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Abstract— Verifying job executions in operating virtual 
networks has emerged as a crucial issue for network operators. 
Now, tracking and monitoring log messages of the operations is 
a typical approach. However, a monitoring system to detect a 
critical operation is based on text matching with the previously 
obtained log messages indicating normal operations. It 
basically has a limitation that similar but different log message 
flows become indeterminable to judge the normality of the 
operation. We propose a solution that estimates the normality-
degree for the indeterminable log message flows. We evaluate 
the difference in normality-degrees between normal and 
abnormal completion message flows. We show that the 
proposed method distinguishes these cases more clearly than 
the conventional method. This indicates that the proposed 
method enables the system administrator to classify job 
execution into three types (i.e., normal, semi-normal, and 
abnormal completions). As a result, the proposed method 
allows the system administrator to focus on critical job 
executions in troubleshooting operations. 

Keywords-NFV; Openstack; Log message; Normality-degree;  
Similarity-degree 

I.  INTRODUCTION 

The rapid spread of virtualization technology [1] has 
motivated network operators to procure communication 
service systems consisting of network function virtualization 
(NFV) [2][3]. NFV allows network operators to deploy 
network functions on the virtualized infrastructure where the 
physical entities (switches, routers and servers) provide a 
virtual (logical) network composed of logical links, routers 
and servers (called virtual links, routers and machines, 
respectively). In general, the logical entities are realized by 
software programs. In addition, the network topology of the 
virtual network is not identical to that of the physical entities 
that compose the individual logical entities. 

Openstack [4] maintains the virtual networks (i.e., to 
create, initiate, terminate and delete virtual machines and to 
manage the virtual network with them). Because the major 
network providers (AT&T [5], Deutsche Telekom AG [6], 
Rackspace Cloud [7], and so forth) have adopted Openstack, 
it is the de-facto standard for virtual network management 
systems in commercial. 

Openstack is composed of multiple function blocks (e.g., 
Neutron, Nova, and Cinder described in Section II), and the 
function blocks are composed of multiple service processes, 
e.g., an interface to other function blocks, a scheduler for 
tasks initiated by arrival requests, and individual major 
processes. The service processes run independently (in a 
parallel manner) in the function block.  

Openstack executes jobs, e.g., creates, initiates, 
terminates and deletes virtual machines, with these entities. 
To verify whether the jobs are normally executed or not, the 
system administrator tracks the log messages produced by 
the service processes. However, this procedure is often 
complicated, because Openstack inherently assigns no job 
identifier to the log messages, and the series of log messages 
obtained by the system administrator become scrambled over 
the function blocks. Then, it is difficult to verify job 
completions by simply tracking the log messages. 

Regarding the result of job executions, there are three 
types of normality judgements: normal, semi-normal, and 
abnormal completions. A normal completion implies that the 
job completes successfully without any problem. A semi-
normal completion implies that the job eventually completes 
although there are some problems, typically, a long delay. 
An abnormal completion implies that the job actually does 
not complete as a designed procedure.  Regarding Openstack, 
each kind of job completions has various sequences of log 
messages (referred to as workflows). It is because the orders 
of function blocks and service processes vary, and 
consequently the orders of their log messages result in 
varying. 

A typical judgement of job executions involves matching 
the current workflow with previously given workflows 
(referred to reference workflows) with normal, semi-normal 
and abnormal completions. The system administrators cannot 
comprehensively assess all the workflows. Therefore, the 
monitoring of job executions (workflows) eventually 
encounters indeterminable judgements in the case where the 
workflow does not match any of those previously given. We 
refer to this workflow as an indeterminable workflow. 

To identify an indeterminable workflow in the normality 
judgements, several similarity algorithms have been used. 
The text matching rate is used to identify an indeterminable 
workflow to the reference workflow [8]. Text matching 
utilizing the TD-IDF is employed to diagnose anomalous 
patterns [9], and cosine similarity is used to detect traffic 
anomaly deviations [10]. These researches identify the 
indeterminable workflow in the most similar unique 
reference workflow. Though, these methods disables to 
normal identification if there are no reference workflow (i.e., 
unknown anomaly).  

