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Abstract—Data is the bloodline for a business to grow, compete,
and sustain in the market. It empowers businesses to build
diverse services comprising innovative business models. For this,
businesses must adopt an open collaboration approach, making
their data and associated services available for sharing and
reuse purposes, leading towards a positive and collaborative win-
win business model instead of competing with each other. This
creates the need for a digital ecosystem that allows data and
services to be shared, reused and exchanged in a governed and
secure manner. Dataspace (DS) caters to the same objective that
facilitates many data operations for stakeholders, such as search,
query, aggregation, federation, integration, analysis, etc., over
geo-spatially distributed and diverse resources. Therefore, we
propose a novel edge-enabled context-aware Dataspace model,
presented for the first time in literature, as a potential solution
to integrate cross-domain and cross-organization data and associ-
ated services in local or regional contexts. This model aligns with
the architectural vision of the future internet model, which can
create collaborative innovation and shape the futuristic industry
5.0 and beyond ecosystems. In this context, each participating
organization will act as an edge that supports DS computing
resource requirements and offers edge-oriented advantages in
saving latency, bandwidth, and data operations near or at the
data source. The model has also been validated over a local IoT
edge-cluster emulated Dataspace testbed and found to fulfill the
functional aspects of the proposed model.

Keywords— Cross Domain; Architecture; Context Aware; Data
Lake; Data Space; Dataspace; IoT; Edge; Platform; Semantics.

I. INTRODUCTION

Data, in the Internet of Things (IoT) ecosystem, is an asset to
active (primary) and passive (secondary) users, i.e., generated data
for specific purposes can be useful for other applications based on
data sharing and exploitation rights in its raw or processed form.
Dataspace (DS) has emerged as a paradigm to facilitate seamless data
integration from various heterogeneous data sources, including cor-
porate databases, files, web services, IoT-oriented devices, platforms,
gateways, services, etc. It administers a virtual space to pool data
from various sources under its owner rights until requested access
from another application or service [1].

DS expedites cross-domain data management operations and cre-
ates a unified data catalog, acting as a regulated data marketplace
adhering to relevant policies for fair data usage [2]. It enables a
user-friendly semantic representation of data context with built-in
security and privacy measures, leading to numerous opportunities and
innovative business models for different stakeholders engaged in the
data life cycle and connected over the Dataspace value chain network
[3]. For example, DS can enable the Pay-as-You-Go business model
[4] and generate revenue from available data through its pooling,
sharing, reusability, and access capabilities [5]. Figure 1 illustrates

Fig. 1. Dataspace Ecosystem and Associated Players.

the interaction between different stakeholders in the DS ecosystem.
However, data integration for DS faces many challenges in developing
cross-domain data and service value chains. Therefore, this raises an
important Research Question (RQ):

How to build DS in the local context for developing data-driven
cross-domain service value-chain enablement?

The surge in connected IoT devices demands a resilient and robust
future internet infrastructure to facilitate efficient data management
and associated operations [6]. Therefore the role of distributed edge
computing becomes more significant in supporting edge-enabled DS
ecosystem [7] to address and optimize the arising challenges of
security, privacy, standardized integration practices, and transforming
the digital landscape towards sustainability [8]. The concept of DS
revolutionizes the way we perceive and utilize data across the entire
value chain, facilitating diverse services enablement and monetization
opportunities that drive growth and create lasting impact. Aligning
with the RQ, we have broadened the understanding of the DS concept
with a focus on how such an ecosystem can be realized at the edge
or on-premises environment, contrary to a centralized cloud facility
to avail optimized latency, bandwidth, and data operations.

DS at the edge can allow data and associated services to be
shared, reused, exchanged, and integrated across domains in local or
regional contexts. However, realizing such a cross-domain integration
ecosystem is often bundled with challenges like linked computing
resources and data pool, heterogeneity, dynamic deployment context,
interoperability, trust, governance, participatory motivation, etc. [3].
Therefore, it becomes critical to enable the semantic capabilities
of the data to build a context-aware edge-enabled DS model. Data
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context awareness enhances understanding, aiding discovery, quality
assurance, and integration. It establishes a semantic layer for linked
data within the DS ecosystem, ensuring higher data quality and
reliability [7], [9]. The context-aware linked DS can enable semantic
integration and harmonize the relationships within data, unlocking
new insights and possibilities [3], [7]. Additionally, it will bring syn-
ergy with constantly evolving user requirements by facilitating data
and technology convergence [10]. In the context of cross-domain edge
(representing organization, domain, system, or service) integration
empowers DS with required computing resources, availability, and
convergence of technologies that enable diverse stakeholders to build
a unified ecosystem for innovative business models and dynamic data-
driven applications [3], [7], [11].

