
TCP State Driven MPTCP Packet Scheduling for Streaming Video

Ryota Matsufuji, Shinichi Nagayama, Dirceu Cavendish, Daiki Nobayashi, Takeshi Ikenaga

Department of Computer Science and Electronics

Kyushu Institute of Technology

Fukuoka, Japan

e-mail: {q349428r@mail, o108076s@mail}.kyutech.jp {cavendish@ndrc, nova@ecs, ike@ecs}.kyutech.ac.jp

Abstract—Video streaming has become the major source of

Internet traffic nowadays. Considering that content delivery

network providers have adopted Video over Hypertext Trans-

fer Protocol/Transmission Control Protocol (HTTP/TCP) as the

preferred protocol stack for video streaming, understanding

TCP performance in transporting video streams has become

paramount. Recently, multipath transport protocols have allowed

video streaming over multiple paths to become a reality. In

this paper, we propose packet scheduling disciplines driven by

underline TCP flow state for injecting video stream packets into

multiple paths at the video server. We show how video streaming

performance improves when packet schedulers take into account

retransmission state in underlying paths in conjunction with

current TCP variants. We utilize network performance measures,

as well as video quality metrics, to characterize the performance

and interaction between network and application layers of video

streams for various network scenarios.

Keywords—Video streaming; high speed networks; TCP conges-
tion control; TCP socket state; Multipath TCP; Packet retransmis-
sions; Packet loss.

I. INTRODUCTION

Transmission Control Protocol (TCP) is the dominant trans-

port protocol of the Internet, providing reliable data transmis-

sion for the large majority of applications. For data applica-

tions, the perceived quality of service is the total transport

time of a given file. For real time (streaming) applications,

the perceived quality of experience involves not only the total

transport time, but also the amount of data discarded at the

client due to excessive transport delays, as well as rendering

stalls due to the lack of timely data. Transport delays and data

starvation depend on how TCP handles flow control and packet

retransmissions. Therefore, video streaming user experience

depends heavily on TCP performance.

Recently, multipath transport has allowed video streamed

over multiple IP interfaces and network paths. Multipath

streaming not only augments aggregated bandwidth, but also

increases reliability at the transport level session even when a

specific radio link coverage gets compromised. An important

issue in multipath transport is the path (sub-flow) selection;

a packet scheduler is needed to split traffic to be injected on

a packet by packet basis. For video streaming applications,

head of line blocking may cause incomplete or late frames to

be discarded at the receiver, as well as stream stalling. In this

work, we introduce the concept of path schedulers based on

current status of a TCP sub-flow and evaluate video streaming

performance under this type of schedulers. To the best of

our knowledge, there has not been a study of path selection

mechanisms based on TCP sub-flow state. Specifically, we

show that by avoiding paths in retransmission state, video

streaming performance improvements can be obtained for

different TCP variants and packet scheduler schemes.

The material is organized as follows. Related work discus-

sion is provided on Section II. Section III describes video

streaming over TCP system. Section IV introduces the TCP

variants addressed in this paper. Section V introduces path

schedulers used to support multipath transport, as well as our

new TCP state driven path scheduling proposal. Section VI

addresses multiple path video delivery performance evaluation

for each TCP variant and multiple packet schedulers. Our

empirical results in that section show that most schedulers

benefit from TCP state awareness. Section VII addresses

directions we are pursuing as follow up to this work.

II. RELATED WORK

Although multipath transport studies are plenty in the litera-

ture, there has been few prior work on video performance over

multiple paths [5] [13] [16]. Regarding multipath schedulers,

there has been limited research activity. Yan et al. [18] propose

a path selection mechanism based on estimated sub-flow

capacity. Their evaluation is centered on throughput perfor-

mance, as well as reducing packet retransmissions. Yan et al.

[2] present a modelling of multipath transport in which they

explain empirical evaluations of the impact of selecting a first

sub-flow in throughput performance. Hwang et al. [9] propose

a blocking scheme of a slow path when delay difference

between paths is large, in order to improve data transport

completion time on short lived flows. Ferlin et al. [7] introduce

a path selection scheme based on a predictor of the head-

of-line blocking of a given path. They carry out emulation

experiments with their scheduler against the minimum Round

Trip Time (RTT) default scheduler, in transporting bulk data,

Web transactions and Constant Bit Rate (CBR) traffic, with fig-

ure of merits of goodput, completion time and packet delays,

respectively. More recently, Kimura et al. [11] have shown

throughput performance improvements on schedulers driven

by path sending rate and window space, focusing on bulk

data transfer applications. Also, Dong et al. [6] have proposed

a path loss estimation approach to select paths subject to

high and bulk loss rates. Although they have presented some

Video Streaming experiments, they do not measure streaming

performance from an application perspective. Finally, [17] has

proposed a path scheduler based on prediction of the amount

of data a path is able to transmit and evaluated it on simulated

network scenarios with respect to throughput performance.

