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Abstract—The idea of ”Matrix encoding” was introduced in
steganography by Crandall in 1998. The implementation was then
proposed by Westfeld with steganography algorithm F5. Matrix
encoding using linear codes (syndrome coding) is a general
approach to improving embedding efficiency of steganographic
schemes. The covering radius of the code corresponds to the
maximal number of embedding changes needed to embed any
message. Steganographers, however, are more interested in the
average number of embedding changes rather than the worst
case. In fact, the concept of embedding efficiency - the average
number of bits embedded per embedding change - has been
frequently used in steganography to compare and evaluate
performance of steganographic schemes. The aim of this paper is
to transform some algebraic decoding algorithms up to the error
correcting capacity into a maximum likelihood decoder by the use
of a limited exhaustive search. This algorithm is directly inspired
from those proposed by N. Courtois, M. Finiasz, and N. Sendrier
in the context of electronic signature. It remains exponential,
however it becomes practicable for for some small BCH and
Goppa codes (typically, with an error correcting capacity until
4).

Keywords - Steganography,; Error-correcting Codes; Com-
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I. INTRODUCTION

Research on hiding data into digital multimedia objects,
such as images, audios, and videos, has advanced considerably
over the past decade. Steganography refers to the science
of covert communication, and steganalysis is the opposite of
steganography. Nowadays, a large number of steganography
tools have been developed based on replacement of the least
significant bit (LSB) with secret message because of its
extreme simplicity.

An interesting steganographic method is known as matrix
encoding, introduced by Crandall [4]. Matrix encoding re-
quires the sender and the recipient to agree in advance on
a parity check matrix H, and the secret message is then
extracted by the recipient as the syndrome (with respect to H)
of the received cover object. This method was made popular by
Westfeld [17], who incorporated a specific implementation us-
ing Hamming codes in his F5 algorithm. This steganographic
scheme can embed m bits of message in 2™ —1 cover symbols
by changing at most one of them.
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There are three parameters to evaluate the performance of
a steganographic method over a cover vector of n symbols.
The first one is average distortion D = %, where 7, is
the expected number of changes over uniformly distributed
messages. The second one is the embedding rate €, = %,
which is the amount of bits that can be hidden in a cover
vector [2] (k is the number of bits of the hidden message).
The third one is the embedding efficiency e, = rﬁ, which
is the average number of hidden bits per changeda bit. So,
we have the relation Dey = ¢,. In general, for the same
embedding rate a method is better when the average distortion
is smaller. As usually, we denote by (n, k,r,) the parameters
of a steganographic protocols. the reader must be careful not
to confuse with the parameters [n, k, d] of a code, in particular
the number of bits of a steganographic scheme is generally the
co-dimension n — k of a code of dimension k.

The matrix encoding technique is a well-studied method to
insert a hidden message into a cover message, for example
into an image cf [6], [14], [15], [18]. It is assumed that a
strategy of insertion has been previously defined, therefore in
this paper we will not discuss the security of any stegosystem,
which is directly dependent on the chosen strategy. The main
objective of the matrix encoding is to minimize the number of
modified bits during the insertion of a given message. One
of the limitations of this method is the fact that a maxi-
mum likelihood decoding algorithm is required. Unfortunately,
maximum-likelihood decoding of general linear codes is NP-
hard [1]. Some family of codes, such as BCH codes or Goppa
codes, have a decoding algorithm up to a correction capacity
t. The purpose of this paper is to transform these algorithms
into maximum likelihood decoding algorithms. This decoding
algorithm is a kind of exhaustive search aided by an alge-
braic decoding algorithm. It is derived from that presented
in [3], which is used to provide a short signature based on
the McEliece Public key Cryptosystem. We present specific
applications to some binary Goppa codes and BCH codes
and show that these codes are new candidates for practical
implementation of the matrix encoding technique.

This paper is organized as follows. In Section 2, we review
the basic application of coding theory in steganography. In
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Section 3, we recall the complete decoding technique. Section
4 presents the experimental results on some classical binary
Goppa and BCH codes.

