
Evaluating an Open Source eXtensible Resource Identifier Naming System
for Cloud Computing Environments

Antonio Celesti, Francesco Tusa, Massimo Villari and Antonio Puliafito
Dept. of Mathematics, Faculty of Engineering, University of Messina

Contrada di Dio, S. Agata, 98166 Messina, Italy.
e-mail: {acelesti, ftusa, mvillari, apuliafito}@unime.it

Abstract—Clouds are continuously changing environments
where services can be composed with other ones in order
to provide many types of other services to their users. In
order to enable cloud platforms to manage and control their
assets, they need to name, identify, and retrieve data about
their virtual resources in different operating contexts. These
tasks can not be easily accomplished using only the DNS
and this leads cloud service providers to design proprietary
solutions for the management of their name spaces. In this
paper, we discuss a possible cloud naming system based on
the eXtensible Resource Identifier (XRI) technology. More
specifically, we evaluate the performance of OpenXRI, one of
its open source implementations, simulating typical cloud name
space management tasks.

Keywords-Cloud Computing, Naming System, XRI,
OpenXRI.

I. INTRODUCTION

Nowadays, cloud providers supply many kinds of In-
frastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS) to their users, e.g.,
common desktop clients, companies, governments, organi-
zations, and other clouds. Such services can be arranged
composing and orchestrating several Virtual Environments
(VEs) or Virtual Machines (VMs) through hypervisors.

The overwhelming innovation of cloud computing is that
cloud platforms can react to events internally rearranging the
VEs composing their services pushing down management
costs, and the interesting thing is that cloud users are not
aware of changes, continuing to use their services without
interruptions according to a priori Service Level Agreements
(SLAs). For example, when a physical server hosting an
hypervisor runs out or is damaged, the cloud can decide
to move or “migrate” one or more VEs into another server
of the same cloud’s datacenter acting as virtualization in-
frastructure. Further migrations can be triggered for many
other reasons including power saving, service optimization,
business strategy, SLA violation, security, etcetera. In ad-
dition, if we consider the perspective of cloud federation
where clouds cooperate sharing computational and storage
resources, a VE might migrate also into a server of another
cloud’s virtualization infrastructure. Another business model
which can take place in federated scenarios might be the rent
of a VEs from a cloud to another.

Such a dynamic, variegated, and continuously changing
scenario involves no just cloud services and VEs, but also
other cloud entities such as physical appliances and cloud
users. All these entities need to be named and represented
both in human-readable and in machine-readable way. More-
over, they need also to be resolved with appropriate data
according to a given execution context. For example, as a
VE needs to be identified by a name, it may happen that
different entities (e.g., cloud software middlewares, cloud
administrators, cloud user, etcetera) may be interested to
resolve that name retrieving either data concerning general
information on the VE (e.g., CPU, memory, kernel, operating
system, virtualization format version), data regarding the
performance of the VE (e.g., used CPU and memory), or
by means of a Single-Sign-On (SSO) authentication service
(e.g., using an Identity Provider (IdP) asserting the trustiness
of the VE when it migrate from a place to another in
order to avoid identity theft), and many others. In addition,
the scenario becomes more complex if we consider the
fact that these entities might hold one or more names and
identifiers also with different levels of abstraction. In our
opinion, for the aforementioned concerns the management
and integration of cloud name spaces can be difficult because
such a scenario raises several issues concerning naming
and service location for all the involved entities and the
traditional DNS-based systems along with URL, URI, and
IRI standards are inadequate for cloud computing scenarios.

In order to discourage a possible evolving scenario where
each cloud could develop its own proprietary cloud nam-
ing systems with compatibility problems in the interaction
among different cloud name spaces, this paper aims to
propose a standard approach for the designing of a seamless
cloud naming system able to manage and integrate indepen-
dent cloud name spaces also in a federated scenario.

The paper is organized as follows: Section II provides a
brief description of cloud name spaces. Section III describes
the state of the art of naming systems and the most widely
adopted solutions in distributed systems and in ubiquitous
computing environments. In Section IV, we provide an
overview of the XRI technology motivating how it suits the
management of cloud name spaces. In Section V we discuss
OpenXRI [1], one of the XRI open source implementations,
showing how to use it as cloud naming system. An analysis

26

INTERNET 2011 : The Third International Conference on Evolving Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-141-0

of the performances of OpenXRI managing a simulated
cloud name space is discussed in Section VI. Conclusions
and lights to the future are summarized in Section VII.

