
Verification of Openstack Operation with Normality-degree of Workflows

Ryota Mizutani, Takeshi Usui, and Yoshinori Kitatsuji

KDDI Research, Inc. 2-1-15 Ohara, Fujimino, Saitama, 356-8502 Japan
E-mail: {ry-mizutani, ta-usui and kitaji}@kddi-research.jp

Abstract— Verifying job executions in operating virtual
networks has emerged as a crucial issue for network operators.
Now, tracking and monitoring log messages of the operations is
a typical approach. However, a monitoring system to detect a
critical operation is based on text matching with the previously
obtained log messages indicating normal operations. It
basically has a limitation that similar but different log message
flows become indeterminable to judge the normality of the
operation. We propose a solution that estimates the normality-
degree for the indeterminable log message flows. We evaluate
the difference in normality-degrees between normal and
abnormal completion message flows. We show that the
proposed method distinguishes these cases more clearly than
the conventional method. This indicates that the proposed
method enables the system administrator to classify job
execution into three types (i.e., normal, semi-normal, and
abnormal completions). As a result, the proposed method
allows the system administrator to focus on critical job
executions in troubleshooting operations.

Keywords-NFV; Openstack; Log message; Normality-degree;
Similarity-degree

I. INTRODUCTION

The rapid spread of virtualization technology [1] has
motivated network operators to procure communication
service systems consisting of network function virtualization
(NFV) [2][3]. NFV allows network operators to deploy
network functions on the virtualized infrastructure where the
physical entities (switches, routers and servers) provide a
virtual (logical) network composed of logical links, routers
and servers (called virtual links, routers and machines,
respectively). In general, the logical entities are realized by
software programs. In addition, the network topology of the
virtual network is not identical to that of the physical entities
that compose the individual logical entities.

Openstack [4] maintains the virtual networks (i.e., to
create, initiate, terminate and delete virtual machines and to
manage the virtual network with them). Because the major
network providers (AT&T [5], Deutsche Telekom AG [6],
Rackspace Cloud [7], and so forth) have adopted Openstack,
it is the de-facto standard for virtual network management
systems in commercial.

Openstack is composed of multiple function blocks (e.g.,
Neutron, Nova, and Cinder described in Section II), and the
function blocks are composed of multiple service processes,
e.g., an interface to other function blocks, a scheduler for
tasks initiated by arrival requests, and individual major
processes. The service processes run independently (in a
parallel manner) in the function block.

Openstack executes jobs, e.g., creates, initiates,
terminates and deletes virtual machines, with these entities.
To verify whether the jobs are normally executed or not, the
system administrator tracks the log messages produced by
the service processes. However, this procedure is often
complicated, because Openstack inherently assigns no job
identifier to the log messages, and the series of log messages
obtained by the system administrator become scrambled over
the function blocks. Then, it is difficult to verify job
completions by simply tracking the log messages.

Regarding the result of job executions, there are three
types of normality judgements: normal, semi-normal, and
abnormal completions. A normal completion implies that the
job completes successfully without any problem. A semi-
normal completion implies that the job eventually completes
although there are some problems, typically, a long delay.
An abnormal completion implies that the job actually does
not complete as a designed procedure. Regarding Openstack,
each kind of job completions has various sequences of log
messages (referred to as workflows). It is because the orders
of function blocks and service processes vary, and
consequently the orders of their log messages result in
varying.

A typical judgement of job executions involves matching
the current workflow with previously given workflows
(referred to reference workflows) with normal, semi-normal
and abnormal completions. The system administrators cannot
comprehensively assess all the workflows. Therefore, the
monitoring of job executions (workflows) eventually
encounters indeterminable judgements in the case where the
workflow does not match any of those previously given. We
refer to this workflow as an indeterminable workflow.

To identify an indeterminable workflow in the normality
judgements, several similarity algorithms have been used.
The text matching rate is used to identify an indeterminable
workflow to the reference workflow [8]. Text matching
utilizing the TD-IDF is employed to diagnose anomalous
patterns [9], and cosine similarity is used to detect traffic
anomaly deviations [10]. These researches identify the
indeterminable workflow in the most similar unique
reference workflow. Though, these methods disables to
normal identification if there are no reference workflow (i.e.,
unknown anomaly).

