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Abstract—The literature has suggested the appearance of self-
evolving botnets, which autonomously discover vulnerabilities
by performing machine learning with computing resources of
zombie computers and evolve accordingly. The infectablity of the
self-evolving botnets is too strong compared with conventional
botnets. This paper introduces a countermeasure model against
the self-evolving botnets. This model aims at preventing the self-
evolving botnets from spreading by discovering vulnerabilities
with computing resources of volunteer hosts before the self-
evolving botnets discover them. Through simulation experiments
based on a continuous-time Markov chain, we evaluate the
performance of the countermeasure model.

Keywords–Botnet; machine learning; epidemic model;
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I. INTRODUCTION

Recently, machine learning techniques, such as deep learn-
ing [1][2], have been widely used and achieved significant
results in various research areas. In addition, some researchers
have been proposed vulnerability discovery methods that dis-
cover bugs and vulnerabilities with static code analysis and
machine learning techniques [7][8]. Of course, the main pur-
pose of these methods is to protect software. However, these
methods can be used for discovering unknown security holes
and exploited for illegal attacks by malicious attackers.

To perform illegal attacks, malicious attackers often infect
hosts with malware. A botnet is a set of hosts infected by the
botnet malware [6]. The zombie computers are controlled by a
malicious attacker and perform illegal attacks. In the past, there
have been some botnets that consist of more than a million
zombie computers. The authors in [4][5] have introduced a
new concept named self-evolving botnets, based on these facts.
The self-evolving botnets discover vulnerabilities by perform-
ing distributed machine learning with computing resources
of zombie computers and evolves autonomously exploiting
the discovered vulnerabilities. Accordingly, they infect other
hosts and make themselves bigger. The authors in [4][5] have
provided an epidemic model of the self-evolving botnets,
which formulates the infection dynamics of the self-evolving
botnets as a continuous-time Markov chain. The authors have
shown that the infectivity of self-evolving botnets is very
high, compared with conventional botnets, through numerical
experiments. In response, in [3], the authors have proposed
basic ideas of countermeasures against self-evolving botnets
and shown their effectiveness.

In this paper, we propose a countermeasure model against
self-evolving botnets, which extends the basic ideas discussed
in [3]. This model aims to counter the self-evolving botnets
by discovering and repairing unknown vulnerabilities by uti-
lizing computing resources of volunteer hosts before the self-
evolving botnets discover them. Therefore, we call this model

Figure 1. SIRS model.

volunteer model hereafter. We represent the infection dynam-
ics of self-evolving botnets with a continuous-time Markov
chain under the situation where the volunteer model works.
Through simulation experiments, we examine the behavior of
the volunteer model.

The rest of this paper is organized as follows. Section II
discusses the epidemic model for self-evolving botnets. In
Section III, we explain the volunteer model. In Section IV, we
discuss the behavior of the volunteer model with the results of
simulation experiments. We state the conclusion of this paper
in Section V.

II. BASIC EPIDEMIC MODEL FOR SELF-EVOLVING
BOTNETS

In [4][5], in order to reveal threats of self-evolving botnets,
the authors assumed situations where there is a self-evolving
botnet in a network and proposed an epidemic model repre-
senting the infection dynamics of the self-evolving botnet. In
this epidemic model, the state of each host in the network is
represented by a Susceptible-Infected-Recovered-Susceptible
(SIRS) model shown in Figure 1. In the SIRS model, “S”
indicates that the host has vulnerabilities, “I” indicates that
the host is infected, and “R” indicates that the host has no
known vulnerabilities. Each host belongs to one of the states.
We assume that hosts belonging to the recovered state R can
get infected by unknown vulnerabilities which are discovered
by the self-evolving botnet.