Therefore, this study has contributed to the semantics enablement
and smart governance of the data management and associated services
in future internet hyper-connected applications, particularly consid-
ering 6G and beyond [12] network ecosystems. This is achieved by
identifying relevant stakeholders’ common requirements, proposing
and designing a Dataspace model with context-aware data processing,
smart governance, and semantic adaption capabilities. In addition, a
novel service artifact methodology, consisting of a service catalog
and relevant toolchain, is also introduced to realize such a DS model
efficiently over a distributed edge network.

The rest of the paper is given as follows: Section II will summarise
relevant literature on DS and highlight key takeaways, and Section III
will explain the overall methodology of this study. Further, Section
IV will provide the system model, and deployment architecture
framework to realize the proposed DS platform. Finally, Section V
will conclude the paper.

II. LITERATURE REVIEW OUTCOMES

This section summarises the relevant literature on DS and related
enabling techniques and technologies. The DS ecosystem offers
a promising solution by breaking down data silos and promoting
cross-domain data sharing with contextual semantics [1]. Initiatives
like the International Data Space (IDS) and GAIA-X in the EU
have outlined architectural frameworks and guidelines to strengthen
the data economy by developing DS ecosystems [13] to facilitate
seamless data integration in a larger context. StreamPipes Connect,
a distributed edge-driven semantic adaptation toolbox, allows har-
monizing data in Industrial IoT analytics by enabling data inges-
tion, sharing, and data model automation [14]. In realizing DS,
addressing heterogeneity [15] is critical and can be resolved by
leveraging semantics wherein ontologies represent machine-readable
conceptualization of knowledge understanding at the domain level,
and metadata represents a data structure at the business and technical
level [5]. Thus, it is evident that metadata and ontology are essential
for developing semantic information by mapping the business-level
domain information to relevant technical-level information, consisting
of data encapsulated entities, objects, and their inter-relationships that
represent associated operations.

To build a DS ecosystem, multiple participants or entities are
required. Here each entity consists of data sources and associated
services with a specific or cross-domain that are geo-spatially dis-
tributed [3] and supports diverse data types or formats to represent
the relevant domain-level information [3], [5]. DS essentially provides
data co-existence, sharing, and reusability while promoting pay-as-
you-go methods or services over the integrated data [5]. DS, in
general, does not control or own the data sources, thereby, the
data maintenance and administration falls under the individuals or
their relevant organizational management systems [16]. Therefore,
the European GAIA-X project [17] has focused on a cross-ecosystem
data exchange with data sovereignty based on linking data principles.
It facilitates the “common data space” concept for implementing
a future “space data economy” in a cooperative business space
through a common GAIA-X standard [18] supporting interoperability,
portability, and data sovereignty as guided in the European data

strategy [19]. Semantic modeling development tools such as Plasma
are really helpful for non-technical users in providing a visual editing
interface to build semantic models for DS operations [20]. These
tools allow the creation, extension, and export of the semantic
models and related ontologies along with relevant maintenance of
knowledge graphs to annotate the datasets with semantic descriptions
and convert them into unified and Resource Description Framework
(RDF) standard format [21]. In IoT landscape, an edge-driven DS
incorporating ’virtual sensors’ allows for abstracting and mapping
high-level user-driven application behaviors [22]. The user actions (in
the form of HTTP verbs PUT/GET/POST, etc.) are to be reflected
at the edge device, which is linked to the virtual sensor, through
the application and leveraging Next Generation Service Interface -
Linked Data (NGSI-LD) semantic standards information model [23].

There are also some DS-related architectural studies found in the
literature. For example, [24] presents a DS testbed for maritime
domain-driven data management operations which is based on a
Service-Oriented Architecture (SOA) and layer-based structure em-
phasizing data protection and sovereignty to cater to diverse needs
and support activities among multiple stakeholders. This model,
however, does not address heterogeneity among various data sources.
Similarly, [7] presents a Dataspace integration enablement framework
based on the convergence of technologies and extending the (Cloud-
Edge-Device) CED model with semantics capabilities that offer
dynamic data, processing, and service context. This study has been
used as the basis to define our current proposed model with a
focus on context-aware DS development at the application and data
management level.

Subject to limited literature about building edge-enabled DS plat-
forms in the local context, this study contributes at the design level by
proposing a distributed edge-enabled DS model with context-aware
linked data and semantic adaptation capabilities.

