INTERNET 2020 : The Twelfth International Conference on Evolving Internet

Enabling Detensive Deception by Leveraging
Software Defined Networks

Ilias Belalis*, Georgios Kavallieratos', Vasileios Gkioulos’, Georgios Spathoulas
*Department of Computer Science and Biomedical Informatics
University of Thessaly
Lamia, Greece
ibelalis@uth.gr
TDepartment of Information Security and Communications Technology
Norwegian University of Science and Technology
Gjovik, Norway
{georgios.kavallieratos, vasileios.gkioulos, georgios.spathoulas} @ntnu.no

Abstract—Computer networks are critical for modern society
and protecting their security is of high importance. Due to their
increasing size and complexity providing the required cyber
security counter measures has become a very difficult task. One
of the most recent approaches is to employ defensive deception
techniques, in order to provide to the attacker a false perception
about the protected network and thus increase the effort that
is needed to carry on a successful intrusion. In this paper we
present a comprehensive literature review and a comparison of
existing SDN based defensive deception methods. Additionally,
we propose a novel deception mechanism that combines moving
target and honeypots approaches and carry out extensive tests
of its functionality.

Index Terms—network security, SDN, deception, defense, mov-
ing target, honeypots

I. INTRODUCTION

Nowadays, the complexity of computer networks and our
dependence on them are continuously increasing, also pro-
jected as increasing system interconnections and interdepen-
dencies [1]. Networking becomes imperative, even across pre-
viously isolated domains such as critical infrastructures, due
to fundamental data flows that are essential for accomplishing
novel functionalities and business models. Nevertheless, this
practice enables additional attack vectors, not only from novel
attacks but also from those that are considered common
within ICT. A plethora of cyber-attacks, such as Distributed
Denial of Service (DDoS) is reported daily. These attacks
target computer networks to compromise devices and execute
malicious actions [2]. Although various works in the literature
aim to mitigate such attacks [3], [4] the complexity and
heterogeneity of the networks impede the implementation of
traditional techniques.

Software-Defined Networks (SDN) are a novel technology
aiming to facilitate the management and the programming of
large-scale networks. Notably, the control and data planes are
grouped in traditional networks. In a more flexible approach,
the SDN technology separates the control plane from the
data plane and enables the programmability of the network.
Thus, the routers and the switches can be programmed via
the control plane and therefore, the network management and

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-796-2

evolution are better facilitated. Furthermore, computer network
challenges such as resilience, scalability, performance, security
and dependability can also be addressed by SDN technology.

In this article, we argue that the combination of existing de-
fensive deception techniques and the dynamicity provided by
the SDN technology can be utilised for enhancing the security,
the robustness and the scalability of contemporary computer
networks. Furthermore, the dynamic reprogramming of the
network and the monitoring of the data flows are impractical
by leveraging existing defensive deception techniques such as
honeypots and Moving Target Defense (MTD). On the other
hand, SDN allows overcoming such limitations and enables
the implementation of defensive deception techniques.

The contribution of this work is twofold:

o A comprehensive survey of existing defensive deception
techniques on SDN technology is provided. The analysis
is focused on the most prominent techniques considering
five distinct properties.

o A Defensive Deception mechanism based on SDN tech-
nology is presented. This mechanism aims at misleading
malicious activities in a computer network by presenting
a virtual network topology and hiding the real network
along with possible vulnerabilities that attackers can
exploit. Furthermore, by using this Defensive Deception
mechanism defenders are able to track malicious activ-
ities in time and respond before adversaries are able to
succeed in their attacks.

The rest of the paper is structured as follows : Section II
presents related work while Section III discusses SDN tech-
nology and defensive deception techniques in general. The two
main sections of the paper are Section IV which thoroughly
analyses and compares current state of the art methods for
SDN based defensive deception and Section V which presents
the proposed novel defensive deception mechanism. Finally,
Section VI presents the results obtained through experiments
and Section VII discusses our conclusions.



INTERNET 2020 : The Twelfth International Conference on Evolving Internet

II. RELATED WORK

Various approaches exist in the literature analyzing the
application of defensive deception techniques in contemporary
systems and networks. Hoffman et al. in [5] proposed a frame-
work to identify potential attacks and defence mechanisms in
repudiation systems. Furthermore, Jajodia et al. in [6] analyzed
the implementation of the moving target defence technique in
order to protect modern computer networks. Nevertheless, the
implementation of MTD on SDN by leveraging its capabilities
is not considered. Furthermore, Lei et al. in [7] conducted a
survey on different moving target defence techniques. Through
their work, they analyzed the design principles and system
architecture of MTD. Ward et al. in [8] provide an overview
of different cyber moving target techniques, their threat models
and their technical details. However, none of the previous
works has focused on the MTD implementation on SDN.
Additionally, the SDN implementations and capabilities have
been studied in the literature. Specifically, Rowshanrad et al.
in [9] analyzed the different SDN application and different
southbound interfaces, also discussing potential SDN applica-
tions on Cloud, wireless, and mobile networks. In addition,
a comprehensive survey for the SDN has been conducted
by Kreutz et al. in [1]. Although various surveys examined
the SDN technology, none of them has considered it in
combination with the implementation of defensive deception
techniques in their architectures and how such techniques
affect the security in contemporary networks. Further, the
application of defensive deception techniques has been studied
extensively [10]-[21]. These are analyzed in detail in Section
IV towards the identification of the most appropriate defensive
deception mechanism explained and applied in Sections V and
VI respectively.

III. BACKGROUND

In this section, the basic notions on SDN technology and
defensive deception techniques are presented.

A. SDN Technology

Traditional networks consist of a three-layer architecture;
(1) Data plane, (ii) control plane and (iii) management plane
where the last two layers are to some extent considered as
one [1]. In particular, the data plane consists of the necessary
network devices that are responsible for data forwarding.
Further, the control plane contains network protocols that are
used by network devices while the management plane consists
of the software services which enable the remote monitoring
and configuration of the network. Various management and
configuration challenges arise from this architectural paradigm
since deploying elaborate policies and adjusting the network
in case of faults and changes can become cumbersome.

