
Federation Between CLEVER Clouds Through SASL/Shibboleth Authentication

Francesco Tusa, Antonio Celesti, Massimo Villari and Antonio Puliafito
Dept. of Mathematics, Faculty of Engineering, University of Messina

Contrada di Dio, S. Agata, 98166 Messina, Italy.
e-mail: {ftusa, acelesti, mvillari, apuliafito}@unime.it

Abstract—Several ICT operators are realizing the advan-
tages of federating cloud providers in order to carry out new
business benefits, hence increasing their revenues. Nevertheless,
how to achieve a cloud architecture able to perform authen-
tication with other installations is not fully clear. CLEVER
is a cloud IaaS middleware conceived with federation in
mind. In this paper, we discuss an approach to perform
SSO authentication based on an integration between SASL
and SAML in a CLEVER environment. More specifically, we
describe how to federated the Ejabberd servers, on which the
communication of each CLEVER cloud is based, through a
Shibboleth authentication.

Keywords-Cloud Computing; CLEVER; Federation; Security;
SASL; SSO Authentication; SAML; Shibboleth.

I. INTRODUCTION

Nowadays, most of Cloud providers can be considered
as “islands in the ocean of the Cloud computing” and do
not present any form of federation. At the same time, a
few Clouds are beginning to use the Cloud-based services
of other Clouds, but there is still a long way to go toward
the establishment of a worldwide Cloud ecosystem including
thousands of cooperating Clouds. In such a perspective, the
latest trend toward Cloud computing is dominated by the
idea to federate heterogeneous Clouds, as it is highlighted
in [1]. This means not to think about independent private
Clouds anymore, but to consider a new Cloud federation
scenario where different Clouds, belonging to different
administrative domains, interact each other, sharing and
gaining access to physical resources. Cloud Federation is
a concept that goes beyond the simple achievements falling
into Hybrid Clouds (Private + Public, see [2]).

The US Department of NIST, after the well-known def-
inition of SaaS, PaaS and IaaS, is actively working for
accelerating Standards to foster the Adoption of Cloud
Computing [3]. Interoperability, Portability and Security
are the main aims of their enforcement. Our work tries
to find a solution for the first and third of these aspects
seen for federated Cloud scenarios, exploiting CLEVER (see
[4]). It is an IaaS Cloud middleware, conceived having in
mind federation. The innovation of CLEVER is that its
communication system has been designed with the public-
subscribe philosophy using the Extensible Messaging and
Presence Protocol (XMPP) [5] (see also RFC 6120 [6]).
XMPP is an open-standard communications protocol for

message-oriented middleware based on XML (Extensible
Markup Language). Thus, in CLEVER, each Cloud belongs
to a domain managed by an XMPP server. In CLEVER, the
way to federate two Clouds is to establish a server-to-server
inter-domain communication between the XMPP servers of
the involved Clouds.

Cloud federation raises many issues especially in the field
of security and privacy. Single Sign On (SSO) authentication
is fundamental for achieving security in a scalable scenario
such as Cloud federation. However, the Simple Authentica-
tion and Security Layer (SASL) [7], i.e., a framework for
authentication and data security in Internet protocols, sup-
ported by XMPP does not support any SSO authentication
mechanism.

In this paper, integrating the SASL with the Security
Assertion Markup Language (SAML) protocol [8], we de-
scribe an approach to authenticate two or more CLEVER
Clouds, discussing an implementation based on Ejabberd
[9] and Shibboleth [10]. The paper is organized as follows.
Section II describes the state of the art of Cloud middlewares
dealing with federation. Section III introduces the CLEVER
Cloud middleware, discussing how it supports federation.
Section IV describes the technological issues for the SSO
authentication achievement during the process of federation
establishment. More specifically, a solution based on SASL
and SAML is discussed. Section V describes an imple-
mentation practice of SSO authentication between CLEVER
Clouds using Ejabberd servers and Shibboleth. Section VI
concludes the paper.