9Copyright (c) IARIA, 2018. ISBN: 978-1-61208-644-6

INTERNET 2018 : The Tenth International Conference on Evolving Internet

Applica�on

TCPawnd

rwnd cwnd

Playout buffer

Video

rendering Video file

Packe�za�on

Client ServerInternet

(a) TCP

Applica�on

MPTCP

MPTCP

receiver
awnd-i

rwnd-i

rwnd-j

MPTCP

scheduler

cwnd-i

cwnd-j

subflow-j

subflow-i

TCP Receiver TCP Sender

(b) MPTCP

Figure 1: Video Streaming over TCP/MPTCP

In contrast, our current work seeks multipath path schedul-

ing principles that can be applied to different path schedulers

to improve the quality of video streams. Previously [12], we

have proposed new Multipath TCP (MPTCP) path schedulers

based on dynamic path characteristics, such as congestion

window space and estimated path throughput and evaluated

multipath video streaming using these proposed schedulers.

In this work, we propose to enhance path schedulers with

TCP state information, such as whether a path is in fast

retransmit and fast recovery state, to improve video quality

in lossy network scenarios. For performance evaluation, we

focus on video stream applications and use widely deployed

TCP variants on open source network experiments over WiFi

access links.

III. VIDEO STREAMING OVER TCP

Video streaming over HTTP/TCP involves an HTTP server,

where video files are made available for streaming upon HTTP

requests and a video client, which places HTTP requests to

the server over the Internet, for video streaming. Figure 1 (a)

illustrates video streaming components.

An HTTP server stores encoded video files, available upon

HTTP requests. Once a request is placed, a TCP sender is

instantiated to transmit packetized data to the client machine.

At TCP transport layer, a congestion window is used for flow

controlling the amount of data injected into the network. The

size of the congestion window, cwnd, is adjusted dynamically,

according to the level of congestion in the network, as well

as the space available for data storage, awnd, at the TCP

client receiver buffer. Congestion window space is freed only

when data packets are acknowledged by the receiver, so that

lost packets are retransmitted by the TCP layer. At the client

side, in addition to acknowledging arriving packets, TCP

receiver sends back its current available space awnd, so that

at the sender side, cwnd ≤ awnd at all times. At the client

application layer, a video player extracts data from a playout

buffer, filled with packets delivered by TCP receiver from its

buffer. The playout buffer is used to smooth out variable data

arrival rate.

A. Interaction between Video streaming and TCP

At the server side, the HTTP server retrieves data into

the TCP sender buffer according with cwnd size. Hence, the

injection rate of video data into the TCP buffer is different than

the video variable encoding rate. In addition, TCP throughput

performance is affected by the round trip time of the TCP

session. This is a direct consequence of the congestion window

mechanism of TCP, where only up to a cwnd worth of bytes

can be delivered without acknowledgements. Hence, for a fixed

cwnd size, from the sending of the first packet until the first

acknowledgement arrives, a TCP session throughput is capped

at cwnd/RTT . For each TCP congestion avoidance scheme,

the size of the congestion window is computed by a specific

algorithm at time of packet acknowledgement reception by

the TCP source. However, for all schemes, the size of the

congestion window is capped by the available TCP receiver

space awnd sent back from the TCP client.

At the client side, the video data is retrieved by the video

player into a playout buffer and delivered to the video renderer.

Playout buffer may underflow, if TCP receiver window empties

out. On the other hand, playout buffer overflow does not occur,

since the player will not pull more data into the playout buffer

than it can handle.

In summary, video data packets are injected into the network

only if space is available at the TCP congestion window.

Arriving packets at the client are stored at the TCP receiver

buffer and extracted by the video playout client at the video

nominal playout rate.

IV. ANATOMY OF TRANSMISSION CONTROL PROTOCOL

TCP protocols fall into two categories, delay and loss based.

Advanced loss based TCP protocols use packet loss as primary

congestion indication signal, performing window regulation as

cwndk = f(cwndk−1), being ack reception paced. Most f
functions follow an Additive Increase Multiplicative Decrease

(AIMD) strategy, with various increase and decrease parame-

ters. TCP NewReno [1] and Cubic [15] are examples of AIMD

strategies. Delay based TCP protocols, on the other hand, use

queue delay information as the congestion indication signal,

increasing/decreasing the window if the delay is small/large,

respectively. Capacity and Congestion Probing (CCP) [3] and

Capacity Congestion Plus Derivative (CCPD) [4] are examples

of delay based protocols.

Most TCP variants follow TCP Reno phase framework: slow

start, congestion avoidance, fast retransmit and fast recovery.

For TCP variants widely used today, congestion avoidance

phase is sharply different. We will be introducing specific TCP

variants’ congestion avoidance phase shortly.

