
Managing Path Switching in Multipath Video Streaming

Shinichi Nagayama, Dirceu Cavendish, Daiki Nobayashi, Takeshi Ikenaga

Department of Computer Science and Electronics

Kyushu Institute of Technology

Fukuoka, Japan

e-mail: {o108076s@mail}.kyutech.jp {cavendish@ndrc, nova@ecs, ike@ecs}.kyutech.ac.jp

Abstract—Video streaming has become the major source

of Internet traffic nowadays. Considering that content deliv-

ery network providers utilize Video over Hypertext Transfer

Protocol/Transmission Control Protocol (HTTP/TCP) as the

preferred protocol stack for video streaming, understanding

TCP performance in transporting video streams has become

paramount. Recently, multipath transport protocols have allowed

video streaming over multiple paths to become a reality. In this

paper, we analyze the impact of path switching on multipath

video streaming and network performance, and propose new

schedulers which minimize the number of path switching. We

utilize network performance measures, as well as video quality

metrics, to characterize the performance and interaction between

network and application layers of video streams for various

network scenarios.

Keywords—Video streaming; high speed networks; TCP conges-
tion control; TCP socket state; Multipath TCP; Packet retransmis-
sions; Packet loss.

I. INTRODUCTION

Transmission Control Protocol (TCP) is the dominant trans-

port protocol of the Internet, providing reliable data transmis-

sion for the large majority of applications. For data applica-

tions, the perceived quality of service is the total transport

time of a given file. For real time (streaming) applications,

the perceived quality of experience involves not only the total

transport time, but also the amount of data discarded at the

client due to excessive transport delays, as well as rendering

stalls due to the lack of timely data. Transport delays and data

starvation depend on how TCP handles flow control and packet

retransmissions. Therefore, video streaming user experience

depends heavily on TCP performance.

Recently, multipath transport has allowed video streams

over multiple IP interfaces and network paths. Multipath

streaming not only augments aggregated bandwidth, but also

increases reliability at the transport level session even when a

specific radio link coverage gets compromised. An important

issue in multipath transport is the path (sub-flow) selection;

a path scheduler is needed to split traffic to be injected on

a packet by packet basis onto available paths. For video

streaming applications, head of line blocking may cause in-

complete or late frames to be discarded at the receiver, as

well as stream stalling. In this work, we analyze the effect

of path switching on the quality of video stream delivery.

In addition, we propose path switch aware schedulers, which

strive to minimize the number of path switches during a video

stream delivery session while improving video performance.

We show that, by selectively controlling path switching, video

streaming performance improvements can be obtained for

widely deployed TCP variants and network scenarios.

The material is organized as follows. Related work dis-

cussion is provided on Section II. Section III describes

video streaming over TCP system. Section IV introduces the

TCP variants addressed in this paper. Section V analyzes

path switching effects on video performance, and introduces

our new path scheduling proposals, generically called sticky

schedulers. Section VI addresses multiple path video delivery

performance evaluation using default path scheduler vis a vis

several sticky schedulers, for each TCP variant and multi-

ple packet schedulers. Our empirical results show that most

TCP variants deliver better video performance when sticky

scheduling is utilized. Section VII addresses directions we are

pursuing as follow up to this work.

II. RELATED WORK

Although multipath transport studies are plenty in the lit-

erature, there has been limited prior work on video perfor-

mance over multiple paths [4] [14] [19]. Regarding multipath

schedulers, there has been recent research activity, propelled

by the availability of Multipath Transmission Control Protocol

(MPTCP) transport stack. Most of them focus on specific

sub-flow characterization to support smart path selection. For

instance, Yan et al. [21] propose a path selection mechanism

based on estimated sub-flow capacity. Their evaluation is

centered on throughput performance, as well as reducing

packet retransmissions. Hwang et al. [9] propose a blocking

scheme of a slow path when delay difference between paths is

large, in order to improve data transport completion time on

short lived flows. Ferlin et al. [6] introduce a path selection

scheme based on a predictor of the head-of-line blocking

of a given path. They carry out emulation experiments with

their scheduler against the minimum Round Trip Time (RTT)

default scheduler, in transporting bulk data, Web transactions

and Constant Bit Rate (CBR) traffic, with figure of merits

of goodput, completion time and packet delays, respectively.

