
Dynamic Access Control Using Virtual Multicore Firewalls

Vladimir Zaborovsky, Alexey Lukashin

Department of Telematics

Saint-Petersburg State Polytechnical University

Saint-Petersburg, Russia

vlad@neva.ru lukash@neva.ru

Abstract—The problems of Internet services security are

becoming particularly important due to intricacy structure

and dynamic nature of distributed environment, especially in a

cloud and virtualized systems. The complexity of distributed

platforms demands more functionality to be provided by

security devices. Among these required functions is the ability

to configure these devices online in accordance with the

current state of the network environment through which users

can gain an access to information services. The performance of

security services is a major issue. This paper proposes a

firewall-based solution for implementing access control using

multiple cores in virtualized and pure hardware environments,

and describes dynamic access control based on virtual

connections management with the mechanism of traffic

filtering in a transparent (also called "stealth") mode. In this

mode, the firewall is not visible to other participants

(components) of network interactions, and, thus, it allows

implementing the access policy, but remains invulnerable for

cyber crooks.

Keywords-security; dynamic access control; firewall;

virtualization; netgraph

I. INTRODUCTION

Information security solutions like firewalls are very
sensitive to the level of performance. Modern information
channels support huge bandwidth, 10Gbit/s is almost
everywhere. In 10Gbit/s Ethernet networks firewall has to
make a decision in less than 1ms for a packet. During this
time it should check protocol validness and pass all filtering
rules to different network layers – from the channel to
applied protocols. The current work proposes to achieve this
goal by using multicore capabilities of modern computing
platforms. The traffic processing should be made in parallel.
Concurrent programming is quite complicated, so it is
necessary to provide some generic approach which allows
implementing parallel data processing for different cases.
The paper describes another major issue – virtualization.
Today, businesses of various sizes widely use virtualization.
Small companies use cloud providers like Amazon or
Rackspace, medium and big businesses have its own
computing infrastructure based on virtualization. The main
problem is that virtual systems are hidden from hardware
security devices, like hardware firewalls; thus, the necessary
“virtual” communication is usually not controlled. It is very
important for cloud systems to find a solution for this
problem; especially, for private cloud solutions such as
Eucalyptus [1], OpenStack [2], OpenNebula [3] and others.

Security is a very actual problem in the cloud [5, 6]. Modern
government departments build their infrastructure using
cloud systems and, of course, these systems should control
all information resources. So, another requirement for
modern firewall is the ability to be virtual as well as high
performance. Firewall virtualization gives another
opportunity that allows scaling firewall resources depending
of the current situation by changing number of cores or
memory in runtime. Firewall performance scalability is very
useful for cloud systems. The nature of cloud environments
is very dynamic; the resources, which can be presented in the
cloud, are extremely different. The cloud firewall should also
be dynamic and flexible, by having the possibility to
reconfigure itself in runtime according to the current cloud
state. In this paper, we propose a solution with parallel traffic
processing models and describe architecture of cloud
environment secured by virtual firewalls inside hypervisors.
Our firewalls manage network traffic in stealth mode; the
firewall interfaces haven’t any physical addresses and
invisible for other network components. It increases security
and allows installing these firewalls transparently to
hypervisor or physical network.

The main contribution of this paper is a graph virtual
connection control model, which is implemented by using
Netgraph [4] network subsystem. We also present a
prototype of such stealth firewall which works as a separate
hardware solution and as a virtual machine in hypervisor and
manages virtual traffic.

The paper is organized in six sections. Section 1 is an
introduction; the second one describes virtual connections
and traffic filtering as computation graph. Section 3
describes virtual connection processing models using
Netgraph network subsystem. Section 4 contains description
of experiments and measurements. Section 5 proposes
architecture of secure cloud with stealth multicore firewalls
and Section 6 is the conclusions.

II. APPROACHES FOR VIRTUAL CONNECTIONS CONTROL

Packet flow is described as a set of virtual connections
between users and services [7]. Virtual connection (VC) is a
logically ordered exchange of messages between the network
nodes. Virtual connections are classified as technological
virtual connections (TVC) and informational virtual
connections (IVC). A technological virtual connection is
described by network protocols, e.g., TCP session between
user and database. Information virtual connection is
described by applied protocols, e.g., HTTP session with a

37Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

web service. IVC might use multiple TVC, e.g., ftp session
uses 2 TCP connections; one for data and another for control
messages. And vice versa, TVC might belong to multiple
IVCs, e.g., persistent connections in HTTP, as described in
RFC 2616 client can reuse existing TCP connections for
multiple requests, of course, resource URI might be also
different.