II. RELATED WORKS

Hereby, we describe the current state-of-the-art in Cloud
computing analyzing the main existing middleware imple-
mentations, emphasizing the federation aspects they attempt
to address. Before such a description, it is interesting to point
out the results of Sempolinski and Thain work published in
2010 [11]. They provided a comparison among three widely
used architectures: Nimbus, Eucalyptus and OpenNebula.
They remarked how the projects are aimed at different
goals, but a clear convergence is recognizable. The authors
posed three main questions, one about who has a complete
Cloud computing software stack. It is common in the three
architectures that the actual Cloud controller is only a small
part of the overall system. The second one is who is really

77Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

customizable. These are open-source projects, and the appeal
of setting up a private Cloud, as opposed to using a com-
mercial one, is that the administrator can have more control
over the system. They support standard API interfaces (i.e.,
front-end that uses a subset of the EC2 interface), and
they are often one of these customizable components. The
last one is about the degree of transparency in the user
interface. One of the main shared opinions in the commercial
Cloud setting is the black-box nature of the system. The
individual user, is not aware where, physically, his VMs
are running. In a more customizable open-source setting,
however, opportunities exist for a greater degree of explicit
management with regard to the underlying configuration of
physical machine and the location of the VMs. We remark
that the authors of such a work have not recognized any
features suitable for the cross Cloud management.

Nimbus [12] is an open source toolkit that allows to
turn a set of computing resources into an Iaas Cloud.
It was conceived from designers originally coming from
the GRID world. Nimbus comes with a component called
workspace-control, installed on each node, used to start, stop
and pause VMs, implements VM image reconstruction and
management, securely connects the VMs to the network,
and delivers contextualization. Nimbus’s workspace-control
tools work with Xen and KVM but only the Xen version is
distributed. Nimbus provides interfaces to VM management
functions based on the WSRF set of protocols. There is
also an alternative implementation exploiting Amazon EC2
WSDL. Its Federation system exploits the GRID-like exist-
ing functionalities. It leverages Virtual Organization (VOs)
of GRID for controlling the access on virtual resources.

Eucalyptus [13] is an open-source Cloud-computing
framework that uses the computational and storage infras-
tructures commonly available at academic research groups
to provide a platform that is modular and open to experimen-
tal instrumentation and study. Eucalyptus addresses several
crucial Cloud computing questions, including VM instance
scheduling, Cloud computing administrative interfaces, con-
struction of virtual networks, definition and execution of
service level agreements (Cloud/user and Cloud/Cloud), and
Cloud computing user interfaces. Not far past Eucalyptus
was adopted as Virtualization Manager in the Ubuntu Core,
but recently there is not longer support (Canonical switches
to OpenStack for Ubuntu Linux Cloud [14]). The federation
is out of the scope for them.

OpenNebula [15] is a virtualization tool to manage virtual
infrastructures in a data-center or cluster, which is usually
referred as private Cloud. Only the more recent versions of
OpenNebula are trying to supports Hybrid Cloud to combine
local infrastructure with public Cloud-based infrastructure,
enabling highly scalable hosting environments. OpenNebula
also supports Public Clouds by providing Cloud interfaces
to expose its functionalities for virtual machine, storage
and network management. The middleware tries to manage

the federated resources but, considering the approach they
use for interacting with physical servers (SSH remote shell
commands), it is quite hard to accomplish real federation
achievements. OpenNebula is mainly aimed at interoperabil-
ity through OCCI interface.

A separated analysis has to be faced with the OpenStack
[16] middleware because it operates in the direction of an
open middleware for Clouds. The National Aeronautics and
Space Administration (NASA) leads the project aiming to
allow any organization to create and offer Cloud computing
capabilities using open source software running on standard
hardware. Openstack has three sub-projects that is Open-
Stack Compute, OpenStack Object Store and OpenStack
Imaging Service. In particular OpenStack Compute is a soft-
ware for automatically creating and managing large groups
of virtual private servers. Open-Stack Storage is a software
for creating redundant, scalable object storage using clusters
of commodity servers to store terabytes or even petabytes
of data. It adopts the Shared Nothing (SN), an architectural
philosophy in which the platform is fully distributed and
each node is independent and self-sufficient, and there is
no single point of contention across the system. OpenStack
Image Service is necessary for discovering, registering, and
retrieving virtual machine images. The federation is not
addressed at all in Openstack, the concepts Shared Nothing
guarantees a high level of scalability and reliability, but at
the same time the federation needs to be accomplished out
of the architecture, at least as a Federation Broker that solves
some of the federation issues. The SSO is only aimed at the
dashboard web access, that is for the end-user.