More recently, Kimura et al. [11] have shown throughput

performance improvements on schedulers driven by path send-

ing rate and window space, focusing on bulk data transfer

applications. Also, Dong et al. [5] have proposed a path loss

estimation approach to select paths subject to high and bulk

loss rates. Although they have presented some video streaming

experiments, they do not measure streaming performance from

an application perspective. Xue et al. [20] has proposed a

path scheduler based on prediction of the amount of data

a path is able to transmit and evaluated it on simulated

42Copyright (c) IARIA, 2019. ISBN: 978-1-61208-721-4

INTERNET 2019 : The Eleventh International Conference on Evolving Internet

Applica�on

TCPawnd

rwnd cwnd

Playout buffer

Video

rendering Video file

Packe�za�on

Client ServerInternet

(a) TCP

Applica�on

MPTCP

MPTCP

receiver
awnd-i

rwnd-i

rwnd-j

MPTCP

scheduler

cwnd-i

cwnd-j

subflow-j

subflow-i

TCP Receiver TCP Sender

(b) MPTCP

Figure 1: Video Streaming over TCP/MPTCP

network scenarios with respect to throughput performance. A

different approach, at which different sub-flows are used for

segregating prioritized packets of Augmented Reality/Virtual

Reality streams has been proposed by Silva et al. [18]. Finally,

Frommgen et al. [8] have shown that stale round trip time

(rtt) information interferes with path selection of small streams

such as HTTP traffic. The authors then propose an rtt probing

and one way delay based path selection to improve latency

and throughput performance of thin streams.

In contrast, our current work seeks multipath path schedul-

ing principles that can be applied to different path schedulers

to specifically improve the quality of video streams. Previously

[12], we have proposed new Multipath TCP path schedulers

based on dynamic path characteristics, such as congestion

window space and estimated path throughput, and evaluated

multipath video streaming using these proposed schedulers.

Recently [13], we have also proposed to enhance path sched-

ulers with TCP state information, such as whether a path is in

fast retransmit and fast recovery state, to improve video quality

in lossy network scenarios. In this work, we propose one more

principle to path selection, the minimization of path switching.

We evaluate new path schedulers, called sticky schedulers, on

video stream applications using widely deployed TCP variants

on open source network experiments over WiFi an wired

access links.

III. VIDEO STREAMING OVER TCP

Video streaming over HTTP/TCP involves an HTTP server,

where video files are made available for streaming upon HTTP

requests, and a video client, which places HTTP requests to

the server over the Internet, for video streaming. Figure 1 (a)

illustrates video streaming components.

An HTTP server stores encoded video files, available upon

HTTP requests. Once a request is placed, a TCP sender is

instantiated to transmit packetized data to the client machine.

At TCP transport layer, a congestion window is used for flow

controlling the amount of data injected into the network. The

size of the congestion window, cwnd, is adjusted dynamically,

according to the level of congestion in the network, as well

as the space available for data storage, awnd, at the TCP

client receiver buffer. Congestion window space is freed only

when data packets are acknowledged by the receiver, so that

lost packets are retransmitted by the TCP layer. At the client

side, in addition to acknowledging arriving packets, TCP

receiver sends back its current available space awnd, so that

at the sender side, cwnd ≤ awnd at all times. At the client

application layer, a video player extracts data from a playout

buffer, filled with packets delivered by TCP receiver from its

buffer. The playout buffer is used to smooth out variable data

arrival rate.

A. Interaction between Video streaming and TCP

At the server side, the HTTP server retrieves data into

the TCP sender buffer according to cwnd size. Hence, the

injection rate of video data into the TCP buffer is different than

the video variable encoding rate. In addition, TCP throughput

performance is affected by the round trip time of the TCP

session. This is a direct consequence of the congestion window

mechanism of TCP, where only up to a cwnd worth of bytes

can be delivered without acknowledgements. Hence, for a fixed

cwnd size, from the sending of the first packet until the first

acknowledgement arrives, a TCP session throughput is capped

at cwnd/RTT . For each TCP congestion avoidance scheme,

the size of the congestion window is computed by a specific

algorithm at time of packet acknowledgement reception by

the TCP source. However, for all schemes, the size of the

congestion window is capped by the available TCP receiver

space awnd sent back from the TCP client.

At the client side, the video data is retrieved by the video

player into a playout buffer and delivered to the video renderer.

Playout buffer may underflow, if TCP receiver window empties

out. On the other hand, playout buffer overflow does not occur,

since the player will not pull more data into the playout buffer

than it can handle.

In summary, video data packets are injected into the network

only if space is available at the TCP congestion window.