III. METHODOLOGY

To address the RQ, we have identified the requirements based
on DS stakeholders analysis [25], established methods for utilizing
shared services [26], data reusability, embedding semantics in data,
and creating values through context-aware linked data [27] within
our local context at the Department of Business Development and
Technology, Aarhus University. Our stakeholders include students,
teachers, researchers, and industrial partners, where we find that
data and related operations are the common entities among different
projects. Therefore, we set a vision to extract useful information
from the data semantically and collaboratively while the actors still
have sovereign control over data with a readily available toolchain
to perform certain semantic operations over the fusion of data in
a context-aware and cross-domain manner. In this context, Figure 2
shows the value chain interaction (color-coded lines) among different
stakeholders for cross-project (representing cross-domain) data-driven
events and operations. This emerges as a requirement to develop a
DS ecosystem in the local context to cater to diverse data manage-
ment requirements. The functionality for identified requirements has
been fulfilled by building a context-aware DS solution (i.e. testbed)

Fig. 2. Local Context Dataspace - Stakeholders and Value Chains.
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following the proposed system model based on Onion architectural
[28] methodology, deployment architecture [29], and selected use
of toolchain as per target use case defined by the A-La-Carte
(ALC) approach [30]. The solution is further validated for functional
compliance against a cross-domain wind turbine supply-chain use
case.

The main objective of this local context-driven DS platform is
to empower hyper-connected applications and use cases in future
internet-based distributed edge computing models where multiple
stakeholders (dealing with different use cases, e.g., cross-lab col-
laboration activities, prototyping and training initiatives, external
industrial projects, student education, etc.) and their data interactions
will develop relevant value chains in their contextual space, as shown
in Figure 2. Therefore, we proposed a semantics-driven DS model
with context-aware data lake functional capabilities and realized it
in our local lab environment. The next section covers the relevant
details.

IV. SYSTEM MODEL AND FRAMEWORK

This section proposes a reference semantic DS model implemented
with context-aware and semantic adaptation capabilities to ensure
that the context associated with the data under diverse DS operations
enables data value in a given context and empowers data usefulness.

A. Requirements Analysis
Figure 3 illustrates high-level requirements to realize the DS

ecosystem based on our stakeholder discussions, which are explained
as follows:

• Multistakeholder and Cross-Collaboration - This indicates that
the DS should support multi-tenancy operations across domains
to promote collaboration while securing ownership, isolation
and segregation aspects. This will enable the development of
cross-domain service value chains over the data integrated in
DS.

• Monetization - One of the main objectives for DS develop-
ment is to generate monetary values from the DS integrated
ecosystem by building innovative business models based on
each other’s data strengths. This can be the basis for a data
marketplace where data and associated services generate real
value and motivation.

• Data Operations - The system should allow data management
i.e., CRUD (creation, updation, deletion, and read), operations
along with federation, analytical, and visualization contextually.

Fig. 3. High-Level Requirements for Edge Enabled Dataspace.

• Decentralization - The DS platform should be decentralized and
distributed regarding its resources, i.e., computing, storage, and
networking for data management. This makes it scalable and
near to real-time prototyping in nature. In addition, this platform
will be geo-spatially distributed to extend its functionality to
target use cases, where this platform serves as a toolchain for
data management operations.

• Semantically Context Awareness - The DS platform is perceived
to be context-aware based on semantics-driven data linkage.
This is important to generate knowledge graphs and cross-
domain linked information required to build data-driven value
chains among stakeholders.

• Trust and Sovereignty - This is an important feature in any DS
platform that ensures the stakeholder who owns data shall have
complete control over their data. This is also needed for General
Data Protection Regulation (GDPR) compliance within the EU.

• Edge-enabled Infrastructure - DS platform shall be able to
realize on-premises near the data sources and with all required
relative toolchains available to cater to specific needs for the
target use case and related stakeholders. Anyway, in the DS
context, the data mostly lies with the generator, and it only
expects the data to be searched, indexed, and accumulated on
a temporary need basis. Hence, it eliminates the need for ex-
pensive cloud-enabled recurring costs and centralized facilities.
Therefore, such platforms can be realized with relatively smaller
costs.