II. ERROR-CORRECTING CODES IN STEGANOGRAPHY

An important kind of steganographic protocols can be
defined from coding theory. Error-correcting codes are com-
monly used for detecting and correcting errors, or erasures, in
data transmission. An explicit description of the relations be-
tween error-correcting codes and steganographic systems was
presented in [14], [15], [18]. The most commonly used codes
in steganography are linear. The existence of a parity check
matrix helps on designing good steganographic protocols.
Crandall [4] introduced the matrix encoding idea to improve
the embedding efficiency for steganography. F5 proposed
by Westfeld [17] is the first implementation of the matrix
encoding concept to reduce modification of the quantized DCT
coefficients. Basically, the matrix encoding technique in F5
modifies at most 1 coefficient among n coefficients to hide
k bits. For example, if we use the [7,4] Hamming code, we
obtain a (7, 3) steganographic i.e., one can insert 3 bits into a
cover of length 7 by changing one bit of the cover. Modified
matrix encoding (MME) [11] uses a (n, k,2) code where one
more coefficient may be changed in each group compared with
the matrix encoding. Main concept of the matrix encoding
technique is “the less number of modification to the DCT
coefficients, the less amount of distortion in the image”.

Later, several efficient codes have been proposed to realize
the matrix encoding: BCH error-correcting code [19], [16],
Reed-Solomon (RS) [5], product perfect codes [15]. Error-
correcting codes and steganographic systems were presented
by Zhang [14], Munuera, Galand [18], [10]. It is shown in [14]
that there is a corresponding relation between the maximum
length embeddable (MLE) codes and perfect error correcting
codes.

Let n and k be positive integers, £ < n, and let B be a
finite set. An embedding/retrieval steganographic protocol of
type (n, k) over B is a pair of maps ¢ : B¥xB™ — B" and r :
B™ — B such that r(e(s,v)) = s forall s € B¥ and v € B™.
Maps e and r are respectively the embedding and the retrieval
map. The number p = max{d(v,e(s,v));s € B¥ v € B"},
d being the Hamming distance, is the radius of the protocol.
The embedding map of a (n, k) embedding/retrieval stegano-
graphic protocol [8], [7], [20] with radius p allows us to hide
k information symbols into a string of n cover symbols, by
changing at most p symbols of the cover.

A linear code of length n over the finite field GF(q) is a
subspace C of the GF(q)-linear space GF'(q)"™. The Hamming
distance d(v,w) between two vectors v and w of GF(q)"
is the number of distinct coefficients between v and w. The
support of a vector v = (v1,v2,...,v,) € GF(q)" is the set
Supp(v) = {ilv; # 0}. So, d(v,w) is also the number of
elements of Supp(v —w). The minimum distance d of a code
C is the minimum distance between any pair of codewords
(i.e. elements of C). The covering radius p of the code C' is
defined as p = maz,cqr(qn{d(v, C)}, where d(v, C') means
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the minimum Hamming distance from vector v to the code C.
The parameters [n, k', d] (or [n, k'] as d is not known) are re-
spectively the length, the dimension and the minimum distance
of the code. In the sequel, for steganographic application, we
are interested in the co-dimension & = n — kK’ of the code,
which is the size of the hidden message.

Let B = GF(q). A a parity check matrix H of C is a
(n — k') x n full rank matrix such that v € C if and only if
H x v' = 0, where v' means the vector v as a column vector.
The syndrome of any v € B" is the vector r(v) = H x v'.
A coset C' + v is the set of all vectors in B™ with the same
syndrome. A vector [,.(,;y of minimum weight in C'+v is called
a coset leader. Note that this coset leader is not necessarily
unique.

The matrix encoding steganographic protocol is defined as
follows. The syndrome map r : B" — B* defined by r(v) =
H x vt is the retrieval map of the (n,k,r,) steganographic
protocol, which will be called linear to emphasize that the
retrieval map r is a linear map. The embedding algorithm
e(s,v) requires the classical coset leader decoding algorithm,
which return the coset leader of v + C. The embedding
algorithm is described in Algorithm 1.

Algorithm 1: Coset steganographic algorithm.

Required : a coset decoding algorithm: input a syndrome w,
output: a coset leader [,

Input : a cover v of size n and a message s of size k.
Output : o' = e(s,v), a steganographic cover
of s with distortion d(v,v') as small as possible.

1: Compute v :=r(v) — s,
2: set c:= v — I,
3: return e(s,v) :=c.