For flexible access control and traffic management
dividing TVCs into three groups was proposed:

1) Permitted important connections without additional
control;

2) Prohibited connections;
3) Other connections which are not prohibited yet but

need additional control.
The first group is the priority connections and the third

group is background connections. All packets of virtual
connections in the second group are dropped by firewall and
not taken into account.

We propose the preemptive priority queuing system with
two types of packets [8]. First type has priority over the
second one. The packets arrive into the buffer according to
the Poisson process. The service time has the exponential
distribution. The buffer has a finite size m and it is shared by
both types of packets. The preemptive priority in service is
given to the packets of the first type. Considered system is
supplied by the randomized push-out mechanism that helps
precisely and accurate to manage packets of both types. If
the buffer is full, a new coming packet of type 1 can push out
a packet of type 2 with the probability from the buffer.

As it is shown in [8], it is possible to change the time
which packets spend in the firewall buffer by choosing α
parameter. That allows to limit access possibilities of
background traffic and even to block a connection if it’s
classified as being prohibited during the data transmission.
The proposed mechanism also allows controlling TVC
throughput and increasing time for the access decision
without interrupting the established connection.

Technical virtual connection exists in parallel to and
independently from other virtual connections. Virtual
connections do not share any resources. It allows parallel
processing of virtual connections. The suggested approach to
the network traffic filtering is based on the concept of virtual
connection and allows extracting the connection context. The
connection context can be described as a vector Yi, which
contains a set of parameters, for example, source and
destination addresses, port, connection status (for TCP
protocol), etc. Virtual connection control is a computation of
the indicator function F, which requires resources, such as
computing processors and operating memory.

 ,*}0,1{)(=iYF (1)

The indicator function F takes the following values: 1- if
VC is allowed; 0- if VC is forbidden; *, if at the current
moment it is impossible to clearly determine whether
connection is prohibited or not, the decision is postponed and
VC is temporarily allowed.

Calculation of the indicator function F can be
decomposed into multiple computing processes; {Fi},
i={1..n}, where n is a number of independent calculation
processes, e.g., evaluation of virtual connection might
consist of filtering rules check, protocol validness check,
intensity check, content check, etc. In this case, the problem
of VC control can be described by using the graph G(Q,X),
which is called the VC control information graph. Q is a set
of nodes; X is a set of edges between the nodes. The VC
control information graph consists of the set of nodes; each
of these nodes is attributed with the operation Fi. If two
nodes qi and qi+1 are connected with an arc, then the result of
the operation Fi is the input for the operation Fi+1. Each node
has an arc, which corresponds to the case when Fi = 0. Then
VC is considered as being prohibited and no further analysis
is performed.

Figure 1. Virtual connection computation graph

The multiprocessor computing system which performs
network traffic analyses might be described as a full mesh
computation system graph with MIMD computers as its
nodes. This graph is a full mesh, because the
communications between CPUs are provided by hardware
and operating system, and there is no predefined path
between the cores; the data can pass directly from one node
to another. Usually, the computation system graph and the
control information graph do not match each other, because
the amount of computing resources is limited and is less than
the amount of computational processes. In this case,
computation resources are used concurrently by information
processes. It is possible to split the VC control graph in N
non-crossing sub graphs and, thus, to build a VC operating
pipeline. Because the virtual connections exist separately
from each other, they can be processed in parallel. With the
C compute nodes of MIMD type, the operating time of VC
processing would be limited by (2).

C

fz
T ii

vc

)max(*))(max(τ
= (2)

Where z(fi) – number of CPU clocks, required for
calculation of function fi ,τi – average time of CPU clock in fi
calculation.

38Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

The given formula is an inequality because the decision
on the VC classification (allowed/forbidden) can be made
before passing all nodes of the graph.

Due to heterogeneity and re-configurability of the
computing environments, in some cases the configuration of
the firewall can be adapted to the access control tasks being
solved at the current moment of time. This can be achieved
by using the graph models for network traffic processing and
Netgraph technology [4]. This technology allows organizing
the network traffic processing in the context of the operating
system [9].