Hosts belonging to the susceptible state S transition to
the infected state I when they get infected by attacks of the
self-evolving botnet. Then the hosts are embedded in the self-
evolving botnet. Hosts belonging to the susceptible state S and
the infected state I transition to the recovered state R when
known vulnerabilities and the botnet malware, respectively,
removed from the hosts by, e.g., OS updates and anti-virus
software. Note that we assume that all known vulnerabilities
are simultaneously removed in these cases. When the self-
evolving botnet discovers a new vulnerability by means of
distributed machine learning using known vulnerabilities, all
hosts belonging to the recovered state R transition to the
susceptible state S because the botnet can infect the hosts by
using the discovered vulnerability. The summary of the events
in the SIRS model is as follows.

30Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-721-4

INTERNET 2019 : The Eleventh International Conference on Evolving Internet



1) When a new vulnerability is discovered by the self-
evolving botnet, all hosts belonging to the recovered
state R transition to the susceptible state S.

2) When a host belonging to the susceptible state S
removes its known vulnerabilities, it transitions to the
recovered state R.

3) When a host belonging to the infected state I infects a
host belonging to the susceptible state S and embeds
it in the self-evolving botnet, the host getting infected
transitions to the infected state I.

4) When a host belonging to the infected state I removes
the botnet malware from itself, it transitions to the
recovered state R.

In [5], the authors have formulated the infection process
of a self-evolving botnet as a continuous-time Markov chain
and evaluated its characteristic. In the Markov chain, the
occurrence of each event 1)-4) described above, which is based
on the SIRS model, follows a Poisson process.

III. VOLUNTEER MODEL

A. Modeling
Self-evolving botnets discover unknown vulnerabilities by

utilizing the computing resources of zombie computers and
attack susceptible hosts based on the discovered vulnerabilities.
It is very difficult for each host to individually protect itself
from such attacks. To overcome this difficulty, the volunteer
model counters the self-evolving botnets by repairing vulner-
abilities that are found with use of the computing resources
of volunteer hosts before the self-evolving botnets discover
them. In this paper, we represent the infection dynamics of
the volunteer model under the following assumptions.

1) There is one volunteer group, to which all volunteer
hosts belong, in a given network.

2) Each host in the susceptible state S or the recovered
state R can become a volunteer host (i.e., join the
volunteer group). The probability that a host becomes
a volunteer host is proportional to the number of
volunteer hosts. This assumption indicates that the
effect of vulnerability discovery and protection in-
creases with the number of volunteer hosts, so that
the participation of new hosts to the volunteer group
is encouraged.

3) Volunteer hosts share the information on vulnerability
discovery each other and can repair the vulnerability.
This is an incentive reward for participating the
volunteer group. Therefore, the information is not
shared with non-volunteer hosts.

4) Volunteer hosts can leave the volunteer group freely.

Figure 2 represents the state transition diagram of each
host in the volunteer model, which follows these assumptions
and is based on the SIRS model shown in Figure 1. In the
volunteer model, the susceptible state S and the recovered state
R are divided into two states “S1”, “S2”, “R1”, and “R2”,
respectively. S1 (resp. R1) indicates that the host belongs to
the susceptible state (resp. the recovered state) but does not
belong to the volunteer group. On the other hand, S2 (resp.
R2) indicates the host belongs to both the susceptible state
(resp. the recovered state) and the volunteer group. In the
volunteer model, the state of each host transitions according
to the following event.

Figure 2. Volunteer model.

a) The host gets infected by an attack of an infected
host ( 1⃝, 5⃝).

b) The host removes the botnet malware from itself ( 2⃝).
c) The host removes known vulnerabilities from itself

( 4⃝, 10⃝).
d) The host leaves the volunteer group ( 6⃝, 8⃝).
e) The host join the volunteer group ( 7⃝, 9⃝).
f) The self-evolving botnet discovers a new vulnerabil-

ity ( 3⃝, 11⃝).

In the event e), susceptible hosts transition to the recovered
state R2 immediately after they join the volunteer group
because we assume that hosts belonging to the volunteer group
share the information on vulnerabilities discovered by the
volunteer group. We also assume that the volunteer group
can discover unknown vulnerabilities with use of distributed
machine learning, so that the probability that the transition 11⃝
occurs is smaller than the probability that the transition 3⃝
occurs in event f).