To tackle this identification issue, we propose a method
that utilizes similarity estimation adopted in string-pattern
matching. The similarity estimation rates differ between two
strings expressed by three differences types: addition,
deletion, and displacement of string portions. We express a
log message as a symbol of a string, and a workflow as a
string. We estimate the similarity between workflows in

7Copyright (c) IARIA, 2017. ISBN: 978-1-61208-574-6

INTERNET 2017 : The Ninth International Conference on Evolving Internet

order to express the normality-degree of the job execution.
We evaluate the difference of normality-degrees between log
message flows with normal, semi-normal and abnormal
completions. The result reveals that the proposed method can
distinguish the above three cases more clearly than the
conventional method.

The rest of the paper is organized as follows. In Section
II, we introduce the issues associated with normality
estimation regarding the log messages in Openstack. In
Sections III and IV, we propose and evaluate the method of
normality estimation. In Section V, we conclude this paper.

II. ISSUES ENCOUNTERED WHEN ESTIMATING FAULTS

FROM A WORKFLOW

This section gives an overview of Openstack and
workflows, and the issues encountered in the operational
flow with Openstack, especially in the area of
troubleshooting with accumulated indeterminable job
executions.

A. Overview of Openstack and Workflows

Openstack has multiple function blocks that manage
virtual resources (e.g., memory and CPU) provided by the
physical entities. The primary function blocks are Nova,
Neutron, Cinder, Swift, Glance, Keystone, and Horizon.
Nova builds the virtual machines and routers [8]. Neutron
sets up links between the virtual machines and routers and
manages basic configurations (e.g., IP address assignments,
and topologies). Cinder manages block storages for virtual
machines and routers. Swift manages the configuration
templates for setting up the multiple virtual machines
simultaneously. Glance provides OS images for virtual
machines and routers. Keystone provides an authentication
service corresponding to the job executions. Horizon provide
user interfaces, typically with graphical user interfaces.

Each of the functions has single or multiple dedicated
service processes. The service processes run dedicated tasks
and each task produces log messages. For instance, when the
virtual system administrator commands the creation of a
virtual network, a command signal originates from Horizon
(the user interface), and is sent to Keystone (for
authentication), Nova and Cinder (building virtual machines),
Glance (installing OS), and so forth.

Generally, Openstack is composed of several physical or
virtual servers. These servers have different roles. For
example, the controller server has a management role and
requests job execution to the control servers. The computer
server provides the resources (CPU, memory, storage, and so
forth) with a virtual machine.

A major reason for workflow variations is that some
function blocks execute multiple service processes, and
request tasks to the other function blocks in parallel. This
leads to addition, deletion, and displacement of portions of
log messages in the workflow. Fig. 1 shows samples of a
variety of workflows. In this figure, the characters represent
a single line log message. These three patterns are the most

typical pattern variations. We assume the default workflow is
the most frequent pattern that is generated when executing a
job. One is addition. In workflow1, the character “F” needs
to be added to correspond the default workflow. Another is
deletion. In workflow2, the character “G” and “H” need to be
deleted to correspond to the default workflow. The other is
displacement. In workflow3, the character “C” and “D” need
to be displaced to correspond to the default workflow.

Fig. 2 illustrates the generic flow of communication
system operation. The communication system has the feature
of continuously providing its communication services. The
system operational phase follows the test phase.

The test phase improves the completion of development
before the communication system starts to provide its
communication services. This phase comprehensively tests
all the designed processes of the system, (or as many as
possible) to remove bugs remaining from the time of its
development. Some of the tests should be for all job
executions, and are used for the monitoring system in the
operational phase.