To tackle this identification issue, we propose a method 
that utilizes similarity estimation adopted in string-pattern 
matching. The similarity estimation rates differ between two 
strings expressed by three differences types: addition, 
deletion, and displacement of string portions. We express a 
log message as a symbol of a string, and a workflow as a 
string. We estimate the similarity between workflows in 
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order to express the normality-degree of the job execution. 
We evaluate the difference of normality-degrees between log 
message flows with normal, semi-normal and abnormal 
completions. The result reveals that the proposed method can 
distinguish the above three cases more clearly than the 
conventional method. 

The rest of the paper is organized as follows. In Section 
II, we introduce the issues associated with normality 
estimation regarding the log messages in Openstack. In 
Sections III and IV, we propose and evaluate the method of 
normality estimation. In Section V, we conclude this paper. 

II. ISSUES ENCOUNTERED WHEN ESTIMATING FAULTS 

FROM A WORKFLOW 

This section gives an overview of Openstack and 
workflows, and the issues encountered in the operational 
flow with Openstack, especially in the area of 
troubleshooting with accumulated indeterminable job 
executions. 

A. Overview of Openstack and Workflows 

Openstack has multiple function blocks that manage 
virtual resources (e.g., memory and CPU) provided by the 
physical entities. The primary function blocks are Nova, 
Neutron, Cinder, Swift, Glance, Keystone, and Horizon. 
Nova builds the virtual machines and routers [8]. Neutron 
sets up links between the virtual machines and routers and 
manages basic configurations (e.g., IP address assignments, 
and topologies). Cinder manages block storages for virtual 
machines and routers. Swift manages the configuration 
templates for setting up the multiple virtual machines 
simultaneously. Glance provides OS images for virtual 
machines and routers. Keystone provides an authentication 
service corresponding to the job executions. Horizon provide 
user interfaces, typically with graphical user interfaces. 

Each of the functions has single or multiple dedicated 
service processes. The service processes run dedicated tasks 
and each task produces log messages. For instance, when the 
virtual system administrator commands the creation of a 
virtual network, a command signal originates from Horizon 
(the user interface), and is sent to Keystone (for 
authentication), Nova and Cinder (building virtual machines), 
Glance (installing OS), and so forth. 

Generally, Openstack is composed of several physical or 
virtual servers. These servers have different roles. For 
example, the controller server has a management role and 
requests job execution to the control servers. The computer 
server provides the resources (CPU, memory, storage, and so 
forth) with a virtual machine. 

A major reason for workflow variations is that some 
function blocks execute multiple service processes, and 
request tasks to the other function blocks in parallel. This 
leads to addition, deletion, and displacement of portions of 
log messages in the workflow. Fig. 1 shows samples of a 
variety of workflows. In this figure, the characters represent 
a single line log message. These three patterns are the most 

typical pattern variations. We assume the default workflow is 
the most frequent pattern that is generated when executing a 
job. One is addition. In workflow1, the character “F” needs 
to be added to correspond the default workflow.  Another is 
deletion. In workflow2, the character “G” and “H” need to be 
deleted to correspond to the default workflow. The other is 
displacement. In workflow3, the character “C” and “D” need 
to be displaced to correspond to the default workflow.  

Fig. 2 illustrates the generic flow of communication 
system operation. The communication system has the feature 
of continuously providing its communication services. The 
system operational phase follows the test phase.  

The test phase improves the completion of development 
before the communication system starts to provide its 
communication services. This phase comprehensively tests 
all the designed processes of the system, (or as many as 
possible) to remove bugs remaining from the time of its 
development. Some of the tests should be for all job 
executions, and are used for the monitoring system in the 
operational phase. 