The maximum weight of a coset leader is the covering
radius p of the code, so the embedding efficiency is upper
bounded by p: r, < p, with equality if and only if the code
is perfect.

III. COMPLETE DECODING ALGORITHM

For practical implementation of the matrix embedding tech-
nique, the crucial point is the fact that it requires a complete
decoding algorithm. In this section, we will present a more
efficient decoding algorithm than those used previously, under
the restriction that the chosen code must posses a non-
complete) algebraic decoding algorithm. A complete decoding
algorithm takes in input any word of the space and return a
nearest codeword in C. It performs a maximum likelihood
decoding. This problem is equivalent to be able to find an
error pattern of minimal weight corresponding to any given
syndrome. This problem is known to be NP-hard [1], [3].
Clearly, such an algorithm will be able to correct errors of
weight greater than the error-correcting capacity ¢ of the code.
The weight of correctable errors is upper-bounded by the cov-
ering radius p. Unfortunately, for steganographic applications,
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the determination of the covering radius value of a code is
also a hard problem. More precisely, the determination of
the covering radius of a linear code was proved II2-hard
by McLoughlin [12]. In practice, the determination of the
covering radius needs the enumeration of the coset leaders
(minimum weight words) of any coset of the code. Roughly
speaking, it requires (Z) operations.

A complete decoding algorithm can be performed by an
exhaustive search on codewords. It can also be performed by
an exhaustive search on errors of increasing weight.

In the sequel, following the idea developed in [3] in the
context of digital signature, we propose to extend any clas-
sical algebraic decoding algorithm up to the error correcting
capacity ¢ into a complete decoding algorithm. If the error is
of weight w = t + ¢, this algorithm performs an exhaustive
search on the first ¢ bits, the remaining ¢ bits are corrected by
the algebraic decoder.

The principle is as follows: First, we try to decode the
received word x with the algebraic algorithm. If this attempt
succeeds, we return the corrected codeword. If not, we enumer-
ate all the possible errors following their increasing weight, we
add this error to the received word and try to decode it again.
If the distance between x and the code C' is w, this algorithm
succeeds with an additional error e of weight w — ¢, so the
algorithm is upper-bounded by a maximal weight of additional
error p — t. Clearly, this modified decoding algorithm remains
exponential in the weight of the errors, however, in practice, it
is efficient to decode more than ¢ errors (typically, until ¢ + 4
for practical applications).

Algorithm 2: Complete decoding [3].

Required : a decoding algorithm dec of error capacity t. For
an entry v it returns a boolean value dec 1(v) and a vector
dec2(v): "true” and ¢ € C with d(c,v) < t if it succeed,
“false” and v if not.

Input : a cover v of size n and a message s of size k.
Output : v = e(s,v), a steganographic cover of s with
distortion d(v,v’) as small as possible.

if dec;(v) = true then
return decs(v)

end if
1:=1
Xr =0

while dec; (z) = false do
Enumerate all the errors vectors e of weight w(e) = ¢
r:=v+e
if decy(z) = true then
return decs ()
end if
1:=1+1
end while

It is possible to derive a non-complete polynomial decoding
algorithm up to a fixed error-correction capacity ¢ < p by

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

limiting the exhaustive search on the i-th first errors to whose
of weight less than or equal to § = ¢ — t.

Combining Algorithm 2 with Algorithm 1, we can derive
an efficient steganographic protocol as described in Algorithm
3.

Algorithm 3: Steganographic scheme.

Required : a decoding algorithm dec of error capacity ¢. For
an entry v it returns a boolean value dec1(v) and a vector
dec2(v): "true” and ¢ € C with d(c,v) < t if it succeed,
“false” and v if not.

Input : a cover v of size n and a message s of size k.
Output : o' = e(s,v), a steganographic cover of s with
distortion d(v,v’) as small as possible.

1: Compute v :=r(v) — s,

2: Compute x such that r(z) = u

3: Decode = with Algorithm 2. Set ¢ € C the output of the
decoding algorithm.