A B C D E F

Default workflow

Workflow 2 (deletion)

Workflow 1 (addition)

A FB D C E

Workflow 3 (displacement)

A B C D E

A B C D E F G H

Figure 1. Samples of a variety of workflows

Test phase

Operational phase

Communication
system

Monitoring
system

Job
execution

・
・
・

result

Troubleshooting

test1

test2

test3

Figure 2. Flow of communication system operation.

8Copyright (c) IARIA, 2017. ISBN: 978-1-61208-574-6

INTERNET 2017 : The Ninth International Conference on Evolving Internet

In the operational phase, however, they are initially not
enough because of the workflow variations. We conjecture
that a monitoring scheme takes exact-matching of workflows.
This results in indeterminable completions occurring when
monitoring job executions in the operational phase. This
would tend to be a large number, especially in the initial
period. As the operational phase proceeds, the
indeterminable workflows should decrease as a result of
providing the judgement results (normal, semi-normal and
abnormal completion) revealed by troubleshooting of the
monitoring system. The given workflows and their
judgements are referred to as reference workflows,
hereinafter.

A significant issue is that it takes a long time to remove
potentially critical elements in the communication system.
Actually, it is not clear which indeterminable completion the
system administrator should focus on among the
accumulating completions, in troubleshooting operations.
They may include critical job executions, and a system
failure will occur before long. Our challenge is to prioritize
them according to the criticality of the indeterminable
workflows.

Table I illustrates the judgement cases and the reasons
that provided by monitoring system. This is based on the job
executions with workflows previously given. The columns
are types of execution results belonging to workflows
previously given: normal and abnormal. The rows represent
the similarity/difference to/from the given workflows under
the assumption that the monitoring system can estimate
normality.

When the monitoring system judges that there is a new
job execution with indeterminable completion, there are four
possible combinations in terms of given workflows with
normal or abnormal completion: AB, AD, CB, and CD. Case
AB implies that the workflow of a new job execution is
similar to the workflows previously given with both normal
and abnormal completions. In this case, one of the
workflows previously given could be wrong, or they may
just be similar (in other words, this implies that normality
estimation is difficult). In the case of AD or CB, the results
are probably correct, i.e., the results are likely to be normal
or abnormal completions in the cases of AD or CB,
respectively. Case CD implies that the monitoring system
has identified no effective workflow preliminarily given.

It is desirable that troubleshooting for indeterminable
completions first deals with case CB (almost certainly
abnormal), and cases AB (one of the given workflows is
possibly wrong), CD (no reference to estimating normality),
and AD (almost certainly normal) in this order. Our
challenge is how to estimate similarity degree among
multiple workflows previously given, in order to prioritize
the job executions with indeterminable completions for
troubleshooting. The next section describes the proposed
method that solves this challenge.

III. PROPOSED METHOD

In this section, we propose a solution for estimating
normality-degree for the indeterminable workflow of job
execution. We first give an overview of definition of
normality-degree, second, an algorithm for normality-degree
is presented, and third, a method for judging normal, semi-
normal and abnormal completion is described.

A. Overview of Normality-degree Estimation

We provide an overview of the process employed in the
proposed method. First, the system administrator collects the
reference workflows (how the jobs have been completed:
normal, semi-normal and abnormal completions) from the
job execution results. Second, the proposed method uses a
string-similarity evaluation method (evaluation of addition,
deletion and displacement of two strings) in order to measure
the similarity of workflows between the indeterminable
workflows and reference workflows. Third, the normal
distribution of the similarity of workflows is calculated in
order to distinguish normal, semi-normal and abnormal
completions more clearly. Finally, the proposed method
estimates the normality-degree using the normal distribution,
as described in Section III-C.

The normality-degree represents how closely the
indeterminable workflows correspond to the reference
workflows. As described in Section II-C, the system
administrator uses the normality-degrees as a reference to
select a particular job execution with indeterminable
completion from among many for troubleshooting.

B. Proposed Method Expressing Similarity of Reference
Workflows

This subsection describes the preliminary process in three
steps: workflow construction, similarity measurement, and
forming a similarity distribution regarding normal, semi-
normal and abnormal completions.