Arriving packets at the client are stored at the TCP receiver

buffer and extracted by the video playout client at the video

nominal playout rate.

IV. TRANSMISSION CONTROL PROTOCOL VARIANTS

TCP protocols fall into two categories, delay and loss based.

Advanced loss based TCP protocols use packet loss as primary

congestion indication signal, performing window regulation as

cwndk = f(cwndk−1), being ack reception paced. Most f
functions follow an Additive Increase Multiplicative Decrease

(AIMD) strategy, with various increase and decrease parame-

ters. TCP NewReno [1] and Cubic [16] are examples of AIMD

strategies. Delay based TCP protocols, on the other hand, use

queue delay information as the congestion indication signal,

increasing/decreasing the window if the delay is small/large,

respectively. Compound [17] and Capacity and Congestion

Probing (CCP) [3] are examples of delay based protocols.

Most TCP variants follow TCP Reno phase framework: slow

start, congestion avoidance, fast retransmit and fast recovery.

For TCP variants widely used today, congestion avoidance

phase is sharply different. We will be introducing specific TCP

variants’ congestion avoidance phase shortly.

A. Cubic TCP Congestion Avoidance

TCP Cubic is a loss based TCP that has achieved

widespread usage as the default TCP of the Linux operating

system. During congestion avoidance, its congestion window

adjustment scheme is:

43Copyright (c) IARIA, 2019. ISBN: 978-1-61208-721-4

INTERNET 2019 : The Eleventh International Conference on Evolving Internet

AckRec : cwndk+1 = C(t−K)3 +Wmax

K = (Wmax
β

C
)1/3 (1)

PktLoss : cwndk+1 = βcwndk

Wmax = cwndk

where C is a scaling factor, Wmax is the cwnd value at time

of packet loss detection and t is the elapsed time since the last

packet loss detection (cwnd reduction). Parameters K drives

the cubic increase away from Wmax, whereas β tunes how

quickly cwnd reduction happens on packet loss. This process

ensures that its cwnd quickly recovers after a loss event.

B. Compound TCP Congestion Avoidance

Compound TCP is the TCP of choice for most deployed

Wintel machines. It implements a hybrid loss/delay based

congestion avoidance scheme, by adding a delay congestion

window dwnd to the congestion window of NewReno [17].

Compound TCP cwnd adjustment is as per (2):

AckRec : cwndk+1 = cwndk +
1

cwndk + dwndk
(2)

PktLoss : cwndk+1 =
cwndk

2

where the delay component is computed as:

AckRec : dwndk+1=dwndk+ αdwndKk − 1, if diff < γ

dwndk − ηdiff, if diff ≥ γ

PktLoss : dwndk+1 =dwndk(1− β)−
cwndk

2
(3)

where diff is an estimated number of backlogged packets,

γ is a threshold parameter which drives congestion detection

sensitivity and α, β, η and K are parameters chosen as a

tradeoff between responsiveness, smoothness and scalability.

Compound TCP dynamics is dominated by its loss based

component, presenting a slow responsiveness to network avail-

able bandwidth variations, which may cause playout buffer

underflows.

C. Multipath TCP

MPTCP is a transport layer protocol, currently being eval-

uated by IETF, which makes possible data transport over

multiple TCP sessions [7]. The key idea is to make multipath

transport transparent to upper layers, hence presenting a single

TCP socket to applications. Under the hood, MPTCP works

with TCP variants, which are unaware of the multipath nature

of the overall transport session. To accomplish that, MPTCP

supports a packet scheduler that extracts packets from the

MPTCP socket exposed to applications and injects them into

TCP sockets belonging to a “sub-flow” defined by a single path

TCP session. MPTCP transport architecture is represented in

Figure 1 (b).

MPTCP packet scheduler works in two different configura-

tion modes: uncoupled and coupled. In uncoupled mode, each

sub-flow congestion window cwnd is adjusted independently.

In coupled mode, MPTCP couples the congestion control of

the sub-flows, by adjusting the congestion window cwndk

of a sub-flow k according with parameters of all sub-flows.

Although there are several coupled mechanisms, we focus

on Linked Increase Algorithm (LIA) [15] and Opportunistic

Linked Increase Algorithm (OLIA) [10]. In both cases, a

MPTCP scheduler selects a sub-flow for packet injection

according to some criteria among all sub-flows with large

enough cwnd to allow packet injection.