4: Set e = x — c the error vector

5: return e(s,v) =v+e

IV. APPLICATION TO BINARY BCH CODES AND GOPPA
CODES

As a concrete example of application of our method, we
tested it on binary BCH codes and binary Goppa codes,
with a prescribed minimum distance of 7 or 9, i.e., with a
decoding algorithm of error correcting capability 3 or 4. The
decoding algorithm is completed with an exhaustive search
until 4 additional errors. We choose these two classes of codes
because they have an algebraic decoding algorithm up to the
error correcting capacity, and parameters suitable for practical
applications.

From a theoretical point of view on the parameters of
the corresponding stegosystem, we are able to determine the
true covering radius only for codes with small length and
small covering radius. The following tables present the results
obtained from BCH codes and Goppa codes with constructed
error-correcting capability t = 3 and ¢ = 4. We compare these
values with whose obtained from known constructions.

Table I compares the theoretical parameters of stegano-
graphic protocols based on Hamming codes (F5 [17]), 2 errors
correcting BCH codes [19], [16], and 3 or 4 errors correcting
BCH and Goppa codes. The third value is not the embedding
efficiency in average as usual, but the upper-bound given
by covering radius. This value was computed using Magma
Computer Algebra system [13]. For large codes, we were not
able to achieve this computation. An estimation of the true
embedding efficiency will be given in the next tables. It is
not easy to directly compare results with distinct values of n
and k. The comparison will be clearer in Figure 1. The main
interest of our method is to reach new parameter values for
steganographic protocols.

Tables II and III present the experimental results of simu-
lations on BCH and Goppa codes of minimum distance 7 and

87



INTERNET 2012 : The Fourth International Conference on Evolving Internet

BCH ¢t =2 [16], [19] | Hamming t = 1 [17]
(15,8,3) (15,4,1)
(31,10, 3) (31,5,1)
(63,12, 3) (63,6,1)
(127,14, 3) (127,7,1)
(255, 16, 3) (255,8,1)
(511,18, 3) (511,9,1)
(1023, 20, 3) (1023,10,1)
BCHt=3 Goppat =3 BCHt =4 Goppa t =4
(15,10, 5) (15,10, 6) (15,14, 7)
(31,15,6) (31,15,6) (31,20,7) (30,19, 8)
(63,18,5) (63,18,6) (63,24,7) (63,24,8)
(127,21,5) (127,21, 6) (127,28, 7) (127,28, 7)
(255,24, 7) (255,24, 7) (255,32, 7) (255,32, 7)
(511,27,7) (511,27,7) (511,36,7) (511,36, 7)
(1023,30,7) | (1023,30,7) | (1023,40,7) | (1023,40,7)

TABLE I: Parameters (n,k,p), n: length of the cover, k:
length of the hidden message,p: covering radius. t¢: error-
correcting capacity.

First table: known results on 2-ECC BCH codes and Hamming
codes.

Second table: our results on 3-ECC and 4-ECC on binary
Goppa codes and BCH codes.

9 respectively. These results were obtained by testing 100000
inputs (random covers and random messages) for each code.

The different values given in these tables are:

e n: the length of the code (i.e., of the length of the stegano-
graphic cover),

e k: the co-dimension of the code, (i.e., the length of the
steganographic message),

e r,: the average of the number of modified symbols,

® I'ax: the maximum number of modified symbols,

e it,: the average of the number of iterations of the decoding
algorithm,

® itnax: the maximum number of iterations of the decoding
algorithm,

e ¢,: the embedding efficiency (i.e., the number of embedded
bits per unit bit of distortion)

e ¢,.: the average of embedding rate.

Goppa codes are known to be asymptotically good (in term
of ratio between the minimum distance and the dimension of
the codes), contrary to t BCH codes. However, for our range
use, it turns out that there is no significative difference between
the parameters of these two families of codes. So, it is not
surprising that the experimental results are similar for these
two classes of codes.

The specificity of these families of codes come only from
the existence of an algebraic decoding algorithm.