SDN proposes a different network architecture where dif-
ferent abstraction layers facilitate network management and
configuration. The motivation behind SDN technology is to
differentiate the control from the data plane. Particularly, SDN
technology was proposed a couple of years ago, where both
academia and industry were trying to build programmable

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-796-2

networks. Two distinct approaches have been proposed in [22],
[23] for active networks: (1) programmable switches and (2)
capsules. Further, different approaches have arisen regarding
programmable networks [24]-[27]. Recent initiatives such
as ForCES [28], OpenFlow [29] and POF [30] have been
described in [1]. These approaches propose the separation
of the control plane from the data plane without significant
adjustments to the network’s infrastructure. Furthermore, one
of the major approaches in the field of network virtualization
was presented in [31] in the Tempest project. In particular, this
project proposed the concept of switches in ATM networks in
order to facilitate network management, allowing the ATM
networks to communicate under the same physical resources.
Further, different projects such as Planet lab [32], MBone [33],
GENI [34], and VINI [35] proposed architectures for virtual
network topologies. SDN technology arose by the OpenFlow
work at Stanford University, CA, USA [36].

According to Kreutz et al. in [1], the forwarding state of
the data plane is managed by a remotely controlled plane
in SDN architecture. Further, eight different layers have been
developed in the SDN architecture. These are listed below:

o Network Infrastructure: Different physical systems are
installed which are responsible for forwarding packets.

o Southbound Interface: The connections between control
and forwarding elements, which is one of the major
SDN’s advantages, are represented.

o Network Hypervisor: Using contemporary virtualization
tools, SDN can virtualize machines and typologies to
share the same hardware components.

o Network Operating Systems — NOS: Programmed APIs
which provide services to the programmers in order
to facilitate the network management. Through NOS,
programmers are able to control APIs to generate the
network configuration according to specific policies.

o Northbound Interface: A software system which promotes
the application’s portability and interoperability among
the different control platforms.

o Language-based Virtualization: Different programming
languages such as Pyretic and Splendid can be used
in order to virtualize network topologies to enable the
SDN’s interoperability.

e Programming Languages: High-level programming lan-
guages are used by programmers in order to configure an
SDN topology.

o Network Applications: The application in this layer im-
plements the control logic for the SDN. Namely, such
systems compile the commands which must be imple-
mented in the data plane.

B. Defensive deception techniques

The development and application of the SDN has been
studied extensively in the literature [37]-[39]. However, dif-
ferent security techniques have been developed that could
be applied in such infrastructures in order to ensure their
operations. Defensive deception techniques are able to increase
security and dependability of Software Defined Networks.



INTERNET 2020 : The Twelfth International Conference on Evolving Internet

In the following section, we will present and describe such
techniques.

Fraunholz et al. in [40] conducted a comprehensive survey
of deception technologies. Notably, different security mecha-
nisms have been categorized considering the application layer
of each technique; (i) Network, (ii) System, and (iii) Data
layer. Furthermore, Han et al. in [41] examined deception tech-
niques in computer security and categorized existing works
according to the unit of deception, the layer where deception is
applied, the goal of the deception solution, and the deployment
mode.

This work focuses on network-based deception technologies
in order to examine their application to the SDN. According
to [41], network-based deception technologies aim to mitigate
three threat categories: network fingerprinting, eavesdropping,
and infiltration and attack propagation. To this end, ten differ-
ent techniques have been identified. These are listed below:

o Network Tarpit: This technique focuses on sticky connec-
tions aiming to slow or stall automated network scanning
in order to confuse attackers.

o Traffic forging: This technique increases the traffic flow
in the network to slow down adversary’s actions.

o Deceptive topology: This technique aims to distort net-
work topology through traffic forging to slow the attacker.

e OS obfuscation: Through this technique, a mimic of the
network behaviour of fake operating systems is created
in order to deceive potential attackers.

« Honeytokens: Honeytokens consist of honey passwords,
honey URL parameters, database honeytokens and honey
permissions.

o Deceptive attack graphs: This technique uses attack graph
representations to lead adversaries to follow a rouge
attack path in order to distract them from their real
targets.

o Deceptive simulation: The simulation enables the moni-
toring of the network topology and the creation of false
attack targets in order to deceive adversaries.

o Decoy services: The defender share fake protocol mes-
sages, respond delays and crafted error messages in order
to delay the attacker.

o Moving Target Defense: MTD is an asymmetric situation
which keeps moving the attack surface of protected sys-
tems through dynamic shifting, which can be controlled
and managed by the administrator [42].

« Honeypots: Honeypots are built to intentionally expose
vulnerable resources to attackers by emulating or simu-
lating systems such as databases, servers and file systems
and services such as authentication [13].

Existing works considering defensive deception techniques
for computer networks are depicted in Table I, while the
classification has been adopted from [41]. As can be seen,
various approaches for defensive deception have been applied
in traditional computer networks.

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-796-2

TABLE I
DEFENSIVE DECEPTION TECHNIQUES.
Reference Technique
[43]-[45] Network Tarpit
[46] Traffic forging
[47] Deceptive Technology
[48] OS obfuscation
[49], [50] Honeytokens
[511, [52] Deceptive attack graph
[53] Decoy services
[54] Deceptive simulation
[20] Moving Target Defense
[13] Honeypots

IV. DEFENSIVE DECEPTION TECHNIQUES ON SDN
IMPLEMENTATIONS

The application of defensive deception techniques by lever-
aging the SDN technology has been extensively studied in
the literature. The research papers analyzed in this work are
identified by searching in the ACM Digital Library, Science
Direct, Scopus, IEEE Xplore and Semantic Scholar databases
with appropriate keywords. For the selection of the articles
we consider the criterion that the proposed approach should
be exclusively related to defensive deception techniques on
SDN implementations. These approaches are analyzed below
considering their core elements such as the used systems,
defensive deception technique, and the outcome/results.