A B C D E F

Default workflow

Workflow 2 (deletion)

Workflow 1 (addition)

A FB D C E

Workflow 3 (displacement)

A B C D E

A B C D E F G H

Figure 1. Samples of a variety of workflows 

 

Test phase

Operational phase

Communication 
system

Monitoring 
system

Job 
execution

・
・
・

result

Troubleshooting

test1

test2

test3

Figure 2. Flow of communication system operation. 
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In the operational phase, however, they are initially not 
enough because of the workflow variations. We conjecture 
that a monitoring scheme takes exact-matching of workflows. 
This results in indeterminable completions occurring when 
monitoring job executions in the operational phase. This 
would tend to be a large number, especially in the initial 
period. As the operational phase proceeds, the 
indeterminable workflows should decrease as a result of 
providing the judgement results (normal, semi-normal and 
abnormal completion) revealed by troubleshooting of the 
monitoring system. The given workflows and their 
judgements are referred to as reference workflows, 
hereinafter. 

A significant issue is that it takes a long time to remove 
potentially critical elements in the communication system. 
Actually, it is not clear which indeterminable completion the 
system administrator should focus on among the 
accumulating completions, in troubleshooting operations. 
They may include critical job executions, and a system 
failure will occur before long. Our challenge is to prioritize 
them according to the criticality of the indeterminable 
workflows. 

Table I illustrates the judgement cases and the reasons 
that provided by monitoring system. This is based on the job 
executions with workflows previously given. The columns 
are types of execution results belonging to workflows 
previously given: normal and abnormal. The rows represent 
the similarity/difference to/from the given workflows under 
the assumption that the monitoring system can estimate 
normality. 

When the monitoring system judges that there is a new 
job execution with indeterminable completion, there are four 
possible combinations in terms of given workflows with 
normal or abnormal completion: AB, AD, CB, and CD. Case 
AB implies that the workflow of a new job execution is 
similar to the workflows previously given with both normal 
and abnormal completions. In this case, one of the 
workflows previously given could be wrong, or they may 
just be similar (in other words, this implies that normality 
estimation is difficult). In the case of AD or CB, the results 
are probably correct, i.e., the results are likely to be normal 
or abnormal completions in the cases of AD or CB, 
respectively. Case CD implies that the monitoring system 
has identified no effective workflow preliminarily given. 

It is desirable that troubleshooting for indeterminable 
completions first deals with case CB (almost certainly 
abnormal), and cases AB (one of the given workflows is 
possibly wrong), CD (no reference to estimating normality), 
and AD (almost certainly normal) in this order. Our 
challenge is how to estimate similarity degree among 
multiple workflows previously given, in order to prioritize 
the job executions with indeterminable completions for 
troubleshooting. The next section describes the proposed 
method that solves this challenge. 

III. PROPOSED METHOD 

In this section, we propose a solution for estimating 
normality-degree for the indeterminable workflow of job 
execution. We first give an overview of definition of 
normality-degree, second, an algorithm for normality-degree 
is presented, and third, a method for judging normal, semi-
normal and abnormal completion is described.  

A. Overview of Normality-degree Estimation 

We provide an overview of the process employed in the 
proposed method. First, the system administrator collects the 
reference workflows (how the jobs have been completed: 
normal, semi-normal and abnormal completions) from the 
job execution results. Second, the proposed method uses a 
string-similarity evaluation method (evaluation of addition, 
deletion and displacement of two strings) in order to measure 
the similarity of workflows between the indeterminable 
workflows and reference workflows. Third, the normal 
distribution of the similarity of workflows is calculated in 
order to distinguish normal, semi-normal and abnormal 
completions more clearly. Finally, the proposed method 
estimates the normality-degree using the normal distribution, 
as described in Section III-C.  

The normality-degree represents how closely the 
indeterminable workflows correspond to the reference 
workflows. As described in Section II-C, the system 
administrator uses the normality-degrees as a reference to 
select a particular job execution with indeterminable 
completion from among many for troubleshooting. 

B. Proposed Method Expressing Similarity of Reference 
Workflows 

This subsection describes the preliminary process in three 
steps: workflow construction, similarity measurement, and 
forming a similarity distribution regarding normal, semi-
normal and abnormal completions. 