1) Workflow Construction
In the test and operational phase, the workflows are

obtained from the continuous generation of log messages. In
the test phase, the log messages are compiled while a series
of tests are conducted. In the operational phase, the system
administrator performs multiple job executions. First, the
system administrator must decide how to divide log
messages into multiple sets of messages according to the
individual job executions

TABLE I. JUDGEMENT CASES PROVIDED BY MONITORING SYSTEM
ESTIMATING NORMALITY WITH WORKFLOWS PREVIOUSLY GIVEN:

SIMILAR/DIFFERENT PATTERN TO/FROM THEM.

 Workflows previously given
Workflows with
normal completion

Workflows with
abnormal
completion

Judgement of
a new job
execution

Similar
pattern

Case A Case B

Different
pattern

Case C Case D

9Copyright (c) IARIA, 2017. ISBN: 978-1-61208-574-6

INTERNET 2017 : The Ninth International Conference on Evolving Internet

The naive method to divide log messages generally uses
the identifier assigned to the log messages indicating which
job execution produces [9][10]. However, Openstack assigns
a unique identifier to log messages related not to a job
execution but a function block. This implies that the log
messages can only reveal which function block causes a
problem when log messages indicate an error or warning.
We utilize a non-negative matrix factorization (NMF)
[11][12] that divides log messages into multiple groups. This
method can divide a mixture of data sets with counter
attributes into multiple groups by reasonably distributing the
values of counters into the formed groups [13]. The proposed
method utilizes NMF to obtain two benefits: one is dividing
log messages into workflows, and the other is deriving the
number of workflows. Fig. 3 gives an example of results
obtained by utilizing NMF. The original matrix presents the
number of log messages for every time unit (e.g., every ten
seconds). NMF divides this matrix into two matrixes: one is
the number of log messages belonging to the workflow
(denoted by ‘group’ in Fig. 3), and the other is the number of
workflows (groups) in every time unit. In dividing a matrix,
the original matrix is represented by the two smaller matrices,
which, when multiplied, approximately reconstruct original
matrix. To apply NMF to the log message, we use Table II to
classify the log messages depending on the contained
messages and service block IDs, job types, and signal types.

NMF still needs a heuristic approach to provide a
substantial number of data sets divided into the particular
groups. In the proposed case, we give the number of
workflows sequentially, and find the appropriate number of
the workflows where the difference between the original
matrix and the multiplication of two divided matrixes (the
summation of the mean square error of matrixes’ elements)
is below a threshold obtainable by scanning the number of
workflows.

2) Similarity Measurement
After obtaining the reference workflows, the proposed

method tries to find any trends in workflow similarity.
Specifically, it estimates the degree to which sequences of
log messages are identical in terms of their length, and
displacement.

The proposed method takes the concept from the
similarity-degree evaluated by Jaro distance [14], which
measures the string similarity based on the number and order
of the common characters. It is generally utilized in order to
identify typos and spelling mistakes in sentences. This
algorithm computes a similarity score normalized between 0
to 1 where 0 indicates no similarity and 1 indicates an exact-
match. Jaro distance D between two strings X and Y
(difference between ASCII codes) is defined as:











 otherwise

0if0

321 m

tm
W

L

m
W

L

m
W

m
D

YX

 (1)

where m and t denote the number of matched characters, and
the number of displacements, respectively. Lx and Ly denote
the character lengths of strings X and Y, respectively. Three
coefficients, W1, W2, and W3, are weights in the following
ranges: 0W11, 0W21, 0W31, and W1+W2+W3=1.

The first and second terms compute ratios of common
characters in terms of strings X and Y. The third term
computes the ratio of displacement against the common
characters. No matter where the common characters are
positioned in the strings, it is counted as m. For example,
when two strings X=’abcd’ and Y=’abdec’ are given, the
similarity score D is about 0.77 in the cases of W1, W2, and
W3 for 1/3. The first and second terms of (1) can be seen as
the ratios of common characters in terms of strings X and Y.