II. CLOUD NAME SPACE ISSUES

In this Section, we briefly summarize the main cloud
name space issues which have already been analyzed in
our previous work [2]. Despite the internal cloud structure,
we think cloud entities have many logical representations in
various contexts. In addition, there are many abstract, struc-
tured entities (e.g., a distributed cloud-service built using
other services, each one deployed in a different VE). These
entities are characterized by a high-level of dynamism:
allocations, changes and deallocations of VEs may occur
frequently. Moreover, these entities may have one or more
logical representations in one or more contexts. But which
are the entities involved in cloud computing? In order to
describe such entities, we introduce the generalized concept
of Cloud Named Entity (CNE). A CNE is a generic entity
indicated by a name or an identifier which may refer both
to real/abstract and simple/structured entity. As depicted in
Figure 1, examples of CNE may be a cloud itself, a cloud
federation, a virtualization infrastructure, a server running an
hypervisor, a VE, a cloud service, or cloud users including
companies, governments, universities, cloud technicians, and
desktop clients.

Figure 1. Examples of generic CNEs.

In our abstraction, we assume that a CNE is associated
to one or more identifiers. As a CNE is subject to frequent
changes holding different representations in various Cloud
Contexts (CCNTXs), the user-centric identity model [3]
seems to be the most convenient approach. We define a
CCNTX as an execution environment where a CNE is repre-
sented by one or more identifiers and has to be processed. In
this work, we assume a CNE is represented by one or more
CCNTX Resolver Server(s), which are servers returning data
or services associated to a CNE in a given CCNTX. Figure

2 depicts an example of CNE associated with six identities
within four CCNTXs. The target CNE holds identity 1, 2

Figure 2. Examples of a generic CNE associated to several CCNTXs.

inside CCNTX A, identity 3 inside CCNTX B, identity
4 inside CCNTX C, and identity 5, 6 inside CCNTX D.
We define a Cloud Naming System (CNS) as a system that
maps one or more identifiers to a CNE. A CNS consists
of a set of CNEs, an independent cloud name space, and a
mapping between them. A cloud name space is a definition
of cloud domain names. Instead, a name or identifier is a
label used to identify a CNE. A client resolver which needs
to identify a CNE in a given CCNTX performs a resolution
task. Resolution is the function of referencing an identifier
to a set of data or services describing the CNE in several
CCNTXs.

III. RELATED WORK AND BACKGROUND

Cloud computing is generally considered as one of the
more challenging research field in the ICT world. It mixes
aspects of Utility Computing, Grid Computing, Internet
Computing, Autonomic computing and Green computing
[4], [5]. As previously discussed, in such new emerging
environments, even though naming and resource location
raise several issues, there have not been many related works
in literature yet regarding naming systems managing cloud
name spaces, as DNS is still erroneously considered the
“panacea for all ills”. In fact, DNS presents some problems:
it is host centric, unsuitable for complex data and services
location, and it is not suited to heterogeneous environments.
Possible improvements might come from the naming sys-
tem works in high-dynamic, heterogeneous and ubiquitous
environments. An alternative to the DNS is presented in
[6]. The authors propose a Uniform Resource Name System
(URNS), a decentralized solution providing a dynamic and
fast resource location system for the resolution of miscella-
neous services. Nevertheless, the work lacks of an exhaustive
resource description mechanism. With regard to naming

27

INTERNET 2011 : The Third International Conference on Evolving Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-141-0

system in ubiquitous computing, in [7] the authors propose
a naming system framework for smart space environments.
The framework aims to integrate P2P independent cloud
naming systems with the DNS, but appears unfitted to
be exported in other environments. In addition it aims to
localize and identify an entity that moves from a smart
space to another using as description mechanism the little
exhaustive DNS resource records. A hybrid naming system
that combines DNS and Distributed Hash Table (DHT)
is presented in [8]. The authors adopt a set of gateways
executing a dynamic DNS name delegation between DNS
resolver and DHT node.

Regarding naming, name resolution, and service location
in federated cloud environments, in our previous work [2],
besides highlighting the cloud name space issues previously
discussed, we proposed a generic theoretical cloud naming
framework for the management of cloud name spaces. As
possible representation of the cloud naming framework we
chose XRI [9] and the eXtensible Resource Descriptor
Sequence (XRDS) [10] technologies which are also the focus
of this work. How will be described in the following Sections
the aim of this paper is to evaluate the performances of
several operational tasks using the OpenXRI implementation
by means of the simulation of typical cloud name space
management tasks.