1) Workflow Construction 
In the test and operational phase, the workflows are 

obtained from the continuous generation of log messages. In 
the test phase, the log messages are compiled while a series 
of tests are conducted. In the operational phase, the system 
administrator performs multiple job executions. First, the 
system administrator must decide how to divide log 
messages into multiple sets of messages according to the 
individual job executions 

TABLE I. JUDGEMENT CASES PROVIDED BY MONITORING SYSTEM 
ESTIMATING NORMALITY WITH WORKFLOWS PREVIOUSLY GIVEN: 

SIMILAR/DIFFERENT PATTERN TO/FROM THEM. 

 Workflows previously given 
Workflows with 
normal completion 

Workflows with 
abnormal 
completion 

Judgement of 
a new job 
execution 

Similar 
pattern 

Case A Case B

Different 
pattern 

Case C Case D
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The naive method to divide log messages generally uses 
the identifier assigned to the log messages indicating which 
job execution produces [9][10]. However, Openstack assigns 
a unique identifier to log messages related not to a job 
execution but a function block. This implies that the log 
messages can only reveal which function block causes a 
problem when log messages indicate an error or warning. 
We utilize a non-negative matrix factorization (NMF) 
[11][12] that divides log messages into multiple groups. This 
method can divide a mixture of data sets with counter 
attributes into multiple groups by reasonably distributing the 
values of counters into the formed groups [13]. The proposed 
method utilizes NMF to obtain two benefits: one is dividing 
log messages into workflows, and the other is deriving the 
number of workflows. Fig. 3 gives an example of results 
obtained by utilizing NMF. The original matrix presents the 
number of log messages for every time unit (e.g., every ten 
seconds). NMF divides this matrix into two matrixes: one is 
the number of log messages belonging to the workflow 
(denoted by ‘group’ in Fig. 3), and the other is the number of 
workflows (groups) in every time unit. In dividing a matrix, 
the original matrix is represented by the two smaller matrices, 
which, when multiplied, approximately reconstruct original 
matrix. To apply NMF to the log message, we use Table II to 
classify the log messages depending on the contained 
messages and service block IDs, job types, and signal types. 

NMF still needs a heuristic approach to provide a 
substantial number of data sets divided into the particular 
groups. In the proposed case, we give the number of 
workflows sequentially, and find the appropriate number of 
the workflows where the difference between the original 
matrix and the multiplication of two divided matrixes (the 
summation of the mean square error of matrixes’ elements) 
is below a threshold obtainable by scanning the number of 
workflows. 

2) Similarity Measurement 
After obtaining the reference workflows, the proposed 

method tries to find any trends in workflow similarity. 
Specifically, it estimates the degree to which sequences of 
log messages are identical in terms of their length, and 
displacement.  

The proposed method takes the concept from the 
similarity-degree evaluated by Jaro distance [14], which 
measures the string similarity based on the number and order 
of the common characters. It is generally utilized in order to 
identify typos and spelling mistakes in sentences. This 
algorithm computes a similarity score normalized between 0 
to 1 where 0 indicates no similarity and 1 indicates an exact-
match. Jaro distance D between two strings X and Y 
(difference between ASCII codes) is defined as: 











 otherwise

0if0

321 m

tm
W

L

m
W

L

m
W

m
D

YX

  (1) 

where m and t denote the number of matched characters, and 
the number of displacements, respectively. Lx and Ly denote 
the character lengths of strings X and Y, respectively. Three 
coefficients, W1, W2, and W3, are weights in the following 
ranges: 0W11, 0W21, 0W31, and W1+W2+W3=1. 

The first and second terms compute ratios of common 
characters in terms of strings X and Y. The third term 
computes the ratio of displacement against the common 
characters. No matter where the common characters are 
positioned in the strings, it is counted as m. For example, 
when two strings X=’abcd’ and Y=’abdec’ are given, the 
similarity score D is about 0.77 in the cases of W1, W2, and 
W3 for 1/3. The first and second terms of (1) can be seen as 
the ratios of common characters in terms of strings X and Y. 