A. Multipath TCP

Multipath TCP (MPTCP) is a transport layer protocol,

currently being evaluated by IETF, which makes possible data

transport over multiple TCP sessions [8]. The key idea is to

make multipath transport transparent to upper layers, hence

presenting a single TCP socket to applications. Under the

hood, MPTCP works with TCP variants, which are unaware

of the multipath nature of the overall transport session. To

accomplish that, MPTCP supports a packet scheduler that

extracts packets from the MPTCP socket exposed to applica-

tions and injects them into TCP sockets belonging to a “sub-

flow” defined by a single path TCP session. MPTCP transport

architecture is represented in Figure 1 (b).

10Copyright (c) IARIA, 2018. ISBN: 978-1-61208-644-6

INTERNET 2018 : The Tenth International Conference on Evolving Internet

MPTCP packet scheduler works in two different configura-

tion modes: uncoupled and coupled. In uncoupled mode, each

sub-flow congestion window cwnd is adjusted independently.

In coupled mode, MPTCP couples the congestion control of

the sub-flows, by adjusting the congestion window cwndk
of a sub-flow k according with parameters of all sub-flows.

Although there are several coupled mechanisms, we focus

on Linked Increase Algorithm (LIA) [14] and Opportunistic

Linked Increase Algorithm (OLIA) [10]. In both cases, a

MPTCP scheduler selects a sub-flow for packet injection

according to some criteria among all sub-flows with large

enough cwnd to allow packet injection.

B. Linked Increase Congestion Control

Link Increase Algorithm (LIA) [14] couples the congestion

control algorithms of different sub-flows by linking their

congestion window increasing functions, while adopting the

standard halving of cwnd window upon packet loss detection.

More specifically, LIA cwnd adjustment scheme is as per (1):

AckRec : cwndik+1 = cwndik +min(αBackMssi∑
n

0
cwndp

, BackMssi

cwndi)

PktLoss : cwndik+1 =
cwndi

k

2 (1)

where α is a parameter regulating the aggressiveness of the

protocol, Back is the number of acknowledged bytes, Mssi is

the maximum segment size of sub-flow i and n is the number

of sub-flows. Equation (1) adopts cwnd in bytes, rather than

in packets (Maximum Segment Size - MSS), in contrast with

TCP variants equations to be described shortly, because here

we have the possibility of diverse MSSs on different sub-flows.

However, the general idea is to increase cwnd in increments

that depend on cwnd size of all sub-flows, for fairness, but

no more than a single TCP Reno flow. The min operator

in the increase adjustment guarantees that the increase is at

most the same as if MPTCP was running on a single TCP

Reno sub-flow. Therefore, in practical terms, each LIA sub-

flow increases cwnd at a slower pace than TCP Reno, still

cutting cwnd in half at each packet loss.

C. Opportunistic Linked Increase Congestion Control

Opportunistic Link Increase Algorithm (OLIA) [10] also

couples the congestion control algorithms of different sub-

flows, but with the increase based on the quality of paths.

OLIA cwnd adjustment scheme is as per (2):

AckRec : cwndik+1 = cwndik +
cwndi

(RTTi)2

(
∑

n

0

cwndp

RTTp)2
+ αi

cwndi ,

PktLoss : cwndik+1 =
cwndi

k

2 (2)

where α is a positive parameter for all paths. The general idea

is to tune cwnd to an optimal congestion balancing point (in

the Pareto optimal sense). In practical terms, each OLIA sub-

flow increases cwnd at a pace related to the ratio of its RTT

and RTT of other subflows, still cutting cwnd in half at each

packet loss.

D. Cubic TCP Congestion Avoidance

TCP Cubic is a loss based TCP that has achieved

widespread usage as the default TCP of the Linux operating

system. During congestion avoidance, its congestion window

adjustment scheme is:

AckRec : cwndk+1 = C(t−K)3 +Wmax

K = (Wmax
β

C
)1/3 (3)

PktLoss : cwndk+1 = βcwndk

Wmax = cwndk

where C is a scaling factor, Wmax is the cwnd value at time

of packet loss detection and t is the elapsed time since the last

packet loss detection (cwnd reduction). Parameters K drives

the cubic increase away from Wmax, whereas β tunes how

quickly cwnd reduction happens on packet loss. This process

recovers its cwnd quickly after causing loss event.

E. Capacity and Congestion Probing TCP

TCP CCP was our first proposal of a delay based congestion

avoidance scheme based on solid control theoretical approach.

The cwnd size is adjusted according to a proportional con-

troller control law. The cwnd adjustment scheme is called at

every acknowledgement reception and may result in either

window increase or decrease regardless of loss event. CCP

cwnd adjustment scheme is as per (4):

cwndk =
[Kp(B − xk)− in flight segsk]

2
0 ≤ Kp (4)

where Kp is a proportional gain, B is an estimated storage

capacity of the TCP session path, or virtual buffer size, xk

is the level of occupancy of the virtual buffer, or estimated

packet backlog and in flight segs is the number of seg-

ments in flight (unacknowledged). This fact guarantees a fast

responsiveness to network bandwidth variations.