Achleitner et al. in [10] simulate network topologies based
on SDN in order to deceive potential attackers targeting the
network. The core element in this deception technique is the
Reconnaissance Deception System — RDS. The RDS is a
reconnaissance deception system which aims to defend the
network from potential adversaries. By leveraging a software-
defined network virtual network topologies, including its
physical components, are simulated. In particular, SDN is
responsible to dynamically generate flow rules, analyze flow
statistics of the switch rules in order to identify malicious
activity and steer and control network traffic by generating
rules upon the arrival of the packet.

Zhao et al. in [11] propose a decoy chain deployment (DCD)
method based on SDN and NFV as a defensive technique
against penetration attacks. The decoy chain consists of a
sequence of virtual machines which could operate as decoy
switches, middleboxes or terminal hosts. As long as an attacker
runs into a decoy chain will continue to penetrate decoy
nods without any intrusion to the network. Therefore, the
adversary’s malicious actions are slowed down, and sensitive
targets are protected, while at all times, the SDN controller
monitors the security status of the whole network.

Kyung et al. in [12] designed an SDN-based honeynet to
globally monitor all internal traffic with the help of the SDN
controller. An advance honeynet named HoneyProxy has been
proposed to improve data capture capabilities by leveraging
the SDN controller. Hence, honeynet provides more flexibility
in terms of network access management. Particularly, a hon-
eyproxy using SDN controller monitors the data flows over the
network and performs the necessary intervention to the proxy



INTERNET 2020 : The Twelfth International Conference on Evolving Internet

servers when a honeypot is compromised. Although honeypots
constitute one of the most prominent defensive deception
techniques, their implementation based on SDN technology
is limited.

Han et al. in [13] proposed an SDN-based intelligent
honeynet in order to attract attackers and learn about their
scope, tactic and behaviour. By leveraging SDN technologies,
honeynets can avoid fingerprinting attacks. Namely, HoneyMix
leverages the SDN technology in different layers of its archi-
tecture toward a more efficient and effective data control. The
programmability of the SDN offers a dynamic reconfiguration
of the network rules depending on each situation. Furthermore,
the SDN switch allows the direct connection among honeypots
and hence, increases the protection from honeypot fingerprint-
ing attacks.

Chowdhary et al. in [14] propose a MTD technique based
on shuffle strategy using an SDN controller in order to
dynamically reconfigure the network and hence, make harder
for an attacker to understand the network topology. SDN is
prefered due to its ability to reconfigure a cloud-based network
topology continuously. In this work, a shuffle based MTD
technique has been deployed where the port number for each
service or the IP address of a VM are continuously changing.

Kampanakis et al. in [15] studied the application of the
SDN technology in network-based MTD techniques. The use
of SDN in MTD techniques aims to obfuscate the attacker’s
actions. SDN implementations improve the defence against
port scanning either TCP port scan or UDP and ICMP scans.
The proposed implementation clarifies that the SDN could
open fault ports which are related to actual services in the
network and hence confuse the attacker consistently.

Steinberger et al. in [16] discuss the combination of MTD
and SDN in order to reduce the effects of a large-scale
cyber-attack. The static configuration of traditional computer
networks jeopardizes the infrastructure since attackers can
reconnaissance the network and choose the most effective
attack in order to cause damage to the network. SDN and MTD
aim to address the issues above due to the scalability of SDN.
The MTD technique is implemented by leveraging the carrier-
grade SDN network operating systems, named ONOS. Two
MTD techniques are used in this defensive solution: (i) the
network-level MTD, and (ii) the host-level MTD. The former
is based on BGP routes and multiple routers while the latter
performs IP hopping in order to set up a honeypot.

Makanju et al. propose an Evolutionary Computation (EC)
technique for MTD in combination with the SDN technology
in [17]. Particularly, EC algorithms have been designed in
order to search large spaces for optimal solutions efficiently.
The MTD technique facilitates the deployment of a new
configuration for the network, considering the network status
indicators and the intrusion alerts.

Debroy et al. in [18] proposed an implementation of MTD
technique in an SDN in cloud infrastructure. An adequate VM
location is proposed by using the SDN controller which directs
OpenFlow switches over the cloud infrastructure. The MTD
technique’s goal is to allow the proactive migration of target

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-796-2

TABLE II
SDN IMPLEMENTATIONS USING DEFENSIVE DECEPTION TECHNIQUES.

SDN
[10]
[11]
[12], [13]
[14]-[17], [17]-[21]

Defensive Deception Techniques
Deceptive Technologies
Decoy Services
Honeypots, Honeytokens
Moving Target Defense

nodes in a VM. Additionally, the control module initiates
the migration process through the migration initiator module,
and thus, the clients are rerouted to a VM using OpenFlow
switches. The intrusion detection module ensures the migration
process by detecting DoS attacks.

Jafarian et al. in [19] developed a MTD architecture using
an SDN controller in order to change the IP addresses of
each host dynamically. The OpenFlow Random Host Mutation
(OF-RHM) technique assigns a random virtual IP which is
translated to/from the real IP of the host in order to overcome
the static configuration of the traditional computer networks.
The aim of the technique is to protect the network’s topology
for stealthy scanning, worm propagation and other scanning
based attacks.

Macfarland et al. in [20] proposed a MTD application using
SDN technology In particular, their technique aims to service
unmodified clients while avoiding scalability limitations. An
SDN controller provides to defenders the ability to distinguish
trustworthy and untrustworthy clients by using pre-shared
keys, cryptographic MACs, or embedding passwords into
hostnames. The anonymity and unlinkability are ensured by
utilizing the SDN controller since it prevents the revocation
of the flows across movements over the network.