IV. AN XRI NAMING SYSTEM FOR CLOUD COMPUTING

In this Section, after a brief description the XRI tech-
nology, we motivate how it can help the cloud name space
management.

The XRI protocol provides a standard syntax for identi-
fying entities, regardless any particular concrete represen-
tation. The XRI system is similar to DNS, including a
set of hierarchical XRI authorities but more powerful. The
protocol is built on URI (Uniform Resource Identifiers)
and IRI (Internationalized Resource Identifiers) extending
their syntactic elements and providing parsing mechanisms.
Particular types of URI are URN and URL. Since an URL
is also an URI, the protocol provides a parsing mechanism
from XRI to URL. Therefore XRI is also compatible with
any URN domain. XRI supports persistent and reassignable
identifiers by means of i-numbers (Canonical ID) and i-
names (Local ID). It also provides four types of synonyms
(LocalID, EquivID, CanonicalID, and CanonicalEquivID) to
provide robust support for mapping XRIs, IRIs, or URIs to
other XRIs, IRIs, or URIs that identify the same target entity.
This is particularly useful for discovering and mapping to
persistent identifiers as often required by trust infrastruc-
tures. XRI enable organization to logically organize entities
building XRI tree. According to the XRI terminology, each
entity in the tree is named authority. The protocol provides
two additional options for identifying an authority: Global
Context Symbols (GCS) and cross-references. Common
GCS are “=” for people, “@” for organization, and “+” for

generic concepts. For example the xri://@XYZ*marketing
indicates the marketing branch of an organization named
XYZ, where the “*” marks a delegation.

An authority is resolved by means of an XRDS document
representing a simple, extensible XML resource description
format standard describing the features of any URI, IRI, or
XRI-identified entity in a manner that can be consumed by
any XML-aware system. Each XRDS describes which types
of information are associated to an authority an the way in
which they can be obtained. Using HTTP, XRI resolution
involves two phases: authority resolution which is the phase
required to resolve a XRI into a XRDS document from an
XRI Authority Resolution Server (ARS), and Service End-
Point Selection which is the phase of selection of the SEP
server (e.g., web service, service provider, web application)
returning the data describing the entity in a given context.
The same SEP server can also return different data of the
same authority.

In our opinion, as XRI meets the requirements of cloud
name space management, it can be adopted to develop
a seamless mechanism for retrieve data regarding CNEs.
As XRI is compatible with IRI naming systems, there is
not the need to use a unique global naming system, even
though this would be possible. This feature allows clouds
to manage their own XRI naming systems, mapping them
on the global DNS maintaining the compatibility with the
existing naming systems. Moreover, with XRI a cloud can
keep different trees representing IaaS, PaaS, and SaaS. In
addition, such a technology can be used for both identify
and resolve VMs and whole *aaS by means of the resolution
of XRI authorities. In addition, the XRDS document can
be used to describe a XRI authority associated to a target
service of VM, indicating how to resolve it by means of the
corresponding SEP.

For example the cloud service provider may need to
retrieve three types of information about an authority rep-
resenting a VM, resolving it in three different ways. In the
fist way the VM has to be resolved by means of general
data (e.g., CPU, memory, kernel, operating system), in the
second way the VM has to be resolved by means of real
time performance data (e.g., amount of used CPU and
memory used), in the third way instead the VM has to
be resolved by means real time data regarding an internal
running application (e.g., the percentage of processed data).
Such a situation can be addressed by mean of three different
XRDs inside the XRDS document corresponding to the VM,
authority, each one pointing to a target SEP server.

V. HOW TO MANAGE CLOUD NAME SPACES USING AN
OPENXRI ARCHITECTURE

Regarding the implementation of the XRI technology, cur-
rently there are not many available solutions on the market.
Nowadays, in our opinion, the OpenXri Project is one of
the best open source initiatives which aims to promote the

28

INTERNET 2011 : The Third International Conference on Evolving Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-141-0

development of XRI-based applications. Therefore, in this
Section we describe how to implement a CNS using the java
libraries developed by the Openxri Project. Our practice of
CNS includes the following components: the XRI Authority
Resolution Server (ARS) 1.2.1, the XRI Client Resolver
(CR), the XRI Cloud Name Space Management (CNSM)
front-end and the SEP Server. The OpenXRI has provided
the java libraries to arrange the following components:

• The ARS 1.2.1, a server for the resolution XRI author-
ities (i.e., in our scenario CNEs). It is provided along
with a web application to allow administrators to create,
move, and delete authorities and thus managing XRI
trees.