D. Linked Increase Congestion Control

LIA [15] couples the congestion control algorithms of

different sub-flows by linking their congestion window in-

creasing functions, while adopting the standard halving of

cwnd window upon packet loss detection. More specifically,

LIA cwnd adjustment scheme is as per (4):

AckRec :cwndik+1= cwndik +min(αBackMssi∑
n

0
cwndp

, BackMssi

cwndi)

PktLoss :cwndik+1=
cwndi

k

2 (4)

where α is a parameter regulating the aggressiveness of the

protocol, Back is the number of acknowledged bytes, Mssi is

the maximum segment size of sub-flow i and n is the number

of sub-flows. Equation (4) adopts cwnd in bytes, rather than

in packets (Maximum Segment Size - MSS), in contrast with

TCP variants equations to be described shortly, because here

we have the possibility of diverse MSSs on different sub-flows.

However, the general idea is to increase cwnd in increments

that depend on cwnd size of all sub-flows, for fairness, but

no more than a single TCP Reno flow. The min operator

in the increase adjustment guarantees that the increase is at

most the same as if MPTCP was running on a single TCP

Reno sub-flow. Therefore, in practical terms, each LIA sub-

flow increases cwnd at a slower pace than TCP Reno, still

cutting cwnd in half at each packet loss.

E. Opportunistic Linked Increase Congestion Control

OLIA [10] also couples the congestion control algorithms of

different sub-flows, but with the increase based on the quality

of paths. OLIA cwnd adjustment scheme is as per (5):

AckRec : cwndik+1 = cwndik +
cwndi

(RTTi)2

(
∑

n

0

cwndp

RTTp)2
+ αi

cwndi ,

PktLoss : cwndik+1 =
cwndi

k

2 (5)

where α is a positive parameter for all paths. The general idea

is to tune cwnd to an optimal congestion balancing point (in

the Pareto optimal sense). In practical terms, each OLIA sub-

flow increases cwnd at a pace related to the ratio of its RTT

and RTT of other subflows, still cutting cwnd in half at each

packet loss.

V. PATH SWITCHING AWARE MPTCP PACKET

SCHEDULERS

MPTCP scheduler selects which sub-flow to inject packets

into the network on a packet by packet basis. The default

strategy is to select the path with shortest average packet delay.

However, this greedy shortest delay strategy may increase the

number of path switches on a streaming session. Lets first

analyze the impact of path switching on application streaming

performance.

44Copyright (c) IARIA, 2019. ISBN: 978-1-61208-721-4

INTERNET 2019 : The Eleventh International Conference on Evolving Internet

Network Client

Application

λi

λj

λr

rtti x λi

rttj x λj

Figure 2: Path i to j Switching Model

Let λi, λj be the packet injection rates of a video stream

session into path i and path j, respectively, as in Figure 2. Let

also rtti, rttj be their respective round trip times. In addition,

let λr be the playout buffer draining rate. Then:

• Buffer underflow: At the moment of path i to j switch,

there are roughly λirtti packets in transit. As these

packets get serviced at λr rate, for buffer underflow to

occur, all these packets need to be serviced before the

first packet injected at path j arrives. Assuming it takes

rttj amount of time for this first packet to arrive, the

condition for buffer underflow upon switching from path

i to path j is: rttiλi < rttjλr. That is, buffer underflow

probability is proportional to the ratio rttj/rtti. Hence,

buffer underflow is more likely on path switches from

smaller path rtt to larger path rtt.

• Picture discard: Assume F packets are needed to re-

assemble a frame. Let F i and F − F i be the number of

packets transmitted on path i and path j, respectively.

Then, in a transition from path i to path j, it takes

F i/λi to deliver these packets to playout buffer. By this

time, the rest of the frame must have arrived at playout

buffer, or some packets will be missing and the frame

will not be able to be reassembled. It takes (F −F i)/λj

to inject these packets, and another rttj delay for them

to arrive at the playout buffer. So, the condition for

frame discard is: F i/λi < (F − F i)/λj + rttj , or

F i < (F − F i)λi/λj + rttjλi. That is, picture discard

probability is proportional to the ratio λi/λj .