III. THE CLEVER IAAS CLOUD

A. Overview

The CLEVER middleware is based on the architecture
schema depicted in Figure 1, which shows a cluster of n
nodes (also an interconnection of clusters could be analyzed)
each containing a host level management module (Host
Manager). A single node may also include a cluster level
management module (Cluster Manager). All the entities
interact exchanging information by mean of the Communica-
tion System based on the XMPP. The set of data necessary to
enable the middleware functioning is stored within a specific
Database deployed in a distributed fashion.

Figure 1 shows the main components of the CLEVER
architecture, which can be split into two logical categories:
the software agents (typical of the architecture itself) and the
tools they exploit. To the former set belong both the Host
Manager and the Cluster Manager:

• The Host manager (HM) performs the operations
needed to monitor the physical resources and the instan-
tiated VMs; moreover, it runs the VMs on the physical
hosts (downloading the VM image) and performs the
migration of VMs (more precisely, it performs the low

78Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

Figure 1. CLEVER architecture.

level aspects of this operation). To carry out these
functions it must communicate with the hypervisor,
hosts’ OS and distributed file-system on which the VM
images are stored. This interaction must be performed
using a plug-ins paradigm.

• The Cluster Manager (CM) acts as an interface between
the clients (software entities, which can exploit the
Cloud) and the HM agents. CM receives commands
from the clients, performs operations on the HM agents
(or on the database) and finally sends information to the
clients. It also performs the management of VM images
(uploading, discovering, etc.) and the monitoring of the
overall state of the cluster (resource usage, VMs state,
etc.). At least one CM has to be deployed on each
cluster but, in order to ensure higher fault tolerance,
many of them should exist. A master CM will exist
in active state while the other ones will remain in a
monitoring state.

Regarding the tools such middleware components exploit,
we can identify the Distributed Database and the XMPP
Server.

B. Internal/External Communication

The main CLEVER entities, as already stated, are the
Cluster Manager and the Host Manager modules, which
include several sub-components, each designed to perform
a specific task. In order to ensure as much as possible the
middleware modularity, these sub-components are mapped
on different processes within the Operating System of
the same host, and communicate each other exchanging
messages. CLEVER has been designed for supporting two
different types of communication: intra-module (internal)
communication and inter-module (external) communication.

1) Intra-module (Internal Communication): The intra-
module communication involves sub-components of the
same module. Since they essentially are separated processes,
a specific Inter Process Communication (IPC) has to be
employed for allowing their interaction. In order to guar-
antee the maximum flexibility, the communication has been
designed employing two different modules: a low level one

implementing the IPC, and an high-level one instead acting
as interface with the CLEVER components, which allows
access to the services they expose.

For implementing the communication mechanism, each
module virtually exchanges messages (horizontally) with
the corresponding peer exploiting a specific protocol (as
the horizontal arrows indicate in Figure). However, the real
message flow is the one indicated by the vertical arrows:
when the Component Communication Module (CCM) of
the Component A aims to send a message to its peer on a
different Component B, it will exploit the services offered by
the underlying IPC module. Obviously, in order to correctly
communicate, the CCM must be aware of the interface by
means of these services are accessible. If all the IPC were
designed according to the same interface, the CCM will be
able to interact with them regardless both their technology
and implementation.

Looking into the above mentioned mechanism, when the
Component A needs to access a service made available
from the Component B, it performs a request through its
CCM. This latter creates a message which describes the
request, then formats the message according to the selected
communication protocol and sends it to its peer on the
Component B by means of the underlying IPC module. This
latter in fact, once received the message, forwards it to its
peer using a specific container and a specific protocol. The
IPC module on the Component B, after that such a container
is received, extracts the encapsulated message and forwards
it to the overlying CCM. This latter interprets the request
and starts the execution of the associated operation instead
of the Component A.

2) Inter-module (External Communication): When two
different hosts have to interact each other, the inter-module
communication has to be exploited. The typical use cases
refer to:

• Communication between CM and HM for exchanging
information on the cluster state and sending specific
commands;

• Communication between the administrators and CM
using the ad-hoc client interface.

As previously discussed, in order to implement the inter-
module communication mechanism, an XMPP server must
exist within the CLEVER domain and all its entities must
be connected to the same XMPP room.