V. TCP STATE DRIVEN MPTCP PACKET SCHEDULER

MPTCP scheduler selects which sub-flow to inject packets

into the network on a packet by packet basis. The default

strategy is to select the path with shortest average packet

delay. Herein, we introduce this conventional SPD, our pre-

vious LPC, LET path selection scheme, as well as a TCP

state/retransmission aware packet injection mechanisms.

• Shortest Packet Delay(SPD): In shortest packet delay,

the scheduler first rules out any path for which there

is no space in its sub-flow congestion window (cwnd).

Among the surviving paths, the scheduler then selects the

path with small smooth round trip time (RTT). Smooth

RTT is computed as an average RTT of recent packets

transmitted at that sub-flow. Since each sub-flow already

keeps track of its smooth RTT, this quantity is readily

available at every sub-flow.

• Largest Packet Credits(LPC): Among the sub-flows

with space in their cwnd, this scheduler selects the one

with largest available space. Available space is the num-

ber of packets allowed by cwnd size minus the packets

that have not been acknowledged yet.

11Copyright (c) IARIA, 2018. ISBN: 978-1-61208-644-6

INTERNET 2018 : The Tenth International Conference on Evolving Internet

Web Server

Apache

Video Client

VLC

Router 1

Router 2

Emulator

IEEE 802.11a

IEEE 802.11g
Emulator

Flow 1

Flow 2

(a) Two Path Network

Web Server

Apache
Video Client

VLC

Router 1

Router 2
Emulator

IEEE 802.11a

IEEE 802.11g
Emulator

Router 3

Emulator
Wired

Flow 1

Flow 2

Flow 3

(b) Three Path Network

Figure 2: Video Streaming Emulation Network

• Largest Estimated Throughput(LET): In this case,

among the sub-flows with large enough cwnd to accom-

modate new packets, the scheduler estimates the through-

put of each sub-flow, as cwnd/sRTT (smooth RTT) and

selects the one with largest throughput.

• RTX Aware: This supplemental scheme aims to avoid

injecting packets into paths that are in retransmit/recovery

mode, which would increase packet delivery delay due

to head of line blocking. The strategy can be applied on

top of any packet scheduler. In this work, it is applied

to all previous schedulers (SPDX, LPCX and LETX,

respectively). For instance, LETX first eliminates paths

in TCP retransmission and among the remaining ones it

selects the path of maximum estimated throughput. If all

sub-flows are in retransmission state, no path is selected.

The rationale for these proposed schedulers is as follows.

LPC addresses the path scenario in which a large RTT path

has plenty of bandwidth. In default scheduler, this path may be

less preferred due to its large RTT, regardless of having plenty

of bandwidth for the video stream. LET addresses the scenario

of a short path with plenty of bandwidth. The default scheduler

may select this path due to its short RTT. However, if the short

RTT has a smaller cwnd, LET will divert traffic away from

this path, whereas default scheduler will continue to inject

traffic through it. RTX Aware addresses network scenarios

experiencing packet loss unevenly across multiple paths.

VI. VIDEO STREAMING PERFORMANCE OF MULTIPATH

SCHEDULERS

Figure 2 describes the network testbeds used for emulating

a network path with wireless and wired access links. On the

first testbed, an HTTP Apache video server is connected to

two access switches, which are connected to link emulators,

used to adjust path delay and inject controlled random packet

loss. A VLC client machine is connected to two Access

Points, a 802.11a and 802.11g, on different bands (5GHz and

2.4GHz, respectively). On the second testbed, one extra all

wired network path is added between the video server and

the VLC client. All wired links are 1Gbps. No cross traffic is

considered, as this would make it difficult to isolate the impact

of TCP congestion avoidance schemes on video streaming

performance. The simple topologies and isolated traffic allows

us to better understand the impact of differential delays on

streaming performance.

We list network settings and scenarios generated by network

emulator in Tables I and II, respectively. Video settings are

typical of a video stream. Its size is short enough to enable

multiple streaming trials within a reasonable amount of time.

TABLE I: EXPERIMENTAL NETWORK SETTINGS

Element Value

Video size 409 MBytes

Video rate 5.24 Mbps

Playout time 10 mins 24 secs

Video Codec H.264 MPEG-4 AVC

MPTCP variants CCP, Cubic, LIA, OLIA

MPTCP schedulers SPD, LPC, LET,

SPDX (rtX aware SPD), LPCX, LETX

TABLE II: EXPERIMENTAL NETWORK SCENARIO

Scenario Emulator configuration

(RTT, Bandwidth, Random loss rate)