Figure 1 shows an example of the virtual connections
information control graph with decomposition of the
indicator control function into components. The presented
approach, in the combination with using the virtualization
resources technology, allows improving performance of the
network traffic monitoring and using only those computing
components which are required for resolving the current
access control problems.

Figure 2. Information graph of the virtual connection management

Virtual connections should be processed on multiple
cores. Network packets are balanced between cores using
accessory to particular virtual connection. So, the order of
packet flow in virtual connection is not corrupted, that allows
process traffic in parallel using Netgraph network subsystem
(Figure 2.).

III. VIRTUAL CONNECTIONS PROCCESING MODELS

To implement the parallel traffic processing Netgraph
network subsystem, the part of FreeBSD kernel was used.
This solution allows handling network connections in kernel
mode and doing it using multiple cores. But the kernel mode
programming produces new level of implementation
complexity and delivers new behavior models which should
be evaluated and carefully implemented. The cost of
software bug is quite high; kernel level errors causes full
system crash and reboot the firewall. But, if software stable
are tested and verified, this approach will provide great
performance opportunities. Well known Cisco software [10]
also works in kernel mode and does it quite well. The graphs
nature of Netgraph allows splitting traffic management
process in independent parts logically and defining the
computation process as a set of independent modules. The

firewall configuration can be changed in runtime by adding
and removing nodes in graph topology. It allows to extend
firewall functionality and to improve performance by parallel
traffic processing in separate kernel threads.

Netgraph has a complicated architecture and can operate
differently, depending of the used nodes, the involved
protocols and the implemented algorithms. When Netgraph
starts, it creates a pool of kernel threads. The number of
threads is equal to the number of available cores. These
threads can be used for message processing. Network
packets are presented as mbuf structures which are
transferred between Netgraph nodes. In general, Netgraph
can work in two modes – direct routine calls and queuing
packets in nodes, and processing in multiple threads if
possible. The operational mode depends on graph topology
and node implementation. One of the reasons is function call
depth. Recursive calls depth is limited by stack size.
FreeBSD kernel stack is just 8K on i386 and 16K on amd64.
It means that you can't pass more then 5-10 nodes without
queuing (number of nodes depends on how much stack these
nodes consume). There are two models which describe these
Netgraph modes.

A. Network driver based balancing and direct calls

This solution fully depends on network interface kernel
module implementation and used hardware. Not all network
interfaces can handle traffic using multiple cores. Usually, it
is implemented in high performance 10Gbit network
interfaces. One of the possible technologies is MSI-X [11].
In this case, Netgraph uses direct calls to handle traffic.
Traffic filtering works directly in network card – packet
arrived event interrupts thread context. Netgraph uses the
algorithm based on virtual connection attributes for
balancing. For TCP connections it sends a packet of specific
virtual connection to specific core. For UDP protocols it
sends a packet to any available core.

Figure 3. Load balancing in network interface driver

Figure 3 shows the structure of traffic processing in the
FreeBSD kernel. A Packet arrives to network interface, then
it gets processed by Netgraph Ethernet node ng_eth and

39Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

passes packet to the next module using direct routine call.
Each next node evaluates the packet according to the
filtering rules, the network protocol state model, the packet
content and if the packet which belongs to some virtual
connection is considered as allowed then the packet is sent to
outgoing interface. If the virtual connection is prohibited,
then the packet is dropped and the virtual connection is
marked as prohibited. In this case, the traffic is routed
through the Netgraph nodes, but it is processed in one thread.
This behavior can could be presented as one process P which
can be described as the process graph with the set of the
states {s} and the set of the actions act(P):

 U },,{}..1,{ waittrashallowednisS i == (3)

 },!,!?,!.{)(badppPact = (4)

where act(p) is the alphabet of actions, p? is incoming
packet object, p! is outgoing packet object, d! is outgoing
drop action (connection is prohibited), a! is outgoing allowed
action – connection is allowed, no further analyses needed, b
is packet processed action, system goes to accept the next
packet. The process graph is shown on Figure 4.

Figure 4. Connection control process graph

Process is awaiting for incoming event, when packet is
scheduled to a specific thread it is evaluated by chain of
Netgraph nodes, node accepts packet object, evaluates it and
might generate three actions – decision is not made (to
process packet on next node), connection is allowed,
connection is prohibited (to move packet to trash).