B. Context Aware Dataspace Model
The system model for our context-aware DS is shown in Figure

4. It is based on the identified requirements and our previous work
on the Distributed Edge Network Operations oriented Semantic (i.e.
DENOS) model, presented in [7]. It is motivated by the ”Onion Archi-
tecture” design [28], wherein the key idea is to map the dependencies
of the outer layers towards the inner layers and the core, providing
a clear separation and segregation of concerns, thus simultaneously
improving functional and non-functional concerns. Our proposed
architecture has five layers and one main core, explained below from
outer to inner direction.

• Data Source Layer: This layer represents the source of data
that needs to be searched, indexed, queried, etc., by different
applications for specific purposes or needs. It stores and man-
ages data to a specific domain or organization and has specific

Fig. 4. Context-Aware Dataspace Model.
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Fig. 5. Sequence Diagram for the Context-Aware Dataspace Operations.

metadata or structure. Different data sources represent different
metadata or data models, though they may be semantically
identical. Thus, it induces the challenge of heterogeneity and
interoperability during the data integration operations.

• Semantic Adaptation Layer: To harmonize heterogeneity, this
layer provides tools and methods to annotate the incoming
data (from the Data Source layer) semantically as per ontol-
ogy and metadata models. This layer also provides tools to
define/reuse relevant ontology and metadata models. Semantic
modeling standards like NGSI-LD, RDF, Web Ontology Lan-
guage (OWL), JSON for Linking Data (JSON-LD), etc. can be
used here.

• Smart Governance Layer: This layer provides mechanisms
to offer identity and access management to maintain trust and
sovereignty of the data being operated. This can be achieved
using Identity and Role and Attribute access management in a
traditional way leveraging standards such as Security Assertion
Markup Language (SAML), OpenID Connect (OIDC), OAuth
2.0, System for Cross-domain Identity Management (SCIM),
etc., implemented or integrated through DLT/Blockchain-driven
smart contracts to have fine-grained granular control [31]. It en-
sures identity, role, and attribute-based access in a decentralized,
transparent, and tamper-resistant manner.

• Context Data Lake Layer: This layer represents a special-
ized data lake offering temporary storage and contextual data
management using relevant toolchains. Here, contextual data
includes semantically annotated data presenting information at
the ontology, domain, and metadata level, providing additional
context like metadata, lineage, quality, relationships, origin, etc.,
for the data to be linked with other domain-level information
in different contexts to help machines understand and interpret
the data as per the contexts. Further, it facilitates data gov-
ernance, tracking, discovery, and cataloging efforts, enabling
stakeholders to find and utilize the right data for their analytical
or operational needs.

• Application Layer: This layer provides the DS operations
enablement, as per the target use case-driven value context
(extraction) needs, over the contextual data in different contexts
offered by the contextual data lake.

• Value Model: This is the framework’s core that triggers dif-
ferent events, such as Collaboration for data Reusability to
Innovate new values that can be Monetized through building
of a Value Chain Network among collaborating Stakeholders
who inspires to derive value out of their Data Sources. This
drives the value extraction out of the diverse data sources for
the given business value context of the use case, leveraging all
the upper layers. The business value context can be defined

using the relevant business value model, such as St. Gallens
Magic Triangle [32] for the given use case.

Functional Flow - Figure 5 illustrates the sequence diagram for
the context data lake-centered DS operations. Data comes from the
Data Source Layer and enters the Semantic Adaptation Layer, where
context annotations and labeling occur using semantic models defined
by the domain’s ontology. Moreover, before performing adaptation, it
requests authorization, authentication, and identity management from
the Security Governance Layer based on agreed-upon smart contract-
driven policies. Then, the data is ingested inside the Context Data
Lake Layer, which holds the data in relevant semantic service context
[7] after the Data Lake’s pre-configured pipeline operations, such as
data/context enrichment, storage, analytics, etc. Thus, the Context
Data Lake Layer holds data from multiple sources with multiple
semantic contexts and builds a converged knowledge graph for the
entire DS model.