3 path Equal Delay Flow1) RTT 100 ms, BW 3 Mb/s, Loss 0 %

(3p-e) Flow2) RTT 100 ms, BW 3 Mb/s, Loss 0 %

Flow3) RTT 100 ms, BW 3 Mb/s, Loss 0.5 %

3 path Differential Delay Flow1) RTT 100 ms, BW 3 Mb/s, Loss 0 %

(3p-d) Flow2) RTT 100 ms, BW 3 Mb/s, Loss 0 %

Flow3) RTT 50 ms, BW 3 Mb/s, Loss 0.5 %

2 path Equal Delay Flow1) RTT 100 ms, BW 5 Mb/s, Loss 0.5 %

(2p-e) Flow2) RTT 100 ms, BW 5 Mb/s, Loss 0 %

2 path Differential Delay Flow1) RTT 50 ms, BW 5 Mb/s, Loss 0.5 %

(2p-d) Flow2) RTT 100 ms, BW 5 Mb/s, Loss 0 %

For each scenario, path bandwidth capacity is tuned so as to

force the use of multiple paths to stream a video playout rate

of 5.24Mbps. We also inject 0.5 packet loss rate on the shortest

path of each scenario, so as to contrast default packet scheduler

(shortest RTT) with other schedulers. TCP variants used are:

CCP, Cubic, LIA and OLIA.

Performance measures adopted, in order of priority, are:

• Picture discards: number of frames discarded by the

video decoder. This measure defines the number of

frames skipped by the video rendered at the client side.

• Buffer underflow: number of buffer underflow events

at video client buffer. This measure defines the number

of “catch up” events, where the video freezes and then

resumes at a faster rate until all late frames have been

played out.

• Recovery Time from underflow: amount of time a video

playout buffer remains empty after an underflow event.

This measure defines how long it takes for underflow

event to recover and start rebuffering application data.

• Sub-flow throughput: the value of TCP Throughput

on each sub-flow. This measure captures how MPTCP

operates its scheduling packet injection and whether it is

able to maintain a high enough throughput for the video

playout rate.

We organize our video streaming experimental results in

two network scenarios: i) Two path MPTCP; ii) Three path

MPTCP. Each data point in charts represents five trials. Results

are reported as average and min/max deviation bars.

A. Two Path MPTCP Performance Evaluation

Figures 3 a, b, c, d, report on video streaming and TCP

performance in scenario 2p-e, 2path equal delay and a lossy

path. For CCP variant (a), there is a small perceivable video

performance (picture discard/buffer underflow) improvement

by using RTX awareness on all schedulers. For Cubic TCP

variant (b), there is a significant video performance improve-

ment when RTX awareness is used in LPC, whereas LET

seems to get worst. On the other hand, LIA and OLIA

TCP variants (c,d) provide an appreciable video performance

improvement when RTX awareness is used with all schedulers.

12Copyright (c) IARIA, 2018. ISBN: 978-1-61208-644-6

INTERNET 2018 : The Tenth International Conference on Evolving Internet

 0

 50

 100

 150

 200

 250

 300

 350

SPD LPC LET SPDX LPCX LETX
 0

 50

 100

 150

 200

 250

 300

 350

P
ic

tu
re

 d
is

c
a

rd
 [

T
im

e
s
]

B
u

ff
e

r
u

n
d

e
rf

lo
w

 [
T

im
e

s
]

MPTCP Scheduler

buffer underflow
picture discard

 0

 50

 100

 150

 200

 250

 300

 350

SPD LPC LET SPDX LPCX LETX
 0

 50

 100

 150

 200

 250

 300

 350

P
ic

tu
re

 d
is

c
a

rd
 [

T
im

e
s
]

B
u

ff
e

r
u

n
d

e
rf

lo
w

 [
T

im
e

s
]

MPTCP Scheduler

buffer underflow
picture discard

 0

 50

 100

 150

 200

 250

 300

 350

SPD LPC LET SPDX LPCX LETX
 0

 50

 100

 150

 200

 250

 300

 350

P
ic

tu
re

 d
is

c
a

rd
 [

T
im

e
s
]

B
u

ff
e

r
u

n
d

e
rf

lo
w

 [
T

im
e

s
]

MPTCP Scheduler

buffer underflow
picture discard

 0

 50

 100

 150

 200

 250

 300

 350

SPD LPC LET SPDX LPCX LETX
 0

 50

 100

 150

 200

 250

 300

 350

P
ic

tu
re

 d
is

c
a

rd
 [

T
im

e
s
]

B
u

ff
e

r
u

n
d

e
rf

lo
w

 [
T

im
e

s
]

MPTCP Scheduler

buffer underflow
picture discard

(a) CCP (b) Cubic

(c) LIA (d) OLIA

Figure 3: Scheduler Streaming Perf.; Scenario 2p-e

Figures 4 a, b, c, d, describe video streaming performance

under network scenario 2p-d, where 0.5 % random packet loss

is injected into the shorter delay path. Notice that the SDP

scheduler gives preference to shorter delay path, regardless of

its packet loss, which hurts performance. For CCP variant (a),

there is no perceivable video performance difference among all

schedulers. That is because CCP congestion avoidance often

suffers from inaccurate estimation of path capacity. In contrast,

Cubic often works well for video streaming independently of

packet scheduler. On the other hand, coupled LIA and OLIA

deliver best video performance when adopting RTX Aware

strategy over all schedulers, while non-RTX schedulers cause

a lot of video error events. In addition, Figures 5 a, b, c, d,

report on corresponding recovery time of each scheduler and

TCP variant. We can see that retransmission aware scheduling

allows video client to refill quickly video receiver buffer,

especially for LIA/OLIA TCP variants. There seems to be

little impact on recovery time for more aggressive Cubic/CCP

variants, due to their aggressive congestion window ramp up.