B. Queuing packets in nodes

The second approach is to put packets in queues and
process packets in Netgraph nodes in different kernel threads

(Figure 5). In the described situation each Netgraph node is a
separate process Pi, which can accept action messages with
network packet object and produce the same messages as
shown on Figure 4. But, the whole connection control
process P is a parallel composition of Netgraph nodes
processes:

)|...||(21 nPPPP = (5)

This solution allows to implement the parallel traffic
processing using conveyers of nodes, which processes data
in separate threads. The strong side of this solution is lack of
hardware and network.

Figure 5. Netgraph nodes with queues

Figure 5 describes Netgraph behavior. Each node is
processed on CPU or core in separate thread. When packet is
arrived to node it put to FIFO queue.

IV. PERFORMANCE MEASUREMENT FOR NETGRAPH

FIREWALL

We performed the experiments with firewall traffic
control performance using Netgraph network subsystem. The
first test is a scalability check. The virtualization technology
was used in order to perform the experiment. The firewall
was running as a virtual machine in Xen Cloud Platform
hypervisor. The virtual firewall had two interfaces, which
were connected to physical network using bridges in
hypervisor service console. Figure 6 is the experiment
schema.

40Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

Figure 6. Scalability test experiment

We manually slowed down traffic filtering process in
order to see how it scaled with the cores number growth. For
performance measurement iperf tool was used in different
configurations. Netgraph packet filter with packet queuing
direct calls was used. Several TCP connections were created
using iperf and this experiment was performed for one, two,
and four cores configuration. Firewall performance is scaled
almost linearly. The results are shown in Table 1.

TABLE I. TABLE 1. TRAFFIC CONTROL SCALABILITY TEST

Direct calls model Packet queuing model

1 TCP
stream

2 TCP
streams

4 TCP
streams

1 TCP
stream

2 TCP
streams

4 TCP
streams

1 core 1.43Mb
it/s

1.43Mb
it/s

1.43
Mbit/s

1.42
Mbit/s

1.44
Mbit/s

1.43
Mbit/s

2
cores

2.44
Mbit/s

2.45
Mbit/s

2.43
Mbit/s

1.52
Mbit/s

3.17
Mbit/s

3.14
Mbit/s

4
cores

2.44
Mbit/s

2.45
Mbit/s

2.44
Mbit/s

1.51
Mbit/s

3.18
Mbit/s

6.26
Mbit/s

Figure 7. Performance test experiment

The second test in high performance environment was
performed. Multicore system with two 10Gbit Ethernet
adapters has been prepared. Firewall software has been
installed on bare metal without virtualization. One gigabit
Computer network with 20 hosts was separated into two
segments with different VLANs and these segments were
connected by stealth Netgraph firewall. Experiment schema
is shown on Figure 7. Network hosts were configured to run
iperf tests and generated the sufficient amount of network
traffic. For this test Netgraph configuration with direct calls
was selected, because hardware had 10Gbit network cards
with MSI-X technology, so, traffic management was
paralleled by network driver. We compared the kernel mode
Netgraph firewall with the user space stealth implementation
which uses Berkley Packet Filter (BPF) for traffic
processing. The filtering algorithm is the same for both
firewalls. The Experiment results are shown in Table 2.

TABLE II. TRAFFIC CONTROL ON MULTIPLE CORES

 Netgraph firewall BPF firewall

Throughput,
Gbit/s

8.3 1.2

V. VIRTUAL FIREWALL APPLIANCE IN THE CLOUD

COMPUTING ENVIRONMENT

Information security in the cloud is a hot topic today [5].
There are no standards implemented in this area, but a lot of
ideas were proposed. One of the major issues in virtualized
systems security is an access control between virtual
machines. Virtual machines communicate using network
bridges in host system. Network bridge is implemented in
Linux kernel and supports 802.1d standard. It can also be
replaced by open vSwitch which supports more features like
open flow, vlans, QoS, or proprietary bridge drivers, such as
VMware vSwitch or Nexus 1000V. The paper proposes a
solution which allows controlling traffic between virtual
machines and having central management system. A typical
distributed computing environment (cloud system) consists
of the following software and hardware components:

• Virtualization nodes;

• Storage of virtual machines and user data;