When strings X and Y are identical, the first and second 
terms, respectively should be 1. When string X is longer than 
string Y (this implies that string X has more uncommon 
characters more than string Y), the first and second term 
should be low and high, respectively. Additionally, when the 
strings X and Y are switched, the values of first and second 
terms also switch 

In order to apply this to workflows, first, we utilize the 
correspondence table shown in Table II in order to denote the 
workflows as the strings. Second, we treat three terms of (1) 
separately, as follows:  





 

 otherwise

0if0

1

XL

m
m

D   (2) 
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log message 1

log message 2

log message 3
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log message 3

group
1

group
2

group
3
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group 2

group 3

×

time
1

time
2

time
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time
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Figure 3. Sample of NMF utilization 

 

TABLE II. RELATIONSHIP BETWEEN LOG MESSAGE TYPE AND 
CORRESPONDING CHARACTERS 

Log message type Corresponded 
character

INFO nova.osapi_compute.wsgi.server [ admin admin] ... "GET /.//flavors/ 
HTTP/." status:  len:  time: .

A

INFO nova.osapi_compute.wsgi.server [ admin admin] ... "GET /.//images/ 
HTTP/." status:  len:  time: .

B

INFO nova.compute.claims [ admin admin] [instance: ] Claim successful C

INFO neutron.agent.securitygroups_rpc [ None None] Refresh firewall rules D

INFO neutron.plugins..drivers.openvswitch.agent.ovs_neutron_agent [ None 
None] Configuration for devices up [] and devices down [] completed.

E

INFO nova.compute.manager [ None None] [instance: ] VM Started 
(Lifecycle Event)

F

INFO nova.compute.manager [ None None] [instance: ] VM Paused 
(Lifecycle Event)

G

INFO nova.compute.manager [ None None] [instance: ] During 
sync_power_state the instance has a pending task (spawning). Skip.

H
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
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 otherwise
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







otherwise

0if0

3

t

tm
m
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where variables X, Y, m, t, LX, and LY are the same as those 
used in (1). Equations (2) and (3) evaluate the ratios of 
common log messages in terms of the two workflows X and 
Y, and (3) evaluates the ratio of displacement of the 
common characters. In the following discussion, we refer to 
D1, D2, and D3, as addition, deletion and displacement 
scores, respectively. 

3) Expressing the population of workflows 
The step in this subsection derives the probability density 

regarding the normal, semi-normal, and abnormal 
completions in the reference workflows to express the 
population of the reference workflows. First of all, we 
surveyed the workflows obtained from various job 
executions, and found that almost all the reference 
workflows are different from each other, but there are many 
similar patterns of log messages for each of normal, semi-
normal or abnormal completions. Additionally, there are few 
pairs of workflows that are markedly different from the 
similar log message patterns of workflows. Therefore, we 
conjecture that a normal distribution can reasonably express 
the population of the workflows. 

Actual computations are used to derive the normal 
distributions for the addition, deletion, and displacement 
scores for each of the normal, semi-normal and abnormal 
completions. For this, the proposed method computes the 
averages and variances of the addition, deletion and 
displacement scores. These probability densities are used to 
estimate the normality-degree of the indeterminable 
workflow that occurs in the operational phase, as described 
in the next subsection. 

The computation of the averages and variances takes all 
the pairs of workflows in the reference workflows. Because 
the addition and deletion scores can switch when the 
compared workflows switch, these scores should have an 
identical average and variance. Each normal distribution for 
addition, deletion and displacement is represented by:  

  )
2

)(
exp(

2

1
)(

2

2








x

xf  (5) 

where f(x) is a function of probability density,  is the 
average of the similarity scores, and 2 is the deviation of 
the similarity scores. Fig. 4 shows some examples of three 
probability densities for the addition (D1), deletion (D2) and 
displacement (D3) scores for workflows with normal 
completion. 