When a message has to be transmitted from the CM to
an HM, as represented in Figure 2, it is formatted and then
sent using the XMPP. Once received, the message is checked
from the HM, for verifying if the requested operation can
be performed.

As the figure shows, two different situations could lay
before: if the request can be handled, it is performed sending
eventually an answer to the CM (if a return value is ex-
pected), otherwise an error message will be sent specifying
an error code. The “Execution Operation” is a sub-activity

79Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

Figure 2. Activity diagram of the external communication.

whose description is pointed out in Figure 3. When the sub-
activity is performed, if any return value is expected the
procedure terminates, else this value has to be forwarded to
the CM in the same way has been done previously with the
request.

Figure 3. Activity Diagram of the sub-activity Executing Operation.

The sequence of steps involved in the sub-activity is rep-
resented in Figure 3. If the operation that has to be executed
involves a component different from the Host Coordinator,

the already described intra-module communication has to
be employed. Once the selected component receives the
message using this mechanism, if no problem occurs, the
associated activity will be performed, else an error will be
generated. If the operation is executed correctly and a return
value has to be generated, the component will be responsible
of generating the response message which will be forwarded
to the HM, and thus, to the CM.

C. Federation Features

CLEVER has been designed with an eye toward federa-
tion. In fact, the choice of using XMPP for the CLEVER
module communication (i.e., external communication XMPP
room) has been made thinking about the possibility to sup-
port in the future also interdomain communication between
different CLEVER administrative domains. Federation al-
lows Clouds to “lend” and “borrow” computing and storage
resources to/from other Clouds. In the case of CLEVER,
this means that a CM of an administrative domain is able
to control one or more HMs belonging other administrative
domains. For example, if a CLEVER domain A runs out of
resources of its own HMs, it can establish a federation with a
CLEVER domain B, in order to allow the CM of the domain
A to use one or more HMs of the domain B. This enables the
CM of domain A to allocate VMs both in its own HMs and
in the rented HMs of domain B. In this way, on one hand
the CLEVER Cloud of domain A can continue to allocate
services for its clients (e.g., IT companies, organization,
desktop end-users, etcetera), whereas on the other hand
the CLEVER Cloud of domain A earns money from the
CLEVER Cloud of domain B for the renting of its HMs.

As anyone may run its own XMPP server on its own
domain, it is the interconnection among these servers that
exploits the interdomain communication. Usually, every user
on the XMPP network has an unique Jabber ID (JID).
To avoid requiring a central server to maintain a list of
IDs, the JID is structured similarly to an e-mail address
with an user name and a domain name for the server
where that user resides, separated by an at sign (@). For
example, considering the CLEVER scenario, a CM could
be identified by a JID bach@domainB.net, whereas a HM
could be identified by a JID liszt@domainA.net: bach and
liszt respectively represent the host names of the CM and
the HM, instead domainB.net and domainA.net represent
respectively the domains of the Cloud which “borrows”
its HMs and of the Cloud which “lends” HMs. Let us
suppose that bach@domainB.net wants to communicate with
liszt@domainA.net, bach and liszt, each respectively, have
accounts on domainB.net and domain A XMPP servers.

The idea of CLEVER federation is straightforward by
means of the built-in XMPP features. Figure 4 depicts
an example of interdomain communication between two
CLEVER administrative domains for the renting of two HMs
from a domain A to domain B.

80Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

Figure 4. Example of CLEVER in horizontal federation.

Considering the aforementioned domains, i.e., do-
mainA.net and domainB.net, in scenarios without federation,
they respectively include different XMPP rooms for intrado-
main communication (i.e., cleverRoom@domainA.net and
cleverRoom@domainB.net) on which a single CM, responsi-
ble for the administration of the domain, communicates with
several HMs, typically placed within the physical cluster
of the CLEVER domain. Considering a federation scenario
between the two domains, if the CM the domainB.net do-
main needs of external resources, after a priori agreements,
it can invite within its cleverRoom@domainB.net room one
or more HMs of the domainA.net domain. For example, as
depicted in Figure 4, the CLEVER Cloud of domainB.net
rents from the CLEVER Cloud of domainA.net, HM6 and
HM16. Thus, the two rented HMs will be physically placed
in domainA.net, but they will be logically included in
domainB.net. As previously stated, in order to accomplish
such a task a trust relationship between the domainA.net
and the domainB.net XMPP servers has to be established in
order to enable a Server-to-Server communication allowing
to HMs of domain A to join the external communication
XMPP room of domain B.