B. Three Path MPTCP Performance Evaluation

Figures 6 a, b, c, d, show video streaming and TCP

performance under scenario 3p-e, three path equal delay RTT

100 msec with a 0.5 % random lossy path. In Figure 6 (a), no

scheduler is able to improve CCP to deliver high video playout

performance in 3 path network scenario. This is because

CCP underestimates cwnd in lossy and narrow bandwidth

paths. Cubic (6 (b)), on the other hand, delivers best video

performance under SPD and LPC schedulers. In addition, RTX

Aware strategy increases LET video performance significantly.

In contrast, RTX Aware strategy for LIA and OLIA decreases

discard/underflow events when LPC scheduler is used.

Finally, Figures 7 a, b, c, d present video performance in

scenario 3p-d, where shortest RTT flow3 has a 0.5 % packet

loss condition. CCP and Cubic charts are similar as in previous

scenario 3p-e, namely, little performance improvement by

changing packet scheduler except for LET scheduler under

 0

 50

 100

 150

 200

 250

 300

 350

SPD LPC LET SPDX LPCX LETX
 0

 50

 100

 150

 200

 250

 300

 350

P
ic

tu
re

 d
is

c
a

rd
 [

T
im

e
s
]

B
u

ff
e

r
u

n
d

e
rf

lo
w

 [
T

im
e

s
]

MPTCP Scheduler

buffer underflow
picture discard

 0

 50

 100

 150

 200

 250

 300

 350

SPD LPC LET SPDX LPCX LETX
 0

 50

 100

 150

 200

 250

 300

 350

P
ic

tu
re

 d
is

c
a

rd
 [

T
im

e
s
]

B
u

ff
e

r
u

n
d

e
rf

lo
w

 [
T

im
e

s
]

MPTCP Scheduler

buffer underflow
picture discard

 0

 50

 100

 150

 200

 250

 300

 350

SPD LPC LET SPDX LPCX LETX
 0

 50

 100

 150

 200

 250

 300

 350

P
ic

tu
re

 d
is

c
a

rd
 [

T
im

e
s
]

B
u

ff
e

r
u

n
d

e
rf

lo
w

 [
T

im
e

s
]

MPTCP Scheduler

buffer underflow
picture discard

 0

 50

 100

 150

 200

 250

 300

 350

SPD LPC LET SPDX LPCX LETX
 0

 50

 100

 150

 200

 250

 300

 350

P
ic

tu
re

 d
is

c
a

rd
 [

T
im

e
s
]

B
u

ff
e

r
u

n
d

e
rf

lo
w

 [
T

im
e

s
]

MPTCP Scheduler

buffer underflow
picture discard

(a) CCP (b) Cubic

(c) LIA (d) OLIA

Figure 4: Scheduler Streaming Perf.; Scenario 2p-d

(a) CCP (b) Cubic

(c) LIA (d) OLIA

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

SPD LPC LET SPDXLPCXLETX

U
n

d
e

rf
lo

w
 R

e
c
o

v
e

ry
 T

im
e

 [
s
e

c
]

MPTCP Scheduler

recovery time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

SPD LPC LET SPDX LPCX LETX

U
n

d
e

rf
lo

w
 R

e
c
o

v
e

ry
 T

im
e

 [
s
e

c
]

MPTCP Scheduler

recovery time

 0

 10

 20

 30

 40

 50

 60

 70

SPD LPC LET SPDX LPCX LETX

U
n

d
e

rf
lo

w
 R

e
c
o

v
e

ry
 T

im
e

 [
s
e

c
]

MPTCP Scheduler

recovery time

 10

 20

 30

 40

 50

 60

 70

SPD LPC LET SPDX LPCX LETX

U
n

d
e

rf
lo

w
 R

e
c
o

v
e

ry
 T

im
e

 [
s
e

c
]

MPTCP Scheduler

recovery time

Figure 5: Scheduler Recovery Time.; Scenario 2p-d

Cubic TCP variant, which presents significant improvement.

LIA and OLIA schedulers (Figures 7 c,d), on the other hand,

provide only small improvements when RTX awareness is

used. Figures 8 (c,d) shows that LET scheme injects a larger

amount of packets into loss-less flow1 and flow2 than SPD

and LPC, since total bandwidth of loss-less flow1 and flow2

is capable of 5.24 Mb/s video traffic in scenario 3p-e.

Overall, the above results show a consistent video streaming

performance improvement when paths experiencing momen-

tary retransmissions are avoided across most TCP variants as

well as path scheduler schemes. In addition, more available

paths does not always bring better performance, especially for

aggressive TCP variants such as Cubic and CCP. Although

these results were obtained for specific testbed topologies and

network scenarios, we believe similar improvements can be

attained on more generic network scenarios.

