarios, the L3 switches can be directly connected
to another router, at which a client is connected. In this paper,
the emulator boxes are used to vary each path RTT. We use
two topology scenarios: a cross path scenario, where routers’
cross-connections produce paths with common bottlenecks;
and a parallel path scenario, where paths do not share common
bottlenecks. These simple topologies and isolated traffic allow
us to better understand the impact of differential delays on
TCP variant’s performance vis-a-vis path selection properties
of path schedulers.

Application and network scenarios are described in Tables
I and II, respectively. Video settings are typical of a video
stream, with video playout rate of 5.24 Mb/s, and content size
short enough to run multiple streaming trials within a short
period of time. Four network scenarios are used (Figure 5). i)
Two scenarios emulate fullmesh four path subflows, with short
(60msec) and long (120msec) propagation delays; The four
subflows share bottlenecks at routers close to the video server;
ii) Two parallel path scenarios, for short and long propagation
delays on two-path subflows, not sharing any bottlenecks. The
fullmesh scenarios are used to expose the default scheduler’s
inadequacy as compared with our proposed bottleneck aware
scheduler, whereas the parallel scenarios are meant to show
”no harm” of a bottleneck aware scheduler when bottlenecks
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are absent. Emulator boxes are tuned to generate multiple path
network latency conditions. Path latency directly impacts the
default path scheduler, as it gives preference to paths with
shorter RTTs. Performance measures are:

• Picture discards: number of frames discarded by the
video decoder.

• Buffer underflow: number of buffer underflow events at
video client buffer.

• Out-of-order packets: Total number of out-of-order
packets during each video streaming session.

• subflow throughput: TCP throughput of each subflow.

A. Fullmesh Scenarios
Scenarios A force the sharing of bottlenecks between the

four paths available to MPTCP streaming. Each path has a
maximum 3Mbit bandwidth, 0.1% packet loss rate, and 60ms
or 120ms RTT delays.

Figures 6 (a) and (b) show five average video streaming
frame discard / buffer underflows, and the number of out-of-
order packets, respectively for the short 60msec delay scenario.
Notice the significant performance improvement of the bottle-
neck aware scheduler on frame discard and buffer underflow
application level performance for the CUBIC TCP variant
as compared to the MPTCP default scheduler. Interestingly
enough, the average number of out-of-order packets does not
seem to change significantly across schedulers. This seems
to suggest that more out-of-order packets are concentrated
on specific paths, reducing their impact on application level
performance.

Figures 6 (c) and (d) show a single streaming trial of BBR
and CUBIC, respectively, for the short 60msec delay sce-
nario. The BBR TCP variant shows little throughput dynamic
changes between schedulers. However, the CUBIC throughput
seems to have become much more stable, showing an even
throughput across all paths available. Throughput stability
positively impacts video quality, as each path data reception
and frame reassembly becomes more predictable.

Figures 7 (a) and (b) show five average video streaming
frame discard / buffer underflow, and the number of out-
of-order packets, respectively, for the long 120msec delay
scenario. Although frame discard and buffer underflow have
become worse than the short delay scenario when the default
scheduler is used, these application performance measures
show the same qualitative benefits of the short delay scenario
when using our proposed bottleneck aware scheduler. Figures
7 (c) and (d) show the same throughput stability benefits of
our scheduler for CUBIC TCP variant.

B. No-cross-link Scenarios

Figures 8 (a) and (b) show five average video streaming
frame discard / buffer underflows, and the number of out-
of-order packets, respectively, for the short 60msec delay
scenario. Notice similar performance between the default and
proposed the bottleneck aware schedulers, with the later still
improving performance when CUBIC TCP variant is used.
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Figure 6. A-1 - Fullmesh Video Performance (delay 60ms.)

Figures 8 (c) and (d) show a single streaming trial of
BBR and CUBIC, respectively, for the short 60msec delay
scenario. Throughput dynamics are stable and similar for
both schedulers. Hence, in the absence of shared bottlenecks,
the proposed scheduler does not disturb throughput stability.
Similar qualitative results are obtained for the long 120msec
delay scenario, omitted for space’s sake. These results verify
that the proposed scheduler does not perform any worse than
the default scheduler in the absence of shared path bottlenecks.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have studied multipath video streaming
over fullmesh path scenarios. We have characterized the
problem of path interference within a same video stream,
demonstrating video application degradation when the default
path scheduler is used. We have also proposed a bottleneck
aware scheduler, where usage of paths containing a common
bottleneck is controlled so as not to interfere negatively with
each other. We have shown that the proposed scheduler not
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Figure 7. A-2 - Fullmesh Video Performance (delay 120ms).

only delivers better video application performance, but also
helps ”stabilize” network throughput performance at each path.
We have also shown that the proposed path scheduler does
not cause performance degradation when paths do not share a
bottleneck, when compared to the MPTCP default scheduler.

We are currently investigating the performance of our pro-
posed scheduler on satellite access links.
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