IV. AUTHENTICATION ISSUES IN CLEVER FEDERATION

Federation between CLEVER Clouds implies the estab-
lishment of a secure inter-domain communication between
their own XMPP servers. This raises several issues regard-
ing the management of authentication between the XMPP
servers of different CLEVER Clouds. In this section, after
a discussion of the authentication mechanisms supported by
XMPP for the establishment of a server-to-server federation,
we describe the authentication issues in a scalable scenario
of federated CLEVER Clouds, proposing a solution based
on the IdP/SP model.

A. Concerns about XMPP Server-to-Server Federation

Considering that the communication in each CLEVER
Cloud is achieved through XMPP or Jabber messages by
means of an Ejabberd server, the federation establishment
between two or more CLEVER Clouds implies a secure
inter-domain communication between their respective Ejab-
berd servers. In fact, in the XMPP terminology, the term

“federation” is commonly used to describe communication
between two servers.

The public-subscribe technology is reemerging for en-
abling real-time communication within Cloud infrastructure,
nevertheless its major protocol XMPP is somewhat dated
from the point of view of security.

In order to enable federation between servers, it is needed
to carry out a strong security to ensure both authentication
and confidentiality thanks to encryption. According to the
IETF 6120, compliant implementations of servers should
support Dialback or SASL EXTERNAL protocol for au-
thentication and the TLS protocol for encryption.

The basic idea behind Server Dialback [17] is that a re-
ceiving server does not accept XMPP traffic from a sending
server until it has (i) “called back” the authoritative server
for the domain asserted by the sending server and (ii) verified
that the sending server is truly authorized to generate XMPP
traffic for that domain. The basic flow of events in Server
Dialback consists of the following four steps:

1) The Originating Server generates a dialback key and
sends that value over its XML stream with the Receiv-
ing Server. (If the Originating Server does not yet have
an XML stream to the Receiving Server, it will first
need to perform a DNS lookup on the Target Domain
and thus discover the Receiving Server, open a TCP
connection to the discovered IP address and port, and
establish an XML stream with the Receiving Server.)

2) Instead of immediately accepting XML stanzas on the
connection from the Originating Server, the Receiving
Server sends the same dialback key over its XML
stream with the Authoritative Server for verification.
(If the Receiving Server does not yet have an XML
stream to the Authoritative Server, it will first need
to perform a DNS lookup on the Sender Domain
and thus discover the Authoritative Server, open a
TCP connection to the discovered IP address and port,
and establish an XML stream with the Authoritative
Server).

3) The Authoritative Server informs the Receiving Server
whether the key is valid or invalid.

4) The Receiving Server informs the Originating Server
whether its identity has been verified or not.

SASL is a framework for providing authentication and
data security services in connection-oriented protocols via
replaceable mechanisms. It provides a structured interface
between protocols and mechanisms. The resulting frame-
work allows new protocols to reuse existing mechanisms and
allows old protocols to make use of new mechanisms. SASL
is used in various application protocols (e.g., XMPP, IMAP,
LDAP, SMTP, POP, etc.) and support many mechanisms
including:

• PLAIN, a simple clear text password mechanism.
PLAIN obsoleted the LOGIN mechanism.

81Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

• SKEY, an S/KEY mechanism.
• CRAM-MD5, a simple challenge-response scheme

based on HMAC-MD5.
• DIGEST-MD5, HTTP Digest compatible challenge-

response scheme based upon MD5. DIGEST-MD5 of-
fers a data security layer.

• GSSAPI, for Kerberos V5 authentication via the GSS-
API. GSSAPI offers a data-security layer.

• GateKeeper, a challenge-response mechanism devel-
oped by Microsoft for MSN Chat

At the time of writing of the IETF 6120, in March 2011,
most server implementations still use the Dialback protocol
to provide weak identity verification instead of using SASL
to provide strong authentication, especially in cases where
SASL negotiation would not result in strong authentication
anyway (e.g., because TLS negotiation was not mandated
by the peer server, or because the PKIX certificate presented
by the peer server during TLS negotiation is self-signed and
has not been previously accepted). The solutions is to offer
a significantly stronger level of security through SASL and
TLS.