We study three path schedulers, seeking to minimize the

number of path switches, as follows. On the onset of a video

streaming session, the path with smallest rtt is chosen, as

with the default path scheduler. However, once a new path is

selected (due to congestion of previous path), three strategies

for path switch minimization are studied: i) the scheduler

stays on a new path for as long as it can, until the new path

experiences congestion. We call this path scheduler greedy

sticky scheduler - GR-STY; ii) the scheduler checks whether

λi/λj < 1 before committing to stick to a new path. We

call this version throughput sticky scheduler - TP-STY; iii) In

addition to previous condition, the scheduler checks whether

rtti < rttj . We call this version throughput RTT sticky

scheduler - TR-STY. We evaluate these path schedulers against

the minimum rtt default scheduler - DFT. Notice that our

ultimate goal is to minimize buffer underflow and picture

Emulator

AP : IEEE 802.11a

Emulator

Emulator

AP : IEEE 802.11g

: IIIIIIIIIIIIIIEEEEEEEEEEEEE 8

IEEEEEEEEEEEE 888888

Figure 3: Video Streaming Emulation Network

TABLE I: EXPERIMENTAL NETWORK SETTINGS

Element Value

Video size 409 MBytes

Video rate 5.24 Mbps

Playout time 10 mins 24 secs

Video Codec H.264 MPEG-4 AVC

MPTCP variants Cubic, Compound, LIA, OLIA

MPTCP schedulers DFT, GR-STY, TP-STY, TR-STY

TABLE II: EXPERIMENTAL NETWORK SCENARIO

Scenario Emulator configuration

(RTT, Bandwidth, Random loss rate)

3 path Equal Loss Rate Flow1) RTT 50 ms, BW 2 Mb/s, Loss 0 %

(Base Line Scenario) Flow2) RTT 100 ms, BW 2 Mb/s, Loss 0 %

Flow3) RTT 100 ms, BW 2 Mb/s, Loss 0 %

3 path Differential Loss Rate Flow1) RTT 50 ms, BW 2 Mb/s, Loss 2.0 %

(3p-50) Flow2) RTT 100 ms, BW 2 Mb/s, Loss 0 %

Flow3) RTT 100 ms, BW 2 Mb/s, Loss 0 %

3 path Differential Loss Rate Flow1) RTT 150 ms, BW 2 Mb/s, Loss 2.0 %

(3p-150) Flow2) RTT 200 ms, BW 2 Mb/s, Loss 0 %

Flow3) RTT 200 ms, BW 2 Mb/s, Loss 0 %

discards at the video receiver.

VI. VIDEO STREAMING PERFORMANCE OF STICKY

MULTIPATH SCHEDULERS

In Figure 3, we describe the network testbed used for

emulating a network path with wireless and wired access links.

An HTTP Apache video server is connected to three access

switches, which are connected to link emulators, used to adjust

path delay and inject controlled random packet loss. A VLC

client machine is connected to two Access Points, a 802.11a

and 802.11g, on different bands (5GHz and 2.4GHz, respec-

tively), as well as a wired link. All wired links are 1Gbps.

No cross traffic is considered, as this would make it difficult

to isolate the impact of TCP congestion avoidance schemes

on video streaming performance. This simple topology and

isolated traffic allows us to better understand the impact of

differential delays and packet loss on streaming performance.

We list network settings and scenarios generated by network

emulator in Tables I and II, respectively. Video settings are

typical of a video stream. Its size is short enough to enable

multiple streaming trials within a reasonable amount of time.

For each scenario, path bandwidth capacity is tuned so as to

force the use of all three paths to stream a video playout rate of

5.24Mbps. We also inject 2.0 % of packet loss on the shortest

path of each scenario except the baseline scenario, so as to

contrast default packet scheduler (shortest RTT) with other

schedulers. TCP variants used are: Compound, Cubic, LIA

and OLIA.

Performance measures adopted are:

• Picture discards: number of frames discarded by the

video decoder. This measure defines the number of

frames skipped by the video rendered at the client side.

45Copyright (c) IARIA, 2019. ISBN: 978-1-61208-721-4

INTERNET 2019 : The Eleventh International Conference on Evolving Internet

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT
GR-STY

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT
GR-STY

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT
GR-STY
TP-STY

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT
GR-STY
TP-STY

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT
GR-STY
TP-STY
TR-STY

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT
GR-STY
TP-STY
TR-STY

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT
GR-STY

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT
GR-STY

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT
GR-STY
TP-STY

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT
GR-STY
TP-STY

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT
GR-STY
TP-STY
TR-STY

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT
GR-STY
TP-STY
TR-STY

Figure 4: Scheduler Streaming Perf.; Base Line Scenario

• Buffer underflow: number of buffer underflow events

at video client buffer. This measure defines the number

of “catch up” events, where the video freezes and then

resumes at a faster rate until all late frames have been

played out.