Aydeger et al. in [21] proposed a defensive mechanism for
Crossfire DDoS attacks. By leveraging the SDN technology
and MTD technique, the dynamic reconfiguration of the net-
work environment is achieved. The SDN controller enables
the management of the traffic flow over the network and is
capable of protecting the network from both proactive and
reactive attacks. However, this work focuses particularly on
crossfire attacks. The defensive deception mechanism consists
of four inter-related SDN modules; (i) ICMP monitoring, (ii)
Traceroute profiling, (iii) Route mutation, and (iv) Congestion-
link monitoring.

Table II depicts current SDN applications considering de-
fensive deception techniques. It can be noticed that defense
deception techniques in SDN is immature state since only four
out of ten techniques have been applied.

Table IV depicts twelve of the existing techniques consid-
ering the five properties of defensive deception techniques.
These properties have been adopted from [55] and are depicted
in Table III.

Particularly, five out of twelve implementations fulfilled four
properties while seven met three out of five properties. We can
conclude that MTD techniques aim to increase the attacker’s
workload and uncertainty. On the other hand, techniques such
as honeypots or honeyproxies facilitate the identification of
the attack before adversaries succeed. Moreover, five out

10



INTERNET 2020 : The Twelfth International Conference on Evolving Internet

TABLE III
DEFENSIVE DECEPTION TECHNIQUES PROPERTIES.
Property | Description
P1 Increase the attacker’s workload
P2 Allow defenders to better track attacks and respond before
adversaries succeed

P3 Exhaust adversary’s resources
P4 Increase the sophistication required for an attack
P5 Increase the attacker’s uncertainty

TABLE IV
COMPARISON OF ANALYZED IMPLEMENTATIONS.

Reference PI P2 P3 P4 P5

[10] v v v
[11] v v v

[12] v v

[13] v v v v
[14] v v v v
[15] v v v
[16] v v v

[17] v v v v
[18] v v v v
[19] v v oV
[20] v v oy
[21] v v v Vv
12 10 7 5 9 9

of twelve analyzed studies aim to exhaust the adversary’s
resources. Although SDN technology can meet the aforemen-
tioned defensive deception properties, the fulfilment of all five
properties is challenging. To the best of our knowledge, there
are not implementations that consider all these properties.

V. DEFENSIVE DECEPTION MECHANISM

Due to the static nature of computer networks, intruders are
able to detect their structure and identify vulnerabilities which
they can then exploit through advanced attacks. The attackers
initially examine a target networks, in order to identify hosts,
open ports and map the network topology and to find known
or unknown (zero-day) vulnerabilities that will enable them to
continue their attack.

The approach proposed herein, aims at misleading such
malicious activities by presenting a virtual network topology
while it also hides the real network along with possible
vulnerabilities that attackers can exploit. Presenting a virtual
network falsifies all the information an intruder collects from
examining a network and delays the rate of identification of
actual vulnerable servers. Delaying the intruder is critical as
the extra time given before the actual attack is executed, can
facilitate the detection of the intruder and the timely reaction
for protecting the network.

In the threat model of this work, it is assumed that the
intruder is trying to locate the computers on the network and
collect as much information as possible about each computer
in order to continue the attack. The main purpose of our decep-
tion mechanism is to face those malicious network activities
regardless of whether they come from a compromised or a
non-compromised host.

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-796-2

Important part of the deception mechanism is the virtual
network composition in order to delay and mislead intruders
from locating real and possibly vulnerable computers. Further-
more, each host has a different view of the virtual network, so
the Deception mechanism is independent of the compromised
computer.

The deception mechanism consists of four essential ele-
ments:

o an SDN Controller responsible for dynamically creating
and managing the flow rules in order to direct and control
network traffic

« aPacket Handler responsible for handling network pack-
ets and for simulating specific virtual network resources

« a Virtual Network Generator that contains a description
of the virtual network components and their connectivity

« as well as a Honeypot Server responsible for the services
that honeypots will provide to the attacker after a port
scanning

When a packet arrives at a switch, the SDN Controller
applies a flow rule according to the virtual network topology.
Thus, the controller forwards ARP, ICMP, UDP packets to
the Packet Handler while it forwards TCP packets to the
destination host. When the Packet Handler receives a packet,
it creates a response packet according to the virtual topology
and sends it back to the source. The source of the packet may
be classified as an intruder according to at least one of the
following criteria:

¢ A packet is destined for a honeypot;
e Multiple SYN messages are sent from one source to
multiple destination ports of another network host.

The proposed defence deception mechanism has been im-
plemented in the Mininet, which is a SDN Simulator and the
POX SDN controller has been used. As mentioned above,
the proposed defensive deception mechanism consists of four
basic components the functionality of which is analyzed as
follows:

SDN Controller is responsible for dynamically creating and
managing the flow rules of switches. It is also responsible
for creating and periodically updating the virtual network
topology. The SDN Controller is able to create flow rules for
routing ARP, ICMP, UDP and TCP packets.

As regards the ARP packets, when the switch receives an
ARP request it forwards it to the Packet Handler. Then, the
Packet Handler creates an ARP reply based on the virtual
topology and sends it to the switch. The switch in turn
forwards the ARP reply to the switch port from which it
received the ARP request.

For ICMP packets, when the switch receives an ECHO
request it forwards it to the Packet Handler. Then, the Packet
Handler creates an ECHO reply based on the virtual topology
and sends it to the switch. The switch in turn forwards the
ECHO reply to the switch port from which it received the
ECHO request.

For UDP packets, the packet destination port is first
checked. If the destination port is 53 then the switch should

11



INTERNET 2020 : The Twelfth International Conference on Evolving Internet

forward the DNS query to the Packet Handler. Then, the Packet
Handler will create a reply based on the virtual topology and
send it back to the switch. The switch in turn must forward
the reply to the switch port from which it received the DNS
query. If the destination port is between 33434 and 33523, that
is, the traceroute command has been used; the switch should
forward the request to the Packet Handler. Then, the Packet
Handler will create a reply based on the virtual topology and
send it to the switch. The reply could be ICMP time exceeded
or ICMP destination/port unreachable. The switch in turn must
forward the reply to the switch port from which it received the
request.