This derivation of probability density is conducted for 
each of the semi-normal and abnormal completions in order 
to estimate the normality-degree, as described in the 
following subsection 

C. Estimation of Nomality Degree 

In order to estimate normality-degree, we propose 
products of the derived probability density from the addition, 
deletion and displacement scores. 

The naive approach can be employed to utilize the 
similarity-degree measurement algorithm directly. However, 
it has some difficulties when two or more differences occur 
in the similarity computation where two or all the terms in 
(1) are affected. Actually, no pair of workflows are identical, 
and all the terms become less than 1, and similarity D of (1) 
cannot clearly show the difference. 

We show the steps for estimating the normality degree. 
First, we collect the indeterminable workflows and calculate 
the three types of similarity between the reference workflow 
and indeterminable workflow derived from (1)-(3) in the 
operation phase. This step is the same as that done in the test 
phase described in section III-B. Next, we obtain the 
probability density by substituting the similarity into a 
normal distribution (5).  Finally, the proposed method 
(products approach) simply multiplies each probability 
density derived from (5) for the addition, deletion and 
displacement scores. We regard this multiplied value as the 
normality degree. As shown in Section IV-B, the results 
clearly showed the difference (or fitness) to the judgement of 
the indeterminable workflows. We take probability density 
into account because we found that almost all the reference 
workflows are different from each other, but there are many 
similar log message patterns for each of the normal, semi-
normal and abnormal completions. Additionally, there are 
few pairs of workflows that are markedly different. 
Therefore, we conjecture that the normal distribution can 
reasonably express the population of the similarity. 

IV. EVALUATION 

This section evaluates the distinguishability of the normal, 
semi-normal and abnormal completion workflows identified 
using the proposed method by comparing the conventional 
approach with the product approach. First, we describe the 
environment from which we obtained the log messages; 
secondly, we show the evaluation result. 

A. Evaluation Environment 

We obtained the log messages from the evaluation 
environment. We adopted Mitaka [15] as the version of 
Openstack, and set up a single pair of controller, computer 
and log servers. Each server has Ubuntu 16.04 as its 
operating system, a CPU with 12 cores, and 32GB of 
memory. The log server collects all the log messages 
generated in the controller and computer servers, and merges 
them into a single file. 

In order to construct the reference workflows, we 
selected “VM creation” as an example of job execution. The 
created VM was assigned a single virtual CPU and 2 GB of 
memory. A hundred VM creations were included in the 
reference workflows.  

To evaluate the performance of our proposed method, we 
prepared ten indeterminable workflows for the three use 
cases, as follows. 
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[Use case 1] Normal completion: This is an example of 
normal completion of job executions. 

[Use case 2] Overload: This is an example of semi-
normal completion of job executions. When one function 
block in Openstack sent a signal to another block, we made a 
message queue with excessive traffic, and it causes signal 
losses. 

[Use case 3] Network down: This is an example of 
abnormal completion of job executions. We shut down the 
interface of the computer server connected to the controller 
server. That interface was mainly used to send Openstack 
operational signals. 

B. Evaluation result 

We verified the performance of the proposed method 
described in Section III. First, we show the similarity-degree 
between the reference workflow and the three use cases of 
indeterminable workflows. Table III shows the maximum 
and minimum normality-degree when using cosine distance. 
Table IV shows the normality-degree when using Jaro 
distance (1) with coefficient for 1/3 is used. We define this 
similarity-degree calculation method as the conventional 
approach. Our purpose is to distinguish among the three use 
cases. If the difference in the normality degree of the two use 
cases is large, there is a high possibility that the two use 
cases can be distinguished. Tables III and IV show that the 
difference for each use case is low, and it confirms that it is 
difficult to distinguish the use cases. Next, we derived the 

probability density (normal distribution) as shown in Fig. 4. 
The addition and deletion scores (D1 and D2) have an 
identical shape, as described in Section III-B. Their shapes 
are sharp, which implies that almost all the workflows have 
the same number of common log messages. On the other 
hand, the displacement score (D3) has a blunt shape, which 
implies that the patterns of displacement vary. 