• Sub-flow throughput: the value of TCP Throughput

on each sub-flow. This measure captures how MPTCP

operates its scheduling packet injection and whether it is

able to maintain a high enough throughput for the video

playout rate.

• Number of path switches: number of path switches

executed during a video streaming session. A path switch

is counted every time two consecutive packets are injected

into the network via two different subflows.

We organize our video streaming experimental results in

three network scenarios: i) A baseline scenario, with no in-

jected packet loss and differential delay; ii) Three path MPTCP

under medium round trip delay; iii) Three path MPTCP under

long round trip delay. Results are reported as average and

min/max deviation bars.

A. Baseline Scenario

In Figures 4, a and b report on video streaming and TCP

performance of baseline scenario, where 50, 100, and 100

msec delays are small, with only random packet loss from

the wireless links. For Cubic variant, there is clearly a buffer

underflow and picture discard performance improvement when

GR-STY and TP-STY schedulers are used. TR-STY deliv-

ers similar performance to default scheduler, which can be

explained by too low stickiness of TR-STY. On the other

hand, LIA, OLIA and Compound TCP variants deliver best

performance under default and TR-STY schedulers. We note

that these three TCP variants are less aggressive in adjusting

cwnd than Cubic, as per respective equations of Section IV.

Hence, it takes longer for these variants to grab newly available

bandwidth of a new path.

In Figure 5, we report on the number of path switches

executed for each scheduler, under various TCP variants.

Firstly notice that GR-STY, TP-STY, and TR-STY schedulers

have different levels of stickiness, GR-STY being the least

restrictive. Hence, GR-STY delivers the lowest number of path

switches, and TR-STY delivers the highest, closely following

the number of path switches of the default scheduler. Notice

also that the scheduler that delivers the lowest number of path

switches is not necessarily the one that delivers best video

performance in Figure 4. This shows the performance tradeoff

 0

 50000

 100000

 150000

 200000

 250000

Cubic
LIA OLIA Compound

P
a

th
 S

w
it
c
h

 [
T

im
e

s
]

TCP Variant

DFT
GR-STY
TP-STY
TR-STY

Figure 5: Path Switch.; Base Line Scenario

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(a) DFT

TCP variant

flow1

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(a) DFT

TCP variant

flow1

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(a) DFT

TCP variant

flow1
flow2

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(a) DFT

TCP variant

flow1
flow2

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(a) DFT

TCP variant

flow1
flow2
flow3

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(a) DFT

TCP variant

flow1
flow2
flow3

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(b) GR-STY

TCP variant

flow1

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(b) GR-STY

TCP variant

flow1

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(b) GR-STY

TCP variant

flow1
flow2

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(b) GR-STY

TCP variant

flow1
flow2

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(b) GR-STY

TCP variant

flow1
flow2
flow3

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(b) GR-STY

TCP variant

flow1
flow2
flow3

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(c) TP-STY
TCP variant

flow1

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(c) TP-STY
TCP variant

flow1

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(c) TP-STY
TCP variant

flow1
flow2

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(c) TP-STY
TCP variant

flow1
flow2

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(c) TP-STY
TCP variant

flow1
flow2
flow3

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(c) TP-STY
TCP variant

flow1
flow2
flow3

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(d) TR-STY
TCP variant

flow1

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(d) TR-STY
TCP variant

flow1

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(d) TR-STY
TCP variant

flow1
flow2

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(d) TR-STY
TCP variant

flow1
flow2

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(d) TR-STY
TCP variant

flow1
flow2
flow3

 0

 1

 2

 3

Cubic
LIA OLIA Compound

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

(d) TR-STY
TCP variant

flow1
flow2
flow3

Figure 6: Throughput.; Base Line Scenario

between sticking to a given path, versus changing back to

another path of perhaps better quality.

In Figures 6 a, b, c, and d we report on throughput

results of the various TCP variants operating under the several

schedulers. For this analysis, it is important to call to attention

that flow 3 is the best quality flow, as it is a wired path with

no wireless random packet loss; flow 1 and flow 2 present

random packet losses due to wireless link interference. So,

from a throughput efficiency point of view, flow 3 should be

preferred in detriment of the other ones. Notice that the default

scheduler in Figure 6 a favors flow 1, due to its smaller rtt,

whereas the other sticky schedulers divert more traffic away

from flow 1 into flow 3, especially for slow to react LIA and

OLIA TCP variants (in Figures 6 b, c, and d). This causes less

overall retransmission (graphs omitted), resulting in a better

transport efficiency.