When strings X and Y are identical, the first and second
terms, respectively should be 1. When string X is longer than
string Y (this implies that string X has more uncommon
characters more than string Y), the first and second term
should be low and high, respectively. Additionally, when the
strings X and Y are switched, the values of first and second
terms also switch

In order to apply this to workflows, first, we utilize the
correspondence table shown in Table II in order to denote the
workflows as the strings. Second, we treat three terms of (1)
separately, as follows:





 

 otherwise

0if0

1

XL

m
m

D (2)

time
1

time
2

time
3

time
4

log message 1

log message 2

log message 3

log message 1

log message 2

log message 3

group
1

group
2

group
3

group 1

group 2

group 3

×

time
1

time
2

time
3

time
4

Figure 3. Sample of NMF utilization

TABLE II. RELATIONSHIP BETWEEN LOG MESSAGE TYPE AND
CORRESPONDING CHARACTERS

Log message type Corresponded
character

INFO nova.osapi_compute.wsgi.server [admin admin] ... "GET /.//flavors/
HTTP/." status: len: time: .

A

INFO nova.osapi_compute.wsgi.server [admin admin] ... "GET /.//images/
HTTP/." status: len: time: .

B

INFO nova.compute.claims [admin admin] [instance:] Claim successful C

INFO neutron.agent.securitygroups_rpc [None None] Refresh firewall rules D

INFO neutron.plugins..drivers.openvswitch.agent.ovs_neutron_agent [None
None] Configuration for devices up [] and devices down [] completed.

E

INFO nova.compute.manager [None None] [instance:] VM Started
(Lifecycle Event)

F

INFO nova.compute.manager [None None] [instance:] VM Paused
(Lifecycle Event)

G

INFO nova.compute.manager [None None] [instance:] During
sync_power_state the instance has a pending task (spawning). Skip.

H

10Copyright (c) IARIA, 2017. ISBN: 978-1-61208-574-6

INTERNET 2017 : The Ninth International Conference on Evolving Internet





 

 otherwise

0if0

2

YL

m
m

D (3)











otherwise

0if0

3

t

tm
m

D (4)

where variables X, Y, m, t, LX, and LY are the same as those
used in (1). Equations (2) and (3) evaluate the ratios of
common log messages in terms of the two workflows X and
Y, and (3) evaluates the ratio of displacement of the
common characters. In the following discussion, we refer to
D1, D2, and D3, as addition, deletion and displacement
scores, respectively.

3) Expressing the population of workflows
The step in this subsection derives the probability density

regarding the normal, semi-normal, and abnormal
completions in the reference workflows to express the
population of the reference workflows. First of all, we
surveyed the workflows obtained from various job
executions, and found that almost all the reference
workflows are different from each other, but there are many
similar patterns of log messages for each of normal, semi-
normal or abnormal completions. Additionally, there are few
pairs of workflows that are markedly different from the
similar log message patterns of workflows. Therefore, we
conjecture that a normal distribution can reasonably express
the population of the workflows.

Actual computations are used to derive the normal
distributions for the addition, deletion, and displacement
scores for each of the normal, semi-normal and abnormal
completions. For this, the proposed method computes the
averages and variances of the addition, deletion and
displacement scores. These probability densities are used to
estimate the normality-degree of the indeterminable
workflow that occurs in the operational phase, as described
in the next subsection.

The computation of the averages and variances takes all
the pairs of workflows in the reference workflows. Because
the addition and deletion scores can switch when the
compared workflows switch, these scores should have an
identical average and variance. Each normal distribution for
addition, deletion and displacement is represented by:

)
2

)(
exp(

2

1
)(

2

2








x

xf (5)

where f(x) is a function of probability density,  is the
average of the similarity scores, and 2 is the deviation of
the similarity scores. Fig. 4 shows some examples of three
probability densities for the addition (D1), deletion (D2) and
displacement (D3) scores for workflows with normal
completion.

This derivation of probability density is conducted for
each of the semi-normal and abnormal completions in order
to estimate the normality-degree, as described in the
following subsection

C. Estimation of Nomality Degree

In order to estimate normality-degree, we propose
products of the derived probability density from the addition,
deletion and displacement scores.