In the case of TCP packets, when a switch receives a TCP
packet it will forward it to its destination given that the source
of the packet has not been identified as an intruder from
the SDN controller. A host can be identified as an intruder
by the SDN Controller in two cases. The first case is if
a host interacts with a honeypot through ping or traceroute
commands. The second case is if a host makes a port scanning
attempt against another host on the network. In order to detect
port scanning attempts, the number of SYN messages sent
from a host along with the corresponding destination ports are
examined. In the case that a host is classified as an intruder, its
network activity is forwarded to the Honeypot Server. Actually,
when the switch receives a TCP packet from such a host it
replaces its destination IP and MAC addresses with those of
the Honeypot Server. Then, in the Honeypot Server response
the switch replaces the source IP and MAC addresses with
the original addresses and forward it to the switch port where
the intruder is connected. The main reason that TCP packets
are forwarded to the Honeypot Server instead of the Packet
Handler is because in that case we can increase the level of
deception for the intruder by using a honeypot. The Honeypot
server allows for more interaction with the intruder, which in
the case of complex TCP connections can end up to with the
intruder having a largely false perception of the network.

Packet Handler is responsible for generating and sending
packets, according to the virtual topology created by the virtual
topology generator, when this is required. Packet Handler has
been implemented in Python while the Scapy Framework has
also been used. The role of the packet handler is taken up by
one of the hosts created in Mininet. Thus, the packets will be
forwarded by the switch to the Packet Handler, which in turn
will generate a response and send it back to the switch.

Honeypot Server is responsible for generating the virtual
set of services for each host, that will be provided to the
attacker after a port scanning attempt. As mentioned above,
it is not allowed to an intruder to perform a port scanning on
the actual network and the network traffic will be routed to a
honeypot. Thus, the need arises to present a different set of
services for each scanned computer. One of the hosts created in
the Mininet has the role of Honeypot Server. Honeypot Server
has also been implemented in Python and starts services on the
computer on which is running. Also, it should be mentioned
that these services are periodically updated.

Virtual topology generator is responsible for creating the

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-796-2

virtual topology as well as periodically updating the virtual
IP and MAC addresses of the Mininet hosts and honeypots.
This generator creates a text file that is accessible from the
SDN controller and Packet Handler. Each line of this file
corresponds to a component of the deception mechanism.
Specifically, there are four types of entities, the Packet Han-
dler, the hosts, the fake-routers and the routes.

The Packet Handler is unique to the network and is con-
nected at port 1 of the switch. In addition, the text file contains
information about the real IP and MAC addresses and about
the virtual IP and MAC addresses.

As regards hosts, they can either be Mininet hosts or honey-
pots. In addition, the text file contains information about real
IP and MAC addresses, virtual IP and MAC addresses as well
as the switch port in which is connected the Packet Handler. If
the entity is a Mininet host, then there is information about the
port that is connected to the switch. If the entity is a honeypot,
there is information about the port that the Honeypot Server
is connected to the switch. From the information contained in
host-type rows, the Packet Handler can respond to ARP, ICMP
and UDP requests. The SDN controller knows the IP addresses
of honeypots in order to designate a host as an intruder. Also,
there is information on routing TCP packets.

The fake-router rows contain information about virtual
routers that the deception mechanism will use to deceive
the traceroute command. This information is about the router
interface, the virtual IP and MAC addresses as well as the
switch port that the Packet Handler is connected to.

Route rows contain information about virtual routes from
one host to another. As well as, fake routers are used to mislead
the traceroute command. This information is about a source
host, a destination host, and the intermediate hops which are
the fake router’s interfaces mentioned above.

As mentioned above, one of the functions of the virtual
topology generator is to periodically update the IP and MAC
addresses in order to increase the attacker’s uncertainty about
the target host. However, there is a limitation regarding the
termination of the TCP connections by changing the IP and
MAC addresses. The number of subnets created by this
mechanism is static and the optimal way to create a virtual
topology given a real topology is a future track of research.

In order to present the functionality of the Defensive De-
ception Mechanism components as a whole, two different
scenarios are described, one for an attacker scanning hosts in
a network and a second one for an attacker scanning services
on a host.

In the first scenario, we assume that an attacker will interact
with a host on the network via the ping command. Thus, the
switch will receive an ARP request which will be forwarded
to the SDN Controller. The SDN Controller will send two
flow rules to the switch. According to the first flow rule the
switch will forward the ARP request to the Packet Handler.
In turn, Packet Handler will generate an ARP reply and send
it to the switch. According to the second flow rule the switch
will forward the ARP reply to the switch port from which it
received the ARP request. After that, an ECHO request will

12



INTERNET 2020 : The Twelfth International Conference on Evolving Internet

SDN Controller

Virtual
Topology
Generator|

e

Host 1

Host 3 Host 4

Packet
Handler

Host 5
Host 2 Honeypot Host 6
Server

Fig. 1. Topology of implementation

Start
New
incoming
packe

Send the

reply back
to the Switch

Read
YES Virtual Create
ARP? Topology ARP
File reply
NO

Read
Virtual

YES Send the
ICMP ? Create

reply back

Topology to the Switch

File

ECHO reply

Send the
reply back
to the Switch

Destination

port =537 /

Create
DNS reply

\'\

NO

Create / Send the
traceroute reply back
reply 7

Destination

to the Switch

\'\

Fig. 2. Packet handler flowchart

be sent from the attacker’s computer. The switch will forward
it to the SDN Controller and the SDN Controller will create
two flow rules. According to the first flow rule, the switch
will forward the ECHO request to the Packet Handler. In turn,
Packet Handler will generate an ECHO reply and send it back
to the switch. According to the second flow rule the switch
will forward the ECHO reply to the switch port from which
it received the ECHO request. Figure 4 depicts the sequence
diagram for the aforementioned scenario.