13Copyright (c) IARIA, 2018. ISBN: 978-1-61208-644-6

INTERNET 2018 : The Tenth International Conference on Evolving Internet

 0

 50

 100

 150

 200

 250

 300

 350

SPD LPC LET SPDX LPCX LETX
 0

 50

 100

 150

 200

 250

 300

 350

P
ic

tu
re

 d
is

c
a

rd
 [

T
im

e
s
]

B
u

ff
e

r
u

n
d

e
rf

lo
w

 [
T

im
e

s
]

MPTCP Scheduler

buffer underflow
picture discard

 0

 50

 100

 150

 200

 250

 300

 350

SPD LPC LET SPDX LPCX LETX
 0

 50

 100

 150

 200

 250

 300

 350

P
ic

tu
re

 d
is

c
a

rd
 [

T
im

e
s
]

B
u

ff
e

r
u

n
d

e
rf

lo
w

 [
T

im
e

s
]

MPTCP Scheduler

buffer underflow
picture discard

 0

 50

 100

 150

 200

 250

 300

 350

SPD LPC LET SPDX LPCX LETX
 0

 50

 100

 150

 200

 250

 300

 350

P
ic

tu
re

 d
is

c
a

rd
 [

T
im

e
s
]

B
u

ff
e

r
u

n
d

e
rf

lo
w

 [
T

im
e

s
]

MPTCP Scheduler

buffer underflow
picture discard

 0

 50

 100

 150

 200

 250

 300

 350

SPD LPC LET SPDX LPCX LETX
 0

 50

 100

 150

 200

 250

 300

 350

P
ic

tu
re

 d
is

c
a

rd
 [

T
im

e
s
]

B
u

ff
e

r
u

n
d

e
rf

lo
w

 [
T

im
e

s
]

MPTCP Scheduler

buffer underflow
picture discard

(a) CCP (b) Cubic

(c) LIA (d) OLIA

Figure 6: Scheduler Streaming Perf.; Scenario 3p-e

 0

 50

 100

 150

 200

 250

 300

 350

SPD LPC LET SPDX LPCX LETX
 0

 50

 100

 150

 200

 250

 300

 350

P
ic

tu
re

 d
is

c
a

rd
 [

T
im

e
s
]

B
u

ff
e

r
u

n
d

e
rf

lo
w

 [
T

im
e

s
]

MPTCP Scheduler

buffer underflow
picture discard

 0

 50

 100

 150

 200

 250

 300

 350

SPD LPC LET SPDX LPCX LETX
 0

 50

 100

 150

 200

 250

 300

 350

P
ic

tu
re

 d
is

c
a

rd
 [

T
im

e
s
]

B
u

ff
e

r
u

n
d

e
rf

lo
w

 [
T

im
e

s
]

MPTCP Scheduler

buffer underflow
picture discard

 0

 50

 100

 150

 200

 250

 300

 350

SPD LPC LET SPDX LPCX LETX
 0

 50

 100

 150

 200

 250

 300

 350

P
ic

tu
re

 d
is

c
a

rd
 [

T
im

e
s
]

B
u

ff
e

r
u

n
d

e
rf

lo
w

 [
T

im
e

s
]

MPTCP Scheduler

buffer underflow
picture discard

 0

 50

 100

 150

 200

 250

 300

 350

SPD LPC LET SPDX LPCX LETX
 0

 50

 100

 150

 200

 250

 300

 350

P
ic

tu
re

 d
is

c
a

rd
 [

T
im

e
s
]

B
u

ff
e

r
u

n
d

e
rf

lo
w

 [
T

im
e

s
]

MPTCP Scheduler

buffer underflow
picture discard

(a) CCP (b) Cubic

(c) LIA (d) OLIA

Figure 7: Scheduler Streaming Perf.; Scenario 3p-d

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed TCP state driven packet

schedulers to improve the quality of streaming video over

MPTCP. We have evaluated MPTCP performance with default

and several packet schedulers which avoid injecting packets

into paths experiencing retransmissions in lossy wireless net-

work. Our results have shown that TCP state aware schedul-

ing improves video streaming across most TCP variants, as

well as coupled LIA and OLIA, for all packet schedulers

studied. We believe that avoiding paths experiencing packet

retransmissions may be applicable across a wide variety of

schedulers and TCP variants. We are currently investigating

other scheduling techniques to further reduce frame discard

and video stalling to improve streaming video quality.

ACKNOWLEDGMENTS

Work supported by JSPS KAKENHI Grant # 16K00131.

REFERENCES

[1] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,”
IETF RFC 2581, April 1999.