The naive approach can be employed to utilize the
similarity-degree measurement algorithm directly. However,
it has some difficulties when two or more differences occur
in the similarity computation where two or all the terms in
(1) are affected. Actually, no pair of workflows are identical,
and all the terms become less than 1, and similarity D of (1)
cannot clearly show the difference.

We show the steps for estimating the normality degree.
First, we collect the indeterminable workflows and calculate
the three types of similarity between the reference workflow
and indeterminable workflow derived from (1)-(3) in the
operation phase. This step is the same as that done in the test
phase described in section III-B. Next, we obtain the
probability density by substituting the similarity into a
normal distribution (5). Finally, the proposed method
(products approach) simply multiplies each probability
density derived from (5) for the addition, deletion and
displacement scores. We regard this multiplied value as the
normality degree. As shown in Section IV-B, the results
clearly showed the difference (or fitness) to the judgement of
the indeterminable workflows. We take probability density
into account because we found that almost all the reference
workflows are different from each other, but there are many
similar log message patterns for each of the normal, semi-
normal and abnormal completions. Additionally, there are
few pairs of workflows that are markedly different.
Therefore, we conjecture that the normal distribution can
reasonably express the population of the similarity.

IV. EVALUATION

This section evaluates the distinguishability of the normal,
semi-normal and abnormal completion workflows identified
using the proposed method by comparing the conventional
approach with the product approach. First, we describe the
environment from which we obtained the log messages;
secondly, we show the evaluation result.

A. Evaluation Environment

We obtained the log messages from the evaluation
environment. We adopted Mitaka [15] as the version of
Openstack, and set up a single pair of controller, computer
and log servers. Each server has Ubuntu 16.04 as its
operating system, a CPU with 12 cores, and 32GB of
memory. The log server collects all the log messages
generated in the controller and computer servers, and merges
them into a single file.

In order to construct the reference workflows, we
selected “VM creation” as an example of job execution. The
created VM was assigned a single virtual CPU and 2 GB of
memory. A hundred VM creations were included in the
reference workflows.

To evaluate the performance of our proposed method, we
prepared ten indeterminable workflows for the three use
cases, as follows.

11Copyright (c) IARIA, 2017. ISBN: 978-1-61208-574-6

INTERNET 2017 : The Ninth International Conference on Evolving Internet

[Use case 1] Normal completion: This is an example of
normal completion of job executions.

[Use case 2] Overload: This is an example of semi-
normal completion of job executions. When one function
block in Openstack sent a signal to another block, we made a
message queue with excessive traffic, and it causes signal
losses.

[Use case 3] Network down: This is an example of
abnormal completion of job executions. We shut down the
interface of the computer server connected to the controller
server. That interface was mainly used to send Openstack
operational signals.

B. Evaluation result

We verified the performance of the proposed method
described in Section III. First, we show the similarity-degree
between the reference workflow and the three use cases of
indeterminable workflows. Table III shows the maximum
and minimum normality-degree when using cosine distance.
Table IV shows the normality-degree when using Jaro
distance (1) with coefficient for 1/3 is used. We define this
similarity-degree calculation method as the conventional
approach. Our purpose is to distinguish among the three use
cases. If the difference in the normality degree of the two use
cases is large, there is a high possibility that the two use
cases can be distinguished. Tables III and IV show that the
difference for each use case is low, and it confirms that it is
difficult to distinguish the use cases. Next, we derived the

probability density (normal distribution) as shown in Fig. 4.
The addition and deletion scores (D1 and D2) have an
identical shape, as described in Section III-B. Their shapes
are sharp, which implies that almost all the workflows have
the same number of common log messages. On the other
hand, the displacement score (D3) has a blunt shape, which
implies that the patterns of displacement vary.