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-796-2

Start

New
incoming
packet
YES Forward it
ARP? to the
Packet Handler
NO
YES Forward it
ICMP ? to the
Packet Handler
NO
YES Forward it
ubpP ? to the
Packet Handler
NO
vES vES Forward it
TCP? Intruder ? Lothe
oneypot
Server
Forward it
toits
Destination
NO

(_End

Fig. 3. SDN controller flowchart

In the second scenario, we assume that the attacker will
interact with a host on the network through the nmap program.
Based on the function of the nmap program, several SYN-type
messages will be sent from the attacker’s computer to many
host’s ports. All of these messages will be forwarded from the
switch to the SDN Controller, and once the number of those
SYN messages surpasses a specified limit for a multitude of
different ports then the SDN Controller will create two flow
rules. According to the first flow rule, when the switch receives
a TCP packet, from the attacker’s computer, it replaces its
destination IP and MAC addresses with those of the Honeypot
Server. According to the second flow rule, in the Honeypot
Server response the switch replaces the source IP and MAC
addresses with the original addresses and forward it to the
switch port where the attacker is connected. Figure 5 depicts
the sequence diagram for the second scenario.

VI. RESULTS

In this section, the effectiveness of the deception defense
mechanism discussed above is examined. For this purpose the
nmap port scan tool was used, in order to scan a network
protected by the proposed defensive deception mechanism.

13



INTERNET 2020 : The Twelfth International Conference on Evolving Internet

Packet

Attacker Handler

SDN
Switeh Controller

ping command_
> ARP request

ARP request

flow rules J

ARP tequest

ARE reply J
ECHO request

flow rules J
IS S

ECHO) request

ECHD reply J

_ARPreply

ECHO request

ECHO reply

Fig. 4. Ping command sequence diagram

Honeypot

Attacker Server

) SDN
Switch Controller

nmap i
> TCP / SYN

TCP / SYN

flow rules

check limit for
SYN messages
and ports

TCP/ SYN

TCP | SYN-ACK J

TCP | SYN-ACK
e

Fig. 5. Nmap sequence diagram

The results will be based on the defensive deception techniques
properties presented in Table III.

Initially, an SDN network consisting of a switch and six
computers was created in Mininet. The defensive deception
mechanism created three sub-networks, each consisting of
eight honeypots and two real computers. In total there are
twenty four honeypots and six real computers. The ping sweep
function of the nmap tool will be used to locate the computers
running on the network. The results of the scans on the three
subnets as well as the time taken for each scan are presented
in Figure 6 and Figure 7.

In these scans it was observed that we can increase the
number of computers in a network by increasing the number

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-796-2

12
10
8
6
W Honeypots
4 H Real Hosts
2
0
Subnet Subnet Subnet
10.10.1.1-254 10.10.2.1-254 10.10.3.1-254
Fig. 6. Nmap ping sweep results (computers per subnet)
20.4 203
20.2 20.1
20
19.8
19.6
19.4
19.2 19.14 ® Ping Sweep Time (in
seconds)
19
18.8 —
18.6
18.4 T T
Subnet Subnet Subnet
10.10.1.1-254 10.10.2.1-254 10.10.2.1-254

Fig. 7. Nmap ping sweep time (in seconds)

of honeypots. Thus, we increase the workload (P1) and uncer-
tainty (P5) of the attacker. Also, we are able to track attacks
and respond before attackers succeed (P2).

Each of the network computers that responded to the ping
sweep will then be examined separately. For this reason, the
nmap tool will be used again to identify the services that each
computer hosts. The following graphs, Figure 8 and Figure 9,
show the number of services that each computer runs and the
time required for each scan.

In these scans it has been observed that we can vary the
number of services running on a computer. Thus, we increase
the workload (P1) and uncertainty (P5) of the attacker. Also,
We are able to detect attacks and respond before attackers
succeed (P2).

VII. CONCLUSIONS

As computer networks become more complex and attacks
against those become more sophisticated, the mitigation effi-
ciency of passive static countermeasures is going to decline. In
order to be able to cope up with protecting modern computer
networks from attackers we are required to come up with more
sophisticated solutions such as SDN based deceptive defense
techniques, that can delay and reveal the attacker.

14



INTERNET 2020 : The Twelfth International Conference on Evolving Internet

12

mHost1

mHost 2
mHost3
EHost4
W Host5
mHost6
mHost7
W Host8
Host9
mHost 10

Subnet10.10.1.1-254 Subnet 10.10.2.1-254 Subnet10.10.3.1-254

Fig. 8. Nmap scan results (open ports per computer)

185

M Hostl
W Host2
mHost3
mHost4
mHost5
mHostb
W Host7
W Host8
Host9
mHost10

Subnet10.10.1.1-254

Subnet10.10.2.1-254 Subnet 10.10.3.1-254

Fig. 9. Nmap scan time (in seconds)

Our comprehensive literature review showed that there are
multiple efforts to set up such deceptive defense mechanisms
based on SDN and the results are promising. The different
methods have been analysed with respect to their main prop-
erties according to Table III.

Furthermore, we introduce a novel defensive deception
mechanism that leverages the capabilities provided by SDN
technologies. The proposed mechanism combines components
from multiple defensive deception techniques as identified in
the examined prior studies (see Table II), namely Deceptive

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-796-2

Technologies, Honeypots, and Moving Target Defense. Finally,
we have implemented the proposed mechanism and evaluated
its capacity to satisfy the defensive deception mechanisms
properties (see Table III), and more specifically to increase the
attacker’s workload, to allow defenders to better track attacks
and respond before adversaries succeed, and to increase the
attacker’s uncertainty.

As future work, the proposed system is going to be en-
hanced both in terms of detection capabilities and prevention
mechanisms. Detection is going to be expanded through the
use of machine learning techniques. Prevention is going to
be revised, to enable deception techniques to adapt to each
protected network in terms of size and type of connected hosts
or devices.