B. SASL and SAML for Secure CLEVER Federation

In a scalable scenario of federation each CLEVER Cloud
can require to frequently establish/break partnerships with
other CLEVER Clouds. This implies that each Cloud should
manage a huge number of credentials in order to authenticate
itself in other Clouds. In a federated CLEVER environment,
this means that the XMPP server of the Cloud requiring
federation has to be authenticated by the XMPP server
of the Cloud accepting the federation request. If we con-
sider thousand of Clouds, each Cloud should manage one
credential for accessing to each federated Cloud. This is
problem is commonly known as Single-Sign-One (SSO),
i.e., considering an inter-domain environment, performing
the authentication once, gaining the access to the resources
supplied by different Service Provider, each one belonging
to a specific domain. A model addressing the SSO problem
is the Identity Provider/Service Provider Model (IdP/SP).
Typically, a client who wants to access to the resources
provided by a SP, perform the authentication once on the IdP
(asserting party), which asserts to the SP (relaying party) the
validity of the authentication of the client. Considering many
SPs relaying on the IdP if the client wants to access another
SP, as this latter will be trusted with the IdP, no further
authentication will be required. This model is widely known
on the Web with the term “Web Browser SSO”, in which the
client is commonly an user who perform an authentication
fill in an HTML form with his user name and password.
Nowadays, the major standard implementing defining the
IdP/SP model is the Security Assertion Markup Language
(SAML) [8], developed by OASIS.

The scenario of CLEVER federation is quite similar. In
this case, the client who wants to perform the authentication

is the XMPP server of the CLEVER Cloud requiring feder-
ation, instead the role of the SP is played by the XMPP
server of the Cloud accepting the federation request. As
the XMPP server support authentication through SASL a
concern raises: the RFC 4422 does not support any security
mechanism implementing the IdP/SP model.

Therefore, in order to achieve such a scenario, we fol-
lowed the Internet-Draft entitled “A SASL Mechanism for
SAML”, defined by CISCO TF-Mobility Vienna, describing
the applicability and integration between the two protocols
for non-HTTP use cases. According to such a draft, the
authentication should occur as follows:

1) The server MAY advertise the SAML20 capability.
2) The client initiates a SASL authentication with

SAML20
3) The server sends the client one of two responses:

a) a redirect to an IdP discovery service; or
b) a redirect to the IdP with a complete authentica-

tion request.
4) In either case, the client MUST send an empty re-

sponse.
5) The SASL client hands the redirect to either a browser

or an appropriate handler (either external or internal
to the client),and the SAML authentication proceeds
externally and opaquely from the SASL process.

6) The SASL Server indicates success or failure, along
with an optional list of attributes

In this way, thanks to SASL and SAML, for each
CLEVER Cloud it is possible to perform the authentication
once gaining the access to all the other Clouds relying on
the IdP, thence, lending and/or borrowing HMs according to
agreements.

V. SECURE CLEVER INTERDOMAIN COMMUNICATION
THROUGH SHIBBOLETH FEDERATION

In the previous section, we have analyzed different tech-
nologies able to address authentication issues in distributed
environments, where users need to prove their identities.
As we introduced earlier, some specific scenarios, such
as Cloud Federation, may require that systems belonging
to different administrative domains interact each other to
cooperate. In this section, we try to extend the mechanisms
regarding authentication in distributed environment toward
Cloud systems, proposing our idea for implementing Single
Sign On among different XMPP servers, in order to grant
either scalability and flexibility while the authentication
process is accomplished.

In a Cloud Federated scenario, where each Cloud refers
to CLEVER as Virtual Infrastructure Manager, and the com-
munication among its entities is thus based on XMPP, the
most convenient and easy way to build a Cloud federation
should rely on the employment of the federation features
made available by the XMPP protocol itself. This latter

82Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

assumes a XMPP server can be configured for accepting
external connections from other servers for creating server-
to-server interactions (server federation).

According to the XMPP specifications, this mechanism is
quite easy to implement and the result will be the ability for
two XMPP servers in different domains to exchange XML
stanzas. There are different levels of federation:

• Permissive Federation, a server accepts a connection
from any other peer on the network, even without ver-
ifying the identity of the peer based on DNS lookups.