An iteration of our algorithm consists essentially to decode
a BCH code or a Goppa code of small error correcting
capacity (until ¢ = 4). These decoders are implemented in
many hardware and software applications. We use the function
“Decode” of the Magma Computer Algebra system, which is a
not optimized implementation, but a generic implementation
of a decoder for GRS / Alternant codes. Depending on the
parameters of the code, the encoding map needs between 1.5
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code n k Ta Tmax | tla itmax €eff €r
BCH 15 10 | 3,3 5 2,15 19 0,67
Goppa 15 12 | 4,52 6 43,6 527 2,7 0,8
BCH 31 15 | 4,28 5 30,5 | 227 3,5 0,48
Goppa | 31 15 | 4,08 6 16,9 | 502 3,7 0,48
BCH 63 18 | 4,06 5 27 648 4,4 0,28
Goppa | 63 18 | 3,87 6 10,7 | 2041 0,28
BCH 127 | 21 | 3,85 5 9 276 5,5 0,16
Goppa | 127 | 21 | 3,85 5 7,5 169 5,5 0,16
BCH 255 | 24 | 3,83 5 8 524 6,3 | 0,095
Goppa | 255 | 24 | 3,83 5 6,9 307 6,3 | 0,095
BCH 511 | 27 | 3,83 5 7,5 | 1027 | 7,05 | 0,05
Goppa | 511 | 27 | 3,83 5 6,7 540 | 7,05 | 0,05
BCH | 1023 | 30 | 3,83 5 7,5 | 1074 | 7,8 0,03
Goppa | 1023 | 30 | 3,83 5 6,4 | 1044 | 7,8 0,03
TABLE II: BCH and Goppa, 6 =7, t = 3.

code n k Ta Tmax itq 1max Eeff €r
BCH 15 14 | 5,93 7 96 542 5,9 0,93
BCH 31 20 | 6,06 7 340 4643 | 6,06 | 0,645
Goppa 30 19 | 5,79 7 250 2192 | 5,79 | 0,63
BCH 63 24 | 5,59 7 159 4998 5,6 0,38
Goppa 63 24 | 5,58 7 145 4362 5,6 0,38
BCH 127 | 28 | 5,28 7 81 8134 5,3 0,22
Goppa | 127 | 28 | 5,3 7 89,3 | 8534 5,3 0,22
BCH 255 | 32 | 5,06 6 56 1281 6,3 0,12
Goppa | 255 | 32 | 5,06 6 57,5 307 6,3 0,12
BCH 511 36 | 4,97 6 35,5 | 1281 7,2 0,07
Goppa | 511 36 | 4,97 6 35,5 540 7,2 0,07
BCH 1023 | 40 | 4,95 6 27,5 | 1157 8,1 0,039
Goppa | 1023 | 40 | 4,95 6 27,5 | 1044 8,1 0,039
TABLE III: BCH and Goppa, § =9, t = 4.

and 20 seconds. An optimized C implementation will take
less than one second in any case. The retrieval map is just the
computation of a syndrome, as usually for the matrix encoding.

The graph in Figure 1 represents the embedding efficiency
given as a function of embedding rate. We compare our results
to those obtained from previous works based on: Hamming
codes (F5) [17], BCH 2-errors correcting codes [19], [16] and
Golay codes [11]. These results show that 3-correcting BCH
codes improves the results of existing implementations. The
4-correcting BCH give poorer results, probably because the
number of changes to make is too great.

In this paper, we deliberately limited our study to the binary
case. So, we limit our comparisons to other binary codes
with a computationally effective implementation. Fridrich et
al. [8] explain how the use of non-binary codes will increase
the embedding efficiency, in particular for large payload (i.e.,
embedding rate). A natural extension of our work will be to
test ternary BCH and Goppa codes in order to compare with
the results presented in [9]. However, in the ternary case, the
enumeration of supplementary errors is more complex.

V. CONCLUSION

In this paper, we have presented a new method for steganog-
raphy. This method is based on a complete decoding algorithm,

88



INTERNET 2012 : The Fourth International Conference on Evolving Internet

12

Hamming code (F5)
BCH 2-error correcting
Golay code

binary BCH codes with t=3 ||
binary BCH codes with t=4
New results

10

> m o <4 e
o m o <4 @

=)

-

o
L

Embedding efficiency
o
&

. . .
%AO 0.2 0.4 0.6 0.8 1.0
Embedding rate

Fig. 1: Performance comparison.

which uses an exhaustive search aided by an algebraic decod-
ing algorithm. This method is practicable for codes with small
minimum distance (typically, d less than 10).

Our examples, based on Goppa codes and BCH codes, show
that we are able to improve some previous results and to
propose new sets of parameters for matrix encoding based
on binary codes, especially for high embedding rates.
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