REFERENCES

[1] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, 2014.

[2] C. Layne, “Cyber attacks against critical infrastructure,” Ph.D. disserta-
tion, Utica College, 2017.

[3] D. Wenda and D. Ning, “A honeypot detection method based on
characteristic analysis and environment detection,” in 2011 International
Conference in Electrics, Communication and Automatic Control Pro-
ceedings. Springer, 2012, pp. 201-206.

[4] O. Schneider and N. Giller, “Method for mitigation of cyber attacks on
industrial control systems,” Jul. 3 2018, uS Patent 10,015,188.

[5] K. Hoffman, D. Zage, and C. Nita-Rotaru, “A survey of attack and
defense techniques for reputation systems,” ACM Computing Surveys
(CSUR), vol. 42, no. 1, pp. 1-31, 2009.

[6] S. Jajodia, A. K. Ghosh, V. Swarup, C. Wang, and X. S. Wang, Mov-
ing target defense: creating asymmetric uncertainty for cyber threats.
Springer Science & Business Media, 2011, vol. 54.

[7]1 C. Lei, H.-Q. Zhang, J.-L. Tan, Y.-C. Zhang, and X.-H. Liu, “Moving
target defense techniques: A survey,” Security and Communication
Networks, vol. 2018, 2018.

[8] B. C. Ward, S. R. Gomez, R. Skowyra, D. Bigelow, J. Martin, J. Landry,
and H. Okhravi, “Survey of cyber moving targets second edition,” MIT
Lincoln Laboratory Lexington United States, Tech. Rep., 2018.

[9] S.Rowshanrad, S. Namvarasl, V. Abdi, M. Hajizadeh, and M. Keshtgary,
“A survey on sdn, the future of networking,” Journal of Advanced
Computer Science & Technology, vol. 3, no. 2, pp. 232-248, 2014.

[10] S. Achleitner, T. F. La Porta, P. McDaniel, S. Sugrim, S. V. Krishna-
murthy, and R. Chadha, “Deceiving network reconnaissance using sdn-
based virtual topologies,” IEEE Transactions on Network and Service
Management, vol. 14, no. 4, pp. 1098-1112, 2017.

[11] Q. Zhao, C. Zhang, and Z. Zhao, “A decoy chain deployment method
based on sdn and nfv against penetration attack,” PloS one, vol. 12,
no. 12, 2017.

[12] S. Kyung, W. Han, N. Tiwari, V. H. Dixit, L. Srinivas, Z. Zhao,
A. Doupé, and G.-J. Ahn, “Honeyproxy: Design and implementation
of next-generation honeynet via sdn,” in 2017 IEEE Conference on
Communications and Network Security (CNS). 1EEE, 2017, pp. 1-9.

[13] W. Han, Z. Zhao, A. Doupé, and G.-J. Ahn, “Honeymix: Toward sdn-
based intelligent honeynet,” in Proceedings of the 2016 ACM Interna-
tional Workshop on Security in Software Defined Networks & Network
Function Virtualization, 2016, pp. 1-6.

[14] A. Chowdhary, A. Alshamrani, D. Huang, and H. Liang, “Mtd analysis
and evaluation framework in software defined network (mason),” in
Proceedings of the 2018 ACM International Workshop on Security in
Software Defined Networks & Network Function Virtualization, 2018,
pp. 43-48.

[15] P. Kampanakis, H. Perros, and T. Beyene, “Sdn-based solutions for
moving target defense network protection,” in Proceeding of IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks 2014. 1EEE, 2014, pp. 1-6.

15



INTERNET 2020 : The Twelfth International Conference on Evolving Internet

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

Copyright (c) IARIA, 2020.

J. Steinberger, B. Kuhnert, C. Dietz, L. Ball, A. Sperotto, H. Baier,
A. Pras, and G. Dreo, “Ddos defense using mtd and sdn,” in NOMS
2018-2018 IEEE/IFIP Network Operations and Management Sympo-
sium. 1EEE, 2018, pp. 1-9.

A. Makanju, A. N. Zincir-Heywood, and S. Kiyomoto, “On evolutionary
computation for moving target defense in software defined networks,” in
Proceedings of the Genetic and Evolutionary Computation Conference
Companion, 2017, pp. 287-288.

S. Debroy, P. Calyam, M. Nguyen, A. Stage, and V. Georgiev,
“Frequency-minimal moving target defense using software-defined net-
working,” in 2016 international conference on computing, networking
and communications (ICNC). 1EEE, 2016, pp. 1-6.

J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow random host
mutation: transparent moving target defense using software defined
networking,” in Proceedings of the first workshop on Hot topics in
software defined networks, 2012, pp. 127-132.

D. C. MacFarland and C. A. Shue, “The sdn shuffle: creating a
moving-target defense using host-based software-defined networking,”
in Proceedings of the Second ACM Workshop on Moving Target Defense,
2015, pp. 37-41.

A. Aydeger, N. Saputro, K. Akkaya, and M. Rahman, “Mitigating
crossfire attacks using sdn-based moving target defense,” in 2016 IEEE
41st Conference on Local Computer Networks (LCN). 1EEE, 2016, pp.
627-630.

D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and
G. J. Minden, “A survey of active network research,” IEEE communi-
cations Magazine, vol. 35, no. 1, pp. 80-86, 1997.

N. Feamster, J. Rexford, and E. Zegura, “The road to sdn,” Queue,
vol. 11, no. 12, pp. 20-40, 2013.

A. T. Campbell, I. Katzela, K. Miki, and J. Vicente, “Open signaling
for atm, internet and mobile networks (opensig’98),” ACM SIGCOMM
Computer Communication Review, vol. 29, no. 1, pp. 97-108, 1999.
A. Doria, F. Hellstrand, K. Sundell, and T. Worster, “General switch
management protocol (gsmp) v3,” 2002.