(a) CCP (b) Cubic

(c) LIA (d) OLIA

 0

 1

 2

 3

 4

 5

 6

 7

SPD LPC LET SPDX LPCX LETX

T
h

ro
u

g
h

p
u

t
[M

b
/s

]

MPTCP Scheduler

Flow1
Flow2
Flow3

 0

 1

 2

 3

 4

 5

 6

 7

SPD LPC LET SPDX LPCX LETX

T
h

ro
u

g
h

p
u

t
[M

b
/s

]

MPTCP Scheduler

Flow1
Flow2
Flow3

 0

 1

 2

 3

 4

 5

 6

 7

SPD LPC LET SPDX LPCX LETX

T
h

ro
u

g
h

p
u

t
[M

b
/s

]

MPTCP Scheduler

Flow1
Flow2
Flow3

 0

 1

 2

 3

 4

 5

 6

 7

SPD LPC LET SPDX LPCX LETX

T
h

ro
u

g
h

p
u

t
[M

b
/s

]

MPTCP Scheduler

Flow1
Flow2
Flow3

Figure 8: Scheduler Throughput Perf.; Scenario 3p-d

[2] B. Arzani et al., “Deconstructing MPTCP Performance,” In Proceedings
of IEEE 22nd ICNP, pp. 269-274, 2014.

[3] D. Cavendish, K. Kumazoe, M. Tsuru, Y. Oie, and M. Gerla, “Capacity
and Congestion Probing: TCP Congestion Avoidance via Path Capacity
and Storage Estimation,” IEEE Second International Conference on
Evolving Internet, pp. 42-48, September 2010.

[4] D. Cavendish, H. Kuwahara, K. Kumazoe, M. Tsuru, and Y. Oie, “TCP
Congestion Avoidance using Proportional plus Derivative Control,”
IARIA Third International Conference on Evolving Internet, pp. 20-25,
June 2011.

[5] X. Corbillon, R. Aparicio-Pardo, N. Kuhn, G. Texier, and G. Simon,
“Cross-Layer Scheduler for Video Streaming over MPTCP,” ACM 7th
International Conference on Multimedia Systems, May 10-13, 2016,
Article 7.

[6] E. Dong et. al., “LAMPS: A Loss Aware Scheduler for Multipath TCP
over Highly Lossy Networks,” Proceedings of the 42th IEEE Conference

on Local Computer Networks, pp. 1-9, October 2017.
[7] S. Ferlin et. al., “BLEST: Blocking Estimation-based MPTCP Scheduler

for Heterogeneous Networks,” In Proceedings of IFIP Networking
Conference, pp. 431-439, 2016.

[8] A. Ford et. al., “Architectural Guidelines for Multipath TCP Develop-
ment,” IETF RFC 6182, 2011.

[9] J. Hwang and J. Yoo, “Packet Scheduling for Multipath TCP,” IEEE
7th Int. Conference on Ubiquitous and Future Networks, pp.177-179,
July 2015.

[10] R. Khalili, N. Gast, and J-Y Le Boudec, “MPTCP Is Not Pareto-Optimal:
Performance Issues and a Possible Solution,” IEEE/ACM Trans. on
Networing, Vol. 21, No. 5, pp. 1651-1665, Aug. 2013.

[11] B. Kimura et al., “Alternative Scheduling Decisions for Multipath TCP,”
IEEE Communications Letters, Vol. 21, No. 11, pp. 2412-2415, Nov.
2017.

[12] R. Matsufuji et al., “Multipath TCP Packet Scheduling for Streaming
Video,” IEEE Pacific Rim Conference on Communications, Computers
and Signal Processing, pp. 1-6, August 2017.

[13] J-W. Park, R. P. Karrer, and J. Kim,, “TCP-Rome: A Transport-
Layer Parallel Streaming Protocol for Real-Time Online Multimedia
Environments,” In Journal of Communications and Networks, Vol.13,
No. 3, pp. 277-285, June 2011.

[14] C. Raiciu, M. Handly, and D. Wischik, “Coupled Congestion Control
for Multipath Transport Protocols,” IETF RFC 6356, 2011.

[15] I. Rhee, L. Xu, and S. Ha, “CUBIC for Fast Long-Distance Networks,”
Internet Draft, draft-rhee-tcpm-ctcp-02, August 2008.

[16] J. Wu, C. Yuen, B. Cheng, M. Wang, and J. Chen, “Streaming High-
Quality Mobile Video with Multipath TCP in Heterogeneous Wireless
Networks,” IEEE Transactions on Mobile Computing, Vol.15, Issue 9,
pp. 2345-2361, 2016.

[17] K. Xue et al., “DPSAF: Forward Prediction Based Dynamic Packet
Scheduling and Adjusting With Feedback for Multipath TCP in Lossy
Heterogeneous Networks,” IEEE/ACM Trans. on Vehicular Technology,
Vol. 67, No. 2, pp. 1521-1534, Feb. 2018.

[18] F. Yan, P. Amer, and N. Ekiz, “A Scheduler for Multipath TCP,” In
Proceedings of IEEE 22nd ICCCN, pp. 1-7, 2013.

14Copyright (c) IARIA, 2018. ISBN: 978-1-61208-644-6

INTERNET 2018 : The Tenth International Conference on Evolving Internet