Table V shows the maximum and minimum normality-
degree, computed by the product approach. The results were 
calculated from the probability density (normal distribution) 
and normalized between 0 and 1. In the case of the product 
approach (proposed method), (2), (3) and (4) were used and 
derived three normal distributions as shown in Fig. 4. 
Compared with Tables III and IV, we found that the value of 
use cases 2 and 3 becomes lower due to the application of 
normal distribution. 

Fig. 5 shows the normality-degree between the minimum 
value of use case 1 and the maximum value of use case 3. 
Fig. 6 shows the normality-degree between the minimum 

TABLE V. MAXIMUM AND MINIMUM NORMALITY-DEGREE WHEN 
USING PRODUCT APPROACHES 

use case 1 use case 2 use case 3
max 1.000 0.567 7.02E-05
min 0.919 0.110 1.33E-09
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Figure 5. Normality-degree between minimum value of case 1  

and maximum value of case 3 

‐0.2

0.0

0.2

0.4

0.6

0.8

1.0

cosine 
distance

jaro
distance

N
or

m
al

it
y-

de
gr

ee
 b

et
w

ee
n

m
in

im
um

 v
al

ue
 o

f 
ca

se
 1

 a
nd

 
m

ax
im

um
 v

al
ue

 o
f 

ca
se

 2

product
approach

 
Figure 6. Normality-degree between minimum value of case 1  

and maximum value of case 2 

TABLE III. MAXIMUM AND MINIMUM NORMALITY-DEGREE 
WHEN USING COSINE DISTANCE 

 use case 1 use case 2 use case 3
max 1.000 0.897 0.632
min 0.917 0.688 0.381

 

 TABLE IV. MAXIMUM AND MINIMUM NORMALITY-DEGREE 
WHEN USING JARO DISTANCE 

 use case 1 use case 2 use case 3
max 1.000 0.944 0.769
min 0.827 0.750 0.481
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value of use case 1 and the maximum value of use case 2. 
This normality-degree indicates the distinguishability of the 
two use cases. Generally, use case 1 shows higher similarity 
than the other use cases.  Therefore, the difference between 
the minimum value of use case 1 and the maximum value of 
other use cases is an important criterion for distinguishing 
among the use cases. 

The results for the conventional and product approaches 
are clearly different. The product approach gives a higher 
normality-degree than the conventional approach does. This 
effectively works to distinguish between the normal and 
overload samples of the indeterminable workflows. In the 
conventional case, it is difficult to distinguish between the 
normal and overload samples. However, in the product 
approach, the normality-degrees have over a 0.3 difference 
between the normal and overload samples. 

Although this evaluation only included the normal 
completions of the reference workflows, the semi-normal 
and abnormal completions show similar results to this 
normal completion case. We conjecture that this is because 
the proposed method takes into account the product of the 
addition, deletion and displacement. The product emphasizes 
low similarities, and makes clear the differences in the 
normality-degrees. This allows the system administrator to 
easily distinguish the indeterminable workflows that need 
troubleshooting. 

V. CONCLUSION 

This paper proposed a verification method for job 
execution in Openstack. The proposed method estimates the 
normality-degrees which are referred to in order to detect 
indeterminable workflows among many workflows 
(workflow with the least abnormal degree should be first). 

The proposed method has two benefits: one is a way to 
divide log messages accumulated through multiple job 
executions into individual workflows with NMF; and the 
other is a way to estimate the normality-degree. The latter 
uses string similarity evaluation as a reference. We 
disassemble the string addition, deletion and displacement 
scores, and define the normality-degree by multiplying them. 

We also revealed that the workflows in Openstack had 
similar but, strictly speaking, various patterns, and the 
proposed normality-degree has the ability to clearly 
distinguish the workflows. 

The following issues remain as future work: evaluation 
of semi-normal and abnormal completions of the reference 
workflows, and clarifying the degree to which our approach 
(troubleshooting according to the normality-degree) brings 
stability to virtualized communication systems. 
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