Table V shows the maximum and minimum normality-
degree, computed by the product approach. The results were
calculated from the probability density (normal distribution)
and normalized between 0 and 1. In the case of the product
approach (proposed method), (2), (3) and (4) were used and
derived three normal distributions as shown in Fig. 4.
Compared with Tables III and IV, we found that the value of
use cases 2 and 3 becomes lower due to the application of
normal distribution.

Fig. 5 shows the normality-degree between the minimum
value of use case 1 and the maximum value of use case 3.
Fig. 6 shows the normality-degree between the minimum

TABLE V. MAXIMUM AND MINIMUM NORMALITY-DEGREE WHEN
USING PRODUCT APPROACHES

use case 1 use case 2 use case 3
max 1.000 0.567 7.02E-05
min 0.919 0.110 1.33E-09

‐0.2

0.0

0.2

0.4

0.6

0.8

1.0

cosine
distance

jaro
distance

product
approach

N
or

m
al

it
y-

de
gr

ee
 b

et
w

ee
n

m
in

im
um

 v
al

ue
 o

f
ca

se
 1

 a
nd

m

ax
im

um
 v

al
ue

 o
f

ca
se

 3

Figure 5. Normality-degree between minimum value of case 1

and maximum value of case 3

‐0.2

0.0

0.2

0.4

0.6

0.8

1.0

cosine
distance

jaro
distance

N
or

m
al

it
y-

de
gr

ee
 b

et
w

ee
n

m
in

im
um

 v
al

ue
 o

f
ca

se
 1

 a
nd

m

ax
im

um
 v

al
ue

 o
f

ca
se

 2

product
approach

Figure 6. Normality-degree between minimum value of case 1

and maximum value of case 2

TABLE III. MAXIMUM AND MINIMUM NORMALITY-DEGREE
WHEN USING COSINE DISTANCE

 use case 1 use case 2 use case 3
max 1.000 0.897 0.632
min 0.917 0.688 0.381

 TABLE IV. MAXIMUM AND MINIMUM NORMALITY-DEGREE
WHEN USING JARO DISTANCE

 use case 1 use case 2 use case 3
max 1.000 0.944 0.769
min 0.827 0.750 0.481

0

2

4

6

8

10

12

14

16

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

P
ro
b
ab
ili
ty
 d
e
n
si
ty

Similarity‐degree

D1,D2

D3

Figure 4. Distribution of probability density of normal
workflow

12Copyright (c) IARIA, 2017. ISBN: 978-1-61208-574-6

INTERNET 2017 : The Ninth International Conference on Evolving Internet

value of use case 1 and the maximum value of use case 2.
This normality-degree indicates the distinguishability of the
two use cases. Generally, use case 1 shows higher similarity
than the other use cases. Therefore, the difference between
the minimum value of use case 1 and the maximum value of
other use cases is an important criterion for distinguishing
among the use cases.

The results for the conventional and product approaches
are clearly different. The product approach gives a higher
normality-degree than the conventional approach does. This
effectively works to distinguish between the normal and
overload samples of the indeterminable workflows. In the
conventional case, it is difficult to distinguish between the
normal and overload samples. However, in the product
approach, the normality-degrees have over a 0.3 difference
between the normal and overload samples.

Although this evaluation only included the normal
completions of the reference workflows, the semi-normal
and abnormal completions show similar results to this
normal completion case. We conjecture that this is because
the proposed method takes into account the product of the
addition, deletion and displacement. The product emphasizes
low similarities, and makes clear the differences in the
normality-degrees. This allows the system administrator to
easily distinguish the indeterminable workflows that need
troubleshooting.

V. CONCLUSION

This paper proposed a verification method for job
execution in Openstack. The proposed method estimates the
normality-degrees which are referred to in order to detect
indeterminable workflows among many workflows
(workflow with the least abnormal degree should be first).

The proposed method has two benefits: one is a way to
divide log messages accumulated through multiple job
executions into individual workflows with NMF; and the
other is a way to estimate the normality-degree. The latter
uses string similarity evaluation as a reference. We
disassemble the string addition, deletion and displacement
scores, and define the normality-degree by multiplying them.