• Cluster controller;

• Cloud controller.
Cloud computing systems might be used for the wide

area of problems- from web services hosting government
infrastructure and scientific computing. In Saint-Petersburg
State Polytechnical University scientific cloud system based
on OpenStack and Xen hypervisor was implemented. The
distributed computing environment intended for solving
scientific and engineering problems is a set of various
computing resources such as virtual machines, and it has the
following features [12]:

• The environment is used by a wide range of users,
who are solving the problems of different classes;

• Virtual machines of different user groups can
operate within one hypervisor;

41Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

• A wide range of software components (CAD/CAE
applications, development tools) and operating
systems (Linux, Windows, FreeBSD) are used;

• Different hardware configurations are used.
There is a difference in information security aspects

between classic computing infrastructure, such as networks
with hardware servers and user stations and virtual cloud
environment where all resources are placed in the cloud, the
hardware resources are shared between different users
(possibly with different access rights):

• Information processing takes place on the virtual
machines under full hypervisor’s control; the
hypervisor has access to all data processed by its
virtual machines;

• Cloud software controls the resource planning and
provision; it is a new entity in the information
environment which has to be protected from the
information security threats;

• Traditional information security components, such
as hardware firewalls cannot control the internal
virtual traffic between virtual machines in one
hypervisor;

• In virtualized environments, files serve as virtual
storage devices; these files are located in the network
storages and are more exposed to threats than to hard
disks;

• Transfer of instance memory occurs when virtual
machines migrate between hypervisors; this memory
may contain confidential information.

These features lead to the specific issues of security
policy and access control in cloud systems. The environment
becomes more dynamic. When the new resource (e.g. virtual
machine) started in the cloud the security policy can be
changed in the particular hypervisor or in the whole cloud
system. For example, new virtual machine from security
group “Engineering Department” was started. It changed the
set of security groups in the particular hypervisor. So, the set
of security policy rules was changed as well. That means, it
is necessary to change the filtering rules for firewall
dynamically. It controls network traffic between virtual
machines, public network and other cloud components.
Cloud computing system consists of virtualization nodes and
cloud management services. Virtualization node is the
hypervisor software which running on powerful multicore
computing node. The domain level 0 (dom0 in terms of
hypervisor XEN or service console in terms of other
hypervisors) and virtual computing machines (domain level
U, domU) operate in virtualization.

For information security and access control (AC)
between the virtual machines that operate under a single
hypervisor, the internal (“virtual”) traffic and the external
traffic (incoming from other hypervisors and from public
networks) must be controlled. The solution of the access
control problem could be achieved through the integration of
a virtual firewall into the hypervisor; this firewall would
function under the hypervisor, but separately from the user
virtual machines. The virtual firewall domain can be defined
as “security domain” (domS). Invisible traffic filtering is an

important aspect of the network monitoring; the firewall
must not change the topology of the hypervisor network
subsystem. This can be achieved by using “Stealth”
technology [13]; a packet traffic control is invisible to other
network components. Virtual nature of firewall allows
making hardware configuration dynamic. If security policy
provides a lot of filtering rules, the number of the involved
cores and memory amount can be dynamically increased.
And vice versa, if the virtual firewall is not overloaded, it is
possible to decrease allocated resources.

Figure 8 shows the common architecture of a distributed
cloud system with integrated AC components.
Abbreviations: VM – virtual machine; domS – security
domain, virtual firewall; CSMS – the central security
management system. The CSMS central management system
generates and distributes the access control policies to all
firewalls in the system. The security domain isolates virtual
machines from the hypervisor, which prevents the possibility
of attack against the hypervisor inside the cloud.

Figure 8. Secure cloud architectrure

Multicore stealth firewall based on Netgraph to
implement traffic control between virtual machines was
used. Virtual firewall has three network interfaces: two- for
filtering and one- for management. Filtering interfaces are
connected to open vSwitch bridge. Using OpenFlow
technology channel level, the traffic routes were changed
from the standard commutation tables – all outgoing virtual
traffic routed to the incoming firewall interfaces. The
firewall evaluates traffic in the stealth mode and passes it to
outgoing network interface if it is allowed. From outgoing
filter the interface traffic routed in a normal way by using
commutation tables.