B. Small delay with packet loss scenario

In Figures 7, a and b reports on video streaming perfor-

mance under network scenario 3p-50, with short path delays

of 50, 100, and 100 msecs, where 2.0 % random packet

loss is injected into the shortest delay path. First notice how

a relatively small packet loss rate causes significant buffer

underflow and picture discard degradation as compared to the

baseline scenario. About TCP variants, Cubic and Compound

TCP improve their buffer underflow and picture discard per-

formances under TR-STY schedulers, whereas LIA and OLIA

variants present similar performance across all schedulers.

46Copyright (c) IARIA, 2019. ISBN: 978-1-61208-721-4

INTERNET 2019 : The Eleventh International Conference on Evolving Internet

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT
GR-STY

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT
GR-STY

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT
GR-STY
TP-STY

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT
GR-STY
TP-STY

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT
GR-STY
TP-STY
TR-STY

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT
GR-STY
TP-STY
TR-STY

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT
GR-STY

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT
GR-STY

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT
GR-STY
TP-STY

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT
GR-STY
TP-STY

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT
GR-STY
TP-STY
TR-STY

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT
GR-STY
TP-STY
TR-STY

Figure 7: Scheduler Streaming Perf.; Scenario 3p-50

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT
GR-STY

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT
GR-STY

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT
GR-STY
TP-STY

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT
GR-STY
TP-STY

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT
GR-STY
TP-STY
TR-STY

 0

 100

 200

 300

 400

 500

Cubic
LIA OLIA Compound

B
u
ff
e
r

u
n
d
e
rf

lo
w

 [
T

im
e
s
]

(a) Buffer Underflow
TCP variant

DFT
GR-STY
TP-STY
TR-STY

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT
GR-STY

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT
GR-STY

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT
GR-STY
TP-STY

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT
GR-STY
TP-STY

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT
GR-STY
TP-STY
TR-STY

 0

 100

 200

 300

 400

Cubic
LIA OLIA Compound

P
ic

tu
re

 d
is

c
a
rd

 [
T

im
e
s
]

(b) Picture Discard
TCP variant

DFT
GR-STY
TP-STY
TR-STY

Figure 8: Scheduler Streaming Perf.; Scenario 3p-150

C. Large delay with packet loss scenario

In Figures 8, a and b reports on video streaming and TCP

performance under scenario 3p-150, a three path scenario

with large delays of 150, 200, and 200 msecs, respectively,

with a 2.0 % random loss on shortest path. We can see that,

when compared with previous scenarios, Cubic and Compound

TCP variants have smaller buffer underflow and picture dis-

card improvements between using different versions of Sticky

scheduler and the default scheduler. LIA and OLIA present

similar performance accross all schedulers. We conjecture

that the larger the path delays are, the less performance

improvement gains.

Overall, the above results show that video streaming per-

formance improvement can be obtained by reducing path

switching among available paths while avoiding path switches

with high probability of causing buffer underflow and picture

discards at the video receiver side. In addition, there seems

to be a point of diminishing returns when paths have very

long round trip times. Although these results were obtained

for specific testbed topology and network scenarios, we believe

similar improvements can be attained on more generic network

scenarios.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed packet schedulers that

reduce path switching among available paths to improve the

quality of streaming video over MPTCP. We have evaluated

MPTCP performance with default and packet schedulers which

avoid path switching when the probability of buffer underflow

and picture discard is high. Our results have shown that a

clever path switch reduction may improve video streaming

for Cubic and Compound Linux and Windows TCP variants,

respectively, while not impacting performance of coupled LIA

and OLIA variants. We believe that avoiding path switching

may be applicable across a wide variety of network scenarios.

We are currently investigating the integration of path switch-

ing management with other path scheduling mechanisms to

improve video streaming performance.

ACKNOWLEDGMENTS

Work supported by JSPS KAKENHI Grant # 16K00131.

REFERENCES

[1] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,”
IETF RFC 2581, April 1999.

[2] Arzani et al., “Deconstructing MPTCP Performance,” In Proceedings
of IEEE 22nd ICNP, pp. 269-274, 2014.

[3] D. Cavendish, K. Kumazoe, M. Tsuru, Y. Oie, and M. Gerla, “Capacity
and Congestion Probing: TCP Congestion Avoidance via Path Capacity
and Storage Estimation,” IEEE Second International Conference on
Evolving Internet, pp. 42-48, September 2010.