We also revealed that the workflows in Openstack had
similar but, strictly speaking, various patterns, and the
proposed normality-degree has the ability to clearly
distinguish the workflows.

The following issues remain as future work: evaluation
of semi-normal and abnormal completions of the reference
workflows, and clarifying the degree to which our approach
(troubleshooting according to the normality-degree) brings
stability to virtualized communication systems.

REFERENCES
[1] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S.

Shenker, “Extending networking into the virtualization layer,”

in Proc. of work shop on Hot Topics in Networks (HotNets-
VIII), 2009.

[2] ETSI GS NFV 002: Network Functions Virtualisation (NFV);
Architectural Framework. [Online]. Available from:
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.0
1_60/gs_NFV002v010201p.pdf 2017.06.10

[3] B. Vazirnezhad, F. Almasganj, and S. M. Ahadi, “Hybrid
statistical pronunciation models designed to be trained by a
medium-size corpus,” Computer Speech and Language 23, pp.
1-24, 2009

[4] Openstack. [Online]. Available from:
https://www.openstack.org/ 2017.06.10

[5] AT&T. [Online]. Available from:
https://www.openstack.org/videos/video/at-and-ts-cloud-
journey-with-openstack 2017.06.10

[6] Deutsche Telekom AG. [Online]. Available from:
https://www.telekom.com/en/media/media-
information/enterprise-solutions/telekom-strengthens-the-
openstack-community-with-the-open-telekom-cloud-363316
2017.06.10

[7] Rackspace Cloud. [Online]. Available from:
https://www.rackspace.com/cloud/private 2017.06.10

[8] B. C. Tak,S. Tao, L. Yang, C. Zhu, and Y. Ruan, “LOGAN:
Problem Diagnosis in the Cloud Using Log-based Reference
Models,” In Cloud Engineering (IC2E), pp. 62-67, 2016

[9] P. Zhou,B. Gill,W. Belluomini, and A. Wildani, “GAUL:
Gestalt analysis of unstructured logs for diagnosing recurring
problems in large enterprise storage systems,” In Reliable
Distributed Systems, pp. 148-159, 2010

[10] C. B. Jiang,I. Liu, Y. N. Chung, and J. S. Li, “Novel intrusion
prediction mechanism based on honeypot log similarity,”
International Journal of Network Management, 2016

[11] Open Virtual Switch. [Online]. Available from:
http://openvswitch.org/ 2017/06/10

[12] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly
detection in distributed systems through unstructured log
analysis,” In Proceedings of the 2009 Ninth IEEE
International Conference on Data Mining, ICDM ’09, pp.
149–158, 2009.

[13] K. Kc and X. Gu. Elt, “Efficient log-based troubleshooting
systemfor computing infrastructures. In Reliable Distributed
Systems(SRDS),” IEEE Symposium, pp. 11–20, 2011.

[14] D. D. Lee and H. S. Seung, “Learning the parts of objects
with nonnegative matrix factorization”, Nature, 401, pp.788–
791, 1999.

[15] D. D. Lee and H. S. Seung, “Algorithms for non-negative
matrixfactorization,” Advances in Neural Information
Processing Systems 13, MIT Press, pp. 556–562, 2001.

[16] T. Kimura, K. Takeshita, T. Toyono, M. Yokota, K.
Nishimatsu, and T. Mori, “Network Failure Detection and
Diagnosis by Analyzing Syslog and SNS Data: Applying Big
Data Analysis to Network Operations,” NTT Technical
Review, Nov 2013, Vol. 11, No. 11

[17] W. E. Winkler, "String Comparator Metrics and Enhanced
Decision Rules in the Fellegi-Sunter Model of Record
Linkage," Proceedings of the Section on Survey Research
Methods. American Statistical Association, pp.354–359, 1990.

[18] Opentack Mitaka. [Online]. Available from:
https://www.openstack.org/software/mitaka/ 2017/06/10

13Copyright (c) IARIA, 2017. ISBN: 978-1-61208-574-6

INTERNET 2017 : The Ninth International Conference on Evolving Internet