C. Deployment Architecture

Multiple reasons motivated us to build DS at the edge. First,
the DS is perceived to utilize edge network infrastructure in a
coordinated manner, as shown in Figure 6, wherein each edge acts
as the organizational entity holding the data with the ownership
and providing the relevant semantics context and infrastructure for
processing the data at the edge. This offers many advantages, such
as the availability of infrastructure by resource pooling across edge
networks, which will be a cost-efficient method and allow control of
data processing at the edge, thereby raising trust and participatory
stake in a multi-stakeholder DS environment. In this context, we
intend to emphasize that all participating stakeholders interested in
building the DS for mutual benefits can provide the necessary edge
network infrastructure required to deploy the proposed DS model.
Anyway, saving and optimum utilization of resources at the edge
is always the objective of edge computing and the future internet
paradigm. Therefore, we have extended an ALC approach [30] to be
used in the DS implementation context. ALC provides the flexibility
to choose and pick different services from the service catalog and
relevant open-source tools, as shown in Figure 7, to develop the pre-
configured processing pipeline artifacts to implement the DS layer
operations. This way, it helps to choose, select, and deploy only the
required services to certain stakeholder or use-case contexts. Thus,
saves a lot of computing resources, energy, and cost while addressing
the challenges of heterogeneity, integration, and interoperability along
with pre-defined processing pipelines and resource requirements.
Under the ALC approach, the user selects the packages from the
service catalog and generates the relevant artifacts, which can be
deployed easily over the edge infrastructure in a distributed manner.
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Fig. 6. Edge Coordinated Resource Pooling.

Fig. 7. A-La-Carte Approach for Dataspace Model Implementation.

The deployment architecture for the DS platform/testbed is shown
in Figure 8. The testbed is developed utilizing on-premises infras-
tructure and is incrementally scalable. The testbed’s infrastructure,
system, services, or applications can be scaled without disturbing the
existing setup to accommodate the elasticity in the computing and
processing demands.

The testbed’s infrastructure is provisioned by Kubernetes which
is a distributed microservices orchestrator [33]. We have used K3s
which is a lightweight distribution of Kubernetes [34]. It supports
Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and
Software-as-a-Service (Saas) models, catering to the diverse needs of
stakeholder’s use-case in the DS ecosystem. The testbed leveraged
Infrastructure-as-a-Code, based on Ansible [33] for bootstrapping of
infrastructure. Following this, the PaaS and SaaS are provisioned
using the ALC approach, incorporating relevant toolchains like helm
charts or Kubernetes templates [33].

The testbed’s Platform Layer contains the core implementation of

the DS model, encompassing the context data lake functions like
data ingestion, authentication, storage, metadata management, and
cataloging. The architecture is organized into distinct operational
namespaces for resource isolation like (i) Admin namespace to
manage the infrastructure and resource provisioning, (ii) Stakeholder-
specific namespace to emulate cross-domain organizational projects
for DS with limited access based on predefined roles, along with
virtual resource allocation tailored to project needs, (iii) Common-
services namespace to host shared services like broker, database,
NodeRed, and Jupyter, accessible via agreed-upon APIs and permis-
sion. The DS testbed is provisioned with various artifacts utilizing
Kubernetes/helm-based templates tailored to ALC package selection.
These artifacts empower a broad spectrum of services for semantic
adaptation and context-aware data lake processing. This encompasses
Integration-as-a-Service (e.g., IDS connector) for semantic context-
aware data operations, AI-as-a-Service (e.g., StyleGAN) with GPU-
enabled edge-instances for machine learning, Database-as-a-Service
(e.g., Postgres, and MySQL) for managing diverse types of data,
and Programming-as-a-Service (e.g., Node-Red, and WordPress) for
custom data processing flow development.

D. Validation
The proposed architecture is validated against the wind turbine

use case, presented already in [31]. However, the operations of this
use-case have been represented semantically, for the first time, in
Figure 9 using RDF standard. This bolt-specific operations semantic
model serves as the basis and shows the path to define harmonized
cross-domain data models among diverse stakeholders collaborating
in wind turbine supply chains in the energy sector. This use case
demonstrates the cross-domain digital traceability requirement for
bolt, turbine, and related stakeholders that need to deal with diverse
events being managed through our local Dataspace testbed. This use-
case has been expressed semantically as - A Service engineer with
Name/Employee-ID (Domain-1) performing bolt, coming with Batch-
No./ID (Domain-2) coming from supplier with ID, tightening opera-
tion at the turbine of turbine operator/manufacturer with turbine ID
(Domain-3) at a certain location and time with timestamp. So, the
use-case deals with data from three different domains namely service
engineer, turbine operator, and bolt supplier.