• Verified Federation, a server accepts a connection from
a peer only after the identity of the peer has been
weakly verified via Server Dialback, based on infor-
mation obtained via the Domain Name System (DNS)
and verification keys exchanged in-band over XMPP.

• Encrypted Federation, a server accepts a connection
from a peer only if the peer supports Transport Layer
Security (TLS) and the client authenticates itself using
a SASL mechanisms.

On one hand, Permissive and Verified Federation are the
simplest federation approaches: as discussed in the previous
Section, they lack some security aspects since they are not
based on any password exchange procedure and, in order
to implement domain filtering (in the second case), a list of
allowed sites has to be compiled preemptively. On the other
hand, the Encrypted Federation level relies on a more secure
way to perform the authentication, based on challenge-
response authentication protocols relaying on passphrase.

This standard authentication mechanisms are enough
when you want to enable the communication among a lim-
ited endpoint number but, in a scenario where several XMPP
servers might exist, it could be a difficult task to statically
pre-configure the binding among all the involved entities and
manage credentials for authenticating a given server to each
other. Our idea aims to address these issues and propose the
integration of a new SASL security mechanism for allowing
a more scalable management of the authentication process
exploiting the well-known concept of SSO. The integration
we are talking about refers to the use of SAML 2.0.

In ordeer to implement the above mentioned scenario, we
arranged a distributed Cloud environment composed of two
CLEVER sites relying on the Ejabberd XMPP server [9] to
allow communication within each domain. Furthermore, in
order to verify the server-to-server federation we configured
each server to listen for incoming connection on a given port.
This task is usually accomplished by an Ejabberd module
that manages incoming and outcoming connections from/to
external servers. According to the XMPP core specification,
this module is able to establish server federation according
to the three different levels pointed out above. In our work
we considered more specifically the Encrypted Federation
case and we have modified the Ejabberd module performing
SASL to add in the list of the supported security mechanism
also SAML 2.0. This latter has been introduced relying on

an external software module based on Shibboleth named
Authentication Agent (AA).

The Authentication Agent acts as user when it is contacted
from the Source Ejabberd Server for starting the Federation,
whereas represents the Relying Party when it is contacted
from the Destination Ejabberd Server.

In the following, we present the sequence of steps per-
formed by two servers (for simplicity Source Server and
Destination Server) that aim to build the federation. As
Figure 5 depicts, the involved actors in the process are
the s2s Manager(s) of both the Ejabberd servers, the two
authentication agents acting as User and Relying Party (User,
the one interacting with the Source Server; Relying Party the
one interacting with the Destination Server) and the Identity
Provider (also implemented using Shibboleth).

Figure 5. Step performed by two XMPP servers aiming to build Federation:
the authentication process is executed using SAML 2.0 as external SASL
mechanism

• Step 1: s2s Manager of Source Server initiates stream
to the s2s Manager of the Destination server.

• Step 2: s2s Manager of the Destination Server responds
with a stream tag sent to the s2s Manager of the Source
Server.

• Step 3: s2s Manager of the Destination Server informs
the s2s Manager of the Source Server of available
authentication mechanisms.

• Step 4: s2s Manager of the Source Server selects
SAML as an authentication mechanism.

• Step 5: s2s Manager of Destination Server sends a
BASE64 encoded challenge to the s2s Manager of the
Source Server in the form of an HTTP Redirect to the
Destination AA (acting as Relying Party).

• Step 6: a) s2s Manager of Source Server sends a
BASE64 encoded empty response to the challenge and
b) forward to the Source AA the URL of the Relying
Party.

83Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

• Step 7: The Source AA (User) engages the SAML
authentication flow (external to SASL) contacting the
Destination AA (Relying Party).

• Step 8: Destination AA redirect Source AA to the IdP.
• Step 9: Source AA contacts IdP and performs Authen-

tication
• Step 10: IdP responds with Authentication Assertion
• Step 11: Source AA contacts Destination AA for gain-

ing access to the resource.
• Step 12: Destination AA contacts the s2s Manager of

the Destination Server informing it about the authenti-
cation result.

• Step 13: if the authentication is successful the
s2s Manager of the Source Server initiates a new
stream to the s2s Manager of Destination Server.