B. Continuous Markov chain
In this paper, we consider a continuous time Markov chain

that represents the infection dynamics of the volunteer model,
where each event occurs according to a Poisson process. Let
U1(t), U2(t), V (t), W1(t), and W2(t) denote the numbers
of hosts belonging to the states S1, S2, I, R1, and R2,
respectively at time t. The system state is represented by
(U1(t), U2(t), V (t),W1(t),W2(t)). When the system state is
(U1(t), U2(t), V (t),W1(t),W2(t)) = (u1, u2, v, w1, w2) = τ ,
the occurrence rate of each event is defined as follows.

a) When a host belonging to the state S1 (resp. S2)
gets infected, the system state τ transitions to (u1 −
1, u2, v+1, w1, w2) (resp. (u1, u2−1, v+1, w1, w2))
( 1⃝, 5⃝). The occurrence rates λ[1]τ and λ

[2]
τ of the

respective events are given by

λ[1]τ = αu1v, (1)

λ[2]τ = αu2v, (2)

where α denotes the infection rate per host.
b) When a host belonging to the state I removes the bot-

net malware from itself, the system state τ transitions
to (u1, u2, v−1, w1+1, w2) ( 2⃝). The occurrence rate
of this event is given by

µτ = δiv, (3)

where δi denote the removal rate per host.
c) When a host belonging to the state S1 (resp. S2)

repairs its own vulnerabilities, the system state τ tran-
sitions to (u1 − 1, u2, v, w1 +1, w2) (resp. (u1, u2 −
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1, v, w1, w2 +1)) ( 4⃝, 10⃝). The occurrence rates ψ[1]
τ

and ψ[2]
τ of the respective events are given by

ψ[1]
τ = δsu1, (4)

ψ[2]
τ = δsu2, (5)

where δs denote the repair rate per host.
d) When a host belonging to the state S2 (resp.

R2) leaves the volunteer group, the system state
τ transitions to (u1 + 1, u2 − 1, v, w1, w2) (resp.
(u1, u2, v, w1 + 1, w2 − 1)) ( 6⃝, 8⃝). The occurrence
rates ζ [s]τ and ζ

[r]
τ of the respective events are given

by

ζ [s]τ = ϕu2, (6)

ζ [r]τ = ϕw2, (7)

where ϕ denotes the leave rate per host.
e) When a host belonging to the state S1 (resp. R1) joins

the volunteer group, the system state τ transitions
to (u1 − 1, u2, v, w1, w2 + 1) (resp. (u1, u2, v, w1 −
1, w2+1)) ( 7⃝, 9⃝). The occurrence rates ϵ[s]τ and ϵ[s]τ

of the respective events are given by

ϵ[s]τ = θ(u2 + w2 + 1)u1, (8)

ϵ[r]τ = θ(u2 + w2 + 1)w1, (9)

where θ denotes the join rate per host. We assume
that the probability that hosts join the volunteer group
increases with the current size of the volunteer group.

f) When the self-evolving botnet discovers a new vul-
nerability, one of the following two event occurs.
If the discovered vulnerability has been already re-
paired by the volunteer group, hosts belonging to the
volunteer group do not transitions to the susceptible
state. In this case, the system state τ transitions to
(u1 +w1, u2, v, 0, w2) ( 3⃝). The occurrence rate γ[1]τ

of this event is given by

γ[1]τ = ηv
σ(u2 + w2)

σ(u2 + w2) + ηv
, (10)

where η and σ denote the vulnerability discovery rate
per infected host and per volunteer host, respectively.
If the discovered vulnerability has not been repaired
by the volunteer group yet, hosts belonging to the
volunteer group also transitions to the susceptible
state. Therefore, the system state τ transitions to
(u1 + w1, u2 + w2, v, 0, 0) ( 3⃝, 11⃝). The occurrence
rate γ[2]τ of this event is given by

γ[2]τ = ηv
ηv

σ(u2 + w2) + ηv
. (11)

We assume that the discovery capability of vulnera-
bilities of the self-evolving botnet (i.e., γ[1]τ + γ

[2]
τ =

ηv) is weakened according to the discovery capability
of the volunteer group.
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Figure 3. Botnet survival probability (η = σ = 0.01).