The complete functional flow consists of nearby edge to the
installed turbine capturing the relevant events (e.g., Service engineer
registering for the device at the edge, Bolt batch registration by
the turbine manufacturer, turbine/bolt identification via QR code
scanning, bolt-supplier mapping registration, etc.) over radio interface
(e.g. Bluetooth in our case) in the turbine assembly area or on the
field. At the nearby edge, the semantic adaptation (static) function-
ality is provisioned using the ALC service artifact approach. In this
case, the node-red based flow service artifact is provisioned on the
edge. This adaptation service receives data over a Bluetooth radio

Fig. 8. Deployment Architecture for Dataspace Model.
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Fig. 9. Digitized Wind Turbine Bolt Semantic Operations Context Model

interface on one hand, and it converges data from different events to
create a semantically linked message using the NGSI-LD standard, on
the other hand. Afterward, the transformed semantic data is pushed
into the permissioned and private Blockchain, implemented using the
HyperledgerFabric service artifact, and running at the neighboring
edge. This provides us with the smart governance layer based
on smart contracts-driven policies validating the pre-registered data
model in our case. This can also be used to validate identification,
authorization, and authentication through relevant smart contracts
in combination with traditional security methods such as identity
management or OAUTH2 standards. Finally, the data is processed
further for context data lake layer functionality (e.g., StreamPipes,
NGSI-LD broker) that allows the building of a knowledge base (based
on semantically adapted contexts) and semantic CRUD operations
(e.g., SPARQL/NGSI-LD) over data. Different stakeholders can now
read this data over semantic contextual interfaces based on their role
and permission level agreed upon in smart contracts. To validate this,
various cross-domain semantic queries were executed by the stake-
holder application, such as - Fetch bolts from a specific batch ID that
impact certain turbines to predict their maintenance requirements or
inspection of operational events (e.g., torque value recorded during
bolt tightening) for insurance claims under unseen events.

The average response time results for different operations and their
explanation are given in Table I. In addition, this demonstrates the
functional validation of the proposed DS model in local and cross-
domain contexts. This shows the possibility of a collaborative data-
driven value chain development among multiple stakeholders through
the proposed model.

The artifacts for this use case consist of frontend (Node-Red,
Bluetooth libraries, Web3.js) and backend (REST API, Blockchain
Ganache/Hyperledger Fabric) components packaged and provisioned
using the ALC approach and Kubernetes orchestrated distributed
infrastructure, respectively. The frontend and backend components
deployed in different namespaces (representing stakeholder system)
over the edge (using two x86 servers-8 core, 16 GB RAM, 80 GB
HDD) enabled-DS testbed.

V. CONCLUSIONS AND OUTLOOK

This paper has introduced the motivation for developing a DS
platform at Edge and its realization being presented for the first time

TABLE I
DATA OPERATION AND THEIR RESPONSE TIMES.

Operation
Type

Response
Time
(ms)

Functional Context and Dataspace
Model Relevance

-
Registration
of Device-
turbine or
Bolt

800 Stakeholder application registers for tur-
bine or Bolt attributes.
- Application, Smart Governance, and
Context Data Lake layers are involved.)

Bolt or tur-
bine ID Val-
idation

1200 Service engineer scans the QR code for
Turbine and Bolt ID and the relevant event
at the edge creates a query to fetch Datas-
pace from the registered knowledge base.
- Data source, Semantic Adaption, Smart
Governance, and Context Data lake layers
are involved.

Torque
Recording

500 Digital wrench is used to tight the bolt,
and the relevant torque value is recorded
by the nearby edge over Bluetooth and
this is then recorded in Blockchain and
Application backend both.
- Data source, Semantic Adaption, Smart
Governance, and Context Data lake and
application layers are involved.

Read
Turbine,
Bolt, or Log
entry

600 Application interface reading the Datas-
pace backend for relevant event data.
- Application, Smart Governance, and
Context Data Lake are involved.

in literature, along with the background and relevant work in this area.
This study identifies the requirements for edge-enabled DS based on
discussions with stakeholders dealing with different data integration,
reusability needs, and desire for integrated value-chain development.
As a result, a novel context-aware DS model with semantic capabili-
ties is proposed and prototyped in a lab environment. In addition,
the deployment is supported by the edge-oriented resources pool
infrastructure and orchestrated following the extended ALC approach
based on predefined service catalog artifacts. The proposed DS
model is also validated against identified requirements following a
wind turbine use case. As an outlook, we would like to detail this
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model further for each layer with concrete implementation for diverse
cross-domain use cases. Finally, this study contributes knowledge
on how context-aware DS ecosystems for data integration can be
realized in local or regional contexts at a small scale by exploiting
relevant resources at the edge in real-world scenarios. In addition, this
study advances the knowledge on the use of semantic adaptation,
smart governance, and context-aware data lake for enhancing the
efficiency of cross-domain data management operations and value
chain development. Thus, adding value in the context of evolving
industry5.0 ecosystems and upcoming technologies, such as 6G, in
the future internet landscape.
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