[4] X. Corbillon, R. Aparicio-Pardo, N. Kuhn, G. Texier, and G. Simon,
“Cross-Layer Scheduler for Video Streaming over MPTCP,” ACM 7th
International Conference on Multimedia Systems, May 10-13, 2016,
Article 7.

[5] E. Dong et. al., “LAMPS: A Loss Aware Scheduler for Multipath TCP
over Highly Lossy Networks,” Proceedings of the 42th IEEE Conference
on Local Computer Networks, pp. 1-9, October 2017.

[6] S. Ferlin et. al., “BLEST: Blocking Estimation-based MPTCP Scheduler
for Heterogeneous Networks,” In Proceedings of IFIP Networking
Conference, pp. 431-439, 2016.

[7] A. Ford et. al., “Architectural Guidelines for Multipath TCP Develop-
ment,” IETF RFC 6182, 2011.

[8] A. Frommgen, J. Heuschkel and B. Koldehofe, “Multipath TCP Schedul-
ing for Thin Streams: Active Probing and One-way Delay-awareness,”
IEEE Int. Conference on Communications (ICC), pp.1-7, May 2018.

[9] J. Hwang and J. Yoo, “Packet Scheduling for Multipath TCP,” IEEE
7th Int. Conference on Ubiquitous and Future Networks, pp.177-179,
July 2015.

[10] R. Khalili, N. Gast, and J-Y Le Boudec, “MPTCP Is Not Pareto-Optimal:
Performance Issues and a Possible Solution,” IEEE/ACM Trans. on
Networking, Vol. 21, No. 5, pp. 1651-1665, Aug. 2013.

[11] Kimura et al., “Alternative Scheduling Decisions for Multipath TCP,”
IEEE Communications Letters, Vol. 21, No. 11, pp. 2412-2415, Nov.
2017.

[12] Matsufuji et al., “Multipath TCP Packet Schedulers for Streaming
Video,” IEEE Pacific Rim Conference on Communications, Computers
and Signal Processing (PACRIM) , August 2017, pp. 1-6.

[13] Nagayama et al., “TCP State Driven MPTCP Packet Scheduling for
Streaming Video,” IARIA 10th International Conference on Evolving
Internet, pp. 9-14, June 2018.

[14] J-W. Park, R. P. Karrer, and J. Kim,, “TCP-Rome: A Transport-
Layer Parallel Streaming Protocol for Real-Time Online Multimedia
Environments,” In Journal of Communications and Networks, Vol.13,
No. 3, pp. 277-285, June 2011.

[15] C. Raiciu, M. Handly, and D. Wischik, “Coupled Congestion Control
for Multipath Transport Protocols,” IETF RFC 6356, 2011.

[16] I. Rhee, L. Xu, and S. Ha, “CUBIC for Fast Long-Distance Networks,”
Internet Draft, draft-rhee-tcpm-ctcp-02, August 2008.

[17] M. Sridharan, K. Tan, D. Bansal, and D. Thaler, “Compound TCP: A
New Congestion Control for High-Speed and Long Distance Networks,”
Internet Draft, draft-sridharan-tcpm-ctcp-02, November 2008.

[18] F. Silva, D. Bogusevschi, and G-M. Muntean, “A MPTCP-based RTT-
aware Packet Delivery Prioritization Algorithm in AR/VR Scenarios,”
In Proceedings of IEEE Intern. Wireless Communications & Mobile
Computing Conference - IWCMCC 18, pp. 95-100, June 2018.

[19] J. Wu, C. Yuen, B. Cheng, M. Wang, and J. Chen, “Streaming High-
Quality Mobile Video with Multipath TCP in Heterogeneous Wireless
Networks,” IEEE Transactions on Mobile Computing, Vol.15, Issue 9,
pp. 2345-2361, 2016.

[20] Xue et al., “DPSAF: Forward Prediction Based Dynamic Packet
Scheduling and Adjusting With Feedback for Multipath TCP in Lossy
Heterogeneous Networks,” IEEE/ACM Trans. on Vehicular Technology,
Vol. 67, No. 2, pp. 1521-1534, Feb. 2018.

[21] F. Yan, P. Amer, and N. Ekiz, “A Scheduler for Multipath TCP,” In
Proceedings of IEEE 22nd ICCCN, pp. 1-7, 2013.

47Copyright (c) IARIA, 2019. ISBN: 978-1-61208-721-4

INTERNET 2019 : The Eleventh International Conference on Evolving Internet