 0

 0.2

0.4

0.6

 0.8

 1

 0  20  40  60  80  100
elapsed time

θ=5×10
-3

θ=1×10
-3

θ=5×10
-4

θ=1×10
-4

Self-evolving botnets

bo
tn

et
 su

rv
iv

al
 p

ro
ba

bi
lit

y

Figure 4. Botnet survival probability (η = σ = 0.05).

IV. EVALUATION

A. Model

In this paper, we examine the infection dynamics
of the volunteer model through simulation experiments.
The total number of hosts in a network is equal to
1,000. The initial state of the system is assumed to be
(U1(t), U2(t), V (t),W1(t),W2(t)) = (999, 0, 1, 0, 0). Specif-
ically, there is one infected host and the other hosts have
vulnerabilities, which do not belong to the volunteer group.
The system parameters in (1)-(11) are set to be α = 0.001,
δi = 0.1, δs = 1, and ϕ = 0.1. For each experiment, we collect
200 independent samples.

B. Results

We examine the infectivity of the self-evolving botnets
under infection control environments. Figures 3 and 4 show
the botnet survival probability as a function of the elapsed
time t, where η = σ = 0.01 and 0.05, respectively. The botnet
survival probability means the ratio of the number of samples
where one or more infected hosts still exist at time t to the
total number of samples. For the sake of comparison, we plot
the results for the self-evolving botnet without the volunteer
model in these figures. As shown in these figures, the botnet
survival probability is very large when the volunteer model
is not applied to the self-evolving botnet. We also observe
that when the join rate θ to the volunteer group is low (i.e.,
θ = 1 × 10−4), the botnet survival probability is almost the
same as the self-evolving botnet without the volunteer model.
On the other hand, the botnet survival probability decreases
with the increase in the value of θ.
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Figure 5. Average number of infected hosts (η = σ = 0.01).
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Figure 6. Average number of infected hosts (η = σ = 0.05).

Figures 5 and 6 show the average number of infected hosts
of samples in which infected hosts still exist at time t as a
function of the elapsed time t, where η = σ = 0.01 and 0.05,
respectively. From these figures, we observe that the average
number of infected hosts rapidly increases when the volunteer
model is not used or θ is low. Meanwhile, the volunteer model
with large θ efficiently reduces the average number of infected
host.

Figures 7 and 8 show the botnet survival probability and the
average number of infected hosts, respectively, as a function
of the value of θ, where t = 40 and η = σ. As we can
see from these figures, the botnet survival probability and the
average number of infected hosts decrease with the increase in
the value of θ. These results mean that the volunteer model is
effective for suppressing the spread of the self-evolving botnet.

V. CONCLUSION

This paper introduced a volunteer model to countermeasure
self-evolving botnets. Through simulation experiments, we
showed that the volunteer model efficiently reduces botnet
survival probability and the average number of infected hosts.
As future work, we will consider how hosts are encouraged
to join the volunteer model. In this paper, we assume that the
probability that a host becomes a volunteer host is proportional
to the number of volunteer hosts. This is because the effect
of vulnerability discovery and protection increases with the
number of volunteer hosts. Volunteer hosts share the informa-
tion on vulnerability discovery each other and can repair the
vulnerability, which is an incentive reward for participating the
volunteer group. However, the volunteer hosts should provide
a certain amount of their computing resources, which degrade
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Figure 7. Botnet survival probability (η = σ).
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Figure 8. Average number of infected hosts (η = σ).

their performance. Therefore, we should consider this trade-
off, using concepts such as the game theory.
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