VI. CONCLUSION AND FUTURE WORK

The paper proposed the parallel traffic control model for
high performance firewalls and describes firewall prototype
implementation based on Netgraph network subsystem. The
presented multicore firewall prototype shows good
performance, up to 8.3 Gbit/s in 10Gbit networks. We also
evaluated that solution based on graph model has good
scalability. The firewall works in stealth mode and has not
physical addresses and might be integrated to existing
network topology without any changes. The firewall

42Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

software was tested in bare metal and virtualized
environments.

The traffic management model with network card
balancing requires hardware and software support side (at
least, MSI-X technology), so it cannot be used in all systems.
The second model (Netgraph nodes with queues) should
work in all systems and we propose it as preferable. But
implementation process of this model is more complicated
and should be evaluated very carefully. The model with
queues provides more control of traffic management. It
allows performing load balancing by protocol types
including nested protocols, e.g. MSI-X technology cannot
perform load balancing for PPP protocol – all PPP
connections are processed in single thread because it is
treated as one virtual connection. Node queues also allow to
override the existing Netgraph queue algorithm and to
implement priority queuing as described.

Stealth mode allows implementing the information
protection system for cloud computing environment in the
form of a dedicated security domain (domS). The security
domain can be quickly adapted to the current situation in the
network and scaled if necessary because of firewall’s virtual
nature.

Described above architecture of secure cloud can be
merged easily with low level methods of network control, for
example, with flow-based traffic measurement or packet
priority queuing management. The prototype of the
described secure cloud environment based on OpenStack and
adopted for CAD/CAE computation tasks, was created and
currently in testing at the Telematics Department of the
Saint-Petersburg Polytechnical University.

The future plan is to extend current virtual firewall
prototype functionality. The prototype has to be adapted for
work in different virtual environments such as VMware
ESXi, Xen, Xen Cloud Platform, and KVM. The process
models should be extended according to communicating
sequential processes (CSP) theory and carefully checked
because of potentially dangerous kernel operational mode.

REFERENCES

[1] Overview of Eucalyptus, 2011. URL:
http://support.rightscale.com/09-Clouds/Eucalyptus/01-
Overview_of_Eucalyptus 05.06.2012

[2] OpenStack: An Overview, 2012. URL:
http://www.openstack.org/downloads/openstack-overview-
datasheet.pdf 05.06.2012

[3] About the OpenNebula Technology, 2012. URL:
http://opennebula.org/about:technology 05.06.2012

[4] Cobbs A., 2003. All about Netgraph URL:
http://www.daemonnews.org/200003/netgraph.html 05.06.2012

[5] Cloud Security Alliance, Top Threats to Cloud Computing, 2010.
URL:
http://www.cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
05.06.2012

[6] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia. 2010. A view of cloud computing. Commun. ACM 53, 4
(April 2010), pp. 50-58.

[7] A. Silinenko. Access control in IP networks based on virtual
connection state models: PhD. Thesis 05.13.19: / SPbSPU, Russia,
2010

[8] V. Zaborovsky, V. Mulukha. Access Control in a Form of Active
Queuing Management in Congested Network Environment //
Proceedings of the Tenth International Conference on Networks, ICN
2011, pp. 12-17

[9] Zaborovsky V., Lukashin A., Kupreenko S., 2010. Multicore platform
for high performance firewalls. High performance systems //
Materials of VII International conference – Taganrog, Russia.

[10] Vijay Bollapragada, Russ White, and Curtis Murphy. Inside Cisco
IOS Software Architecture // Cisco Press 2008. 240 pages.

[11] Improving Network Performance in Multi-Core Systems
http://www.intel.com/content/www/us/en/ethernet-
controllers/improving-network-performance-in-multi-core-systems-
paper.html

[12] Alexey Lukashin, Vladimir Zaborovsky, and Sergey Kupreenko.
Access Isolation Mechanism Based On Virtual Connection
Management In Cloud Systems // 13th International Conference on
Enterprise Information Systems (ICEIS 2011), pp. 371 – 375

[13] V. Zaborovsky, V. Mulukha, A. Silinenko, and S. Kupreenko.
Dynamic Firewall Configuration: Security System Architecture and
Algebra of the Filtering Rules // Proceedings of The Third
International Conference on Evolving Internet – INTERNET 2011,
June 19-24, 2011, Luxembourg City, Luxembourg, pp. 40-45

43Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