J. Biswas, A. A. Lazar, J.-F. Huard, K. Lim, S. Mahjoub, L.-F. Pau,
M. Suzuki, S. Torstensson, W. Wang, and S. Weinstein, “The ieee
p1520 standards initiative for programmable network interfaces,” IEEE
Communications Magazine, vol. 36, no. 10, pp. 64-70, 1998.

M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh,
N. McKeown, and S. Shenker, “Sane: A protection architecture for
enterprise networks.” in USENIX Security Symposium, vol. 49, 2006,
p- 50.

A. Doria, J. H. Salim, R. Haas, H. M. Khosravi, W. Wang, L. Dong,
R. Gopal, and J. M. Halpern, “Forwarding and control element separa-
tion (forces) protocol specification.” RFC, vol. 5810, pp. 1-124, 2010.
N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69-74, 2008.

H. Song, “Protocol-oblivious forwarding: Unleash the power of sdn
through a future-proof forwarding plane,” in Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined network-
ing, 2013, pp. 127-132.

J. E. Van der Merwe, S. Rooney, L. Leslie, and S. Crosby, “The tempest-
a practical framework for network programmability,” IEEE network,
vol. 12, no. 3, pp. 20-28, 1998.

B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman, “Planetlab: an overlay testbed for broad-coverage
services,” ACM SIGCOMM Computer Communication Review, vol. 33,
no. 3, pp. 3—12, 2003.

M. R. Macedonia and D. P. Brutzman, “Mbone provides audio and video
across the internet,” Computer, vol. 27, no. 4, pp. 30-36, 1994.

L. L. Peterson, T. Anderson, D. Blumenthal, D. Casey, D. Clark,
D. Estrin, J. Evans, D. Raychaudhuri, M. Reiter, J. Rexford et al., “Geni
design principles,” Computer, vol. 39, no. 9, pp. 102-105, 2006.

A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In vini
veritas: realistic and controlled network experimentation,” in Proceed-
ings of the 2006 conference on Applications, technologies, architectures,
and protocols for computer communications, 2006, pp. 3—14.

S. Ortiz, “Software-defined networking: On the verge of a break-
through?” Computer, no. 7, pp. 10-12, 2013.

S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,
J. Noh, and B. B. Kang, “Rosemary: A robust, secure, and high-
performance network operating system,” in Proceedings of the 2014

ISBN: 978-1-61208-796-2

(38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

[46]

(471

(48]

[49]

[50]

[51]
[52]
[53]

[54]

[55]

ACM SIGSAC conference on computer and communications security,
2014, pp. 78-89.

P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A
security enforcement kernel for openflow networks,” in Proceedings of
the first workshop on Hot topics in software defined networks, 2012, pp.
121-126.

K. Benton, L. J. Camp, and C. Small, “Openflow vulnerability assess-
ment,” in Proceedings of the second ACM SIGCOMM workshop on Hot
topics in software defined networking, 2013, pp. 151-152.

D. Fraunholz, S. D. Anton, C. Lipps, D. Reti, D. Krohmer, F. Pohl,
M. Tammen, and H. D. Schotten, “Demystifying deception technology:
A survey,” arXiv preprint arXiv:1804.06196, 2018.

X. Han, N. Kheir, and D. Balzarotti, “Deception techniques in computer
security: A research perspective,” ACM Computing Surveys (CSUR),
vol. 51, no. 4, pp. 1-36, 2018.

G.-l. Cai, B.-s. Wang, W. Hu, and T.-z. Wang, “Moving target defense:
state of the art and characteristics,” Frontiers of Information Technology
& Electronic Engineering, vol. 17, no. 11, pp. 1122-1153, 2016.

T. Liston, “Labrea:“sticky” honeypot and ids,” 2001.

K. Borders, L. Falk, and A. Prakash, “Openfire: Using deception to
reduce network attacks,” in 2007 Third International Conference on
Security and Privacy in Communications Networks and the Workshops-
SecureComm 2007. 1EEE, 2007, pp. 224-233.

L. Shing, “An improved tarpit for network deception,” Naval Postgrad-
uate School Monterey United States, Tech. Rep., 2016.

E. Le Malécot, “Mitibox: camouflage and deception for network scan
mitigation,” in Proceedings of the 4th USENIX conference on Hot topics
in security. USENIX Association, 2009, pp. 4—4.

S. T. Trassare, “A technique for presenting a deceptive dynamic network
topology.” Naval Postgraduate School Monterey United States, Tech.
Rep., 2013.

M. Smart, G. R. Malan, and F. Jahanian, “Defeating tcp/ip stack
fingerprinting.” in Usenix Security Symposium, 2000.

B. M. Bowen, V. P. Kemerlis, P. Prabhu, A. D. Keromytis, and S. J.
Stolfo, “Automating the injection of believable decoys to detect snoop-
ing,” in Proceedings of the third ACM conference on Wireless network
security, 2010, pp. 81-86.

S. Chakravarty, G. Portokalidis, M. Polychronakis, and A. D. Keromytis,
“Detecting traffic snooping in tor using decoys,” in International Work-
shop on Recent Advances in Intrusion Detection. Springer, 2011, pp.
222-241.

F. Cohen, I. Marin, J. Sappington, C. Stewart, and E. Thomas, “Red
teaming experiments with deception technologies,” IA Newsletter, 2001.
F. Cohen and D. Koike, “Leading attackers through attack graphs with
deceptions,” Computers & Security, vol. 22, no. 5, pp. 402-411, 2003.
N. Provos et al., “A virtual honeypot framework.” in USENIX Security
Symposium, vol. 173, no. 2004, 2004, pp. 1-14.

J. L. Rrushi, “An exploration of defensive deception in industrial com-
munication networks,” International Journal of Critical Infrastructure
Protection, vol. 4, no. 2, pp. 66-75, 2011.

F. Cohen, “The use of deception techniques: Honeypots and decoys,”
Handbook of Information Security, vol. 3, no. 1, pp. 646-655, 2006.

16