The advantage of performing the authentication among
servers in such a way mainly consists in the higher se-
curity level achieved than the traditional Dialback/SASL
mechanisms and in the possibility of exploiting the SSO
authentication. Looking at Figure 5, after that the federation
has been achieved with the depicted server, if the same
Source Cloud aims to perform server-to-server federation
with a new XMPP server that relies on the same IdP as
trusted third-party, such a process would be straightforward.
Since the Source Server already has an established security
context with the IdP, once the SASL process starts and the
SAML mechanism is selected, no further authentication will
be required.

VI. CONCLUSIONS AND REMARKS

In this paper, we discussed how to perform the authentica-
tion among CLEVER Clouds in order to establish federation.
CLEVER is an IaaS Cloud middleware designed according
to the public-subscribe technology and implementing the
XMPP protocol. The federation establishment involves the
federation among their own XMPP servers. Considering the
current implementation of XMPP servers, server-to-server
federation implies security issues due to authentication. In
particular the SASL framework used in XMPP server does
not provide any SSO authentication mechanism, a mandatory
requirement for a scalable federated Cloud environment.
In order to address this issue, in this work, we used an
integration of SASL and SAML implementing a testbed
including Ejabberd as XMPP server and Shibboleth as
SAML implementation. Experiments have proved that such
a solution can be a valid approach for a federation-enabled
Cloud infrastructure using a public-subscribe technology,
such as CLEVER.

REFERENCES

[1] B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas, I. Loy,
K. Nagin, J. Tordsson, C. Ragusa, M. Villari, S. Clayman,
E. Levy, A. Maraschini, P. Massonet, H. Munoz, and G. Tof-
fetti, “Reservoir - when one cloud is not enough,” Computer,
vol. 44, pp. 44–51, 2011.

[2] B. Sotomayor, R. Montero, I. Llorente, and I. Foster, “Virtual
Infrastructure Management in Private and Hybrid Clouds,”
Internet Computing, IEEE, vol. 13, pp. 14–22, Sept.-Oct.
2009.

[3] National Institute of Science and Technology. Standards
Acceleration to Jumpstart Adoption of Cloud Computing;
http://csrc.nist.gov/groups/SNS/cloud-computing/ July 2011.

[4] F. Tusa, M. Paone, M. Villari, and A. Puliafito., “CLEVER:
A CLoud-Enabled Virtual EnviRonment,” in 15th IEEE Sym-
posium on Computers and CommunicationsS Computing and
Communications, 2010. ISCC ’10. Riccione, June 2010.

[5] Extensible Messaging and Presence Protocol (XMPP),
http://xmpp.org/, Jan 2012.

[6] RFC 6120, Extensible Messaging and Presence Protocol
(XMPP): Core, http://tools.ietf.org/rfc/rfc6120.

[7] RFC 4422, Simple Authentication and Security Layer
(SASL), http://www.ietf.org/rfc/rfc4422.

[8] SAML V2.0 Technical Overview, OASIS,
http://www.oasis-open.org/specs/index.php#saml, Jan 2012.

[9] Ejabberd, the Erlang Jabber/XMPP daemon:
http://www.ejabberd.im/, Jan 2012.

[10] The Shibboleth system standards,
Available: http://shibboleth. internet2.edu/, Jan 2012.

[11] P. Sempolinski and D. Thain, “A Comparison and Critique
of Eucalyptus, OpenNebula and Nimbus,” in The 2nd IEEE
International Conference on Cloud Computing Technology
and Science, July 2010.

[12] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey,
B. Berriman, and J. Good, “On the Use of Cloud Computing
for Scientific Workflows,” in SWBES 2008, Indianapolis,
December 2008.

[13] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The Eucalyptus Open-
Source Cloud-Computing System,” in IEEE/ACM CCGRID,
pp. 124–131, May 2009.

[14] Canonical switches to OpenStack for Ubuntu Linux cloud.
http://www.zdnet.com/blog/open-source/canonical-switches-
to-openstack-for-ubuntu-linux-cloud/8875, Jan 2012.

[15] B. Sotomayor, R. Montero, I. Llorente, and I. Foster, “Re-
source Leasing and the Art of Suspending Virtual Machines,”
in HPCC, pp. 59–68, June 2009.

[16] OpenStack: Open source software for building private and
public clouds. http://www.openstack.org/, Jan 2012.

[17] XEP-0220: Server Dialback, http://xmpp.org/extensions/xep-
0220.html.

84Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