• The XRI CR, a software client which resolves an
authority queering a ARS, retrieving the corresponding
XRDS document, and performing a “SEP Selection
Task” choosing the right SEP Server acting in a given
CCNTX for the resolution of an XRI authority. The
XRI CR is used by each entity interested to resolve
a CNE name, e.g., another cloud, a desktop client, a
service provider, an IT society, and so on.

The XRI ARS developed by the Openxri Project provides
an administration web interface where an user can inter-
actively manage his name space. Such a condition is very
penalizing for our scenario, as we assumed that the cloud
name space should be also managed automatically by the
cloud middleware according to the business model in force
on the cloud. In fact, in our opinion there are circumstances
where the interaction with an administrator is required
and other cases where the cloud has to arrange its assets
automatically by itself. For such reasons we have designed
the XRI CNSM front-end offering both a standard SOAP
web service interface in order to make the naming system
controllable by any cloud platform, and additional specific
utilities for the name space management of cloud computing
environments. The choice of using SOAP is motivated by
the fact that it provides a consolidated framework offering
security an Quality of Service (QoS) support. At any rate,
nothing prevents the possibility to use another web service
technology. In addition, SEP Servers have been developed
by means of Restfull web services. The aim of the SEP
Server is to resolve CNE name in a given CCNTX sending
data in XML format to the XRI CR. In this case, the choice
of the Restfull technology has been motivated by the fact that
it offers better performances than SOAP in term of response
time (this is very useful especially when it is needed to
retrieve real-time data, e.g., the performances of a VM). At
any rate, also in this case, nothing prevents the possibility
to use another web service technology.

Security, is a hot topic in cloud computing. For this
reason, even though security is not the focus of this paper
is worthwhile to spend a few words about the security of
the proposed CNS. Regarding the CNE name resolution, the

XRI technology natively supports secure resolution using
the Security Assertion Markup Language (SAML) [11]. As
far as it is concerned the interaction between the cloud
middleware and the XRI CNSM front-end, it can be easily
secured using the WS-Secutity features [12] of the SOAP
protocol. In the end, considering the information retrieval of
an XRI software client from the Restful SEP Server, security
can be accomplished using https.

In Figure 3 is depicted an example of CNE name res-
olution. In step 1, the XRI CR software wants resolver a
CNE name and contacts the XRI ARS making a resolution
request. In step 2, the XRI ARS resolves the name and
responds to the XRI CR sending the XRDS document
corresponding to the the CNE name. In step 3 the XRI CR
performs a SEP selection task choosing the server for the
resolution of the CNE name in a given CCNTX to which
performing a Restfull web service request. In step 4 SEP
server responds with the data resolving the CNE name in
the corresponding CCNTX, so that the XRI CR can process
the obtained XML data. In the rest of the paper, as there are

Figure 3. Example of CNE name resolution in a CNS.

not limits to the type of CNE which our architecture is able
to manage, we focus on the name space management and
information retrieval of VMs.

As clouds are highly dynamic environments the logical
and physical arrangement of its resources can continuously
change. For example a VM can be either physically moved
from a server running a hypervisor to another. Figure 4
depicts such a situation presenting an example of XRI name
space changing due to a CNE name movement. In the XRI
name space tree on the left of the Figure at t time the “VE2”
CNE name is logically mounted under the “service2” CNE
name, instead, on the right of the Figure, at t + 1 time is
logically mounted under “service1”.

VI. AUTHORITY MOVING PERFORMANCES

In this Section, we present several experiments on a real
testbed in order to evaluate our XRI CNS implementation.

29

INTERNET 2011 : The Third International Conference on Evolving Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-141-0

Figure 4. Example of CNE name movement.

More specifically, we focused on the evaluation of the
costs due to the movement of XRI authorities (i.e. CNE
names) within the XRI tree representing the cloud name
space. In order to evaluate the goodness of the OpenXRI
architecture for the management of cloud name spaces, in
our opinion it is necessary to understand the overall behavior
of the architecture under particular conditions of workload.
As XRI follows a hierarchical approach for the management
of name spaces using one or more tree structures, we
decided to stress the operations of XRI authority movement
in such structures considering two possible cases: “Wide
Tree” and “Deep Tree”. Considering the “Wide Tree” case,
we performed movement tasks with 10, 100, and 1000 XRI
authority. Instead, as far as it is concerned the “Deep Tree”
case, we performed tests with 10, 20, and 30 levels in
the XRI tree structure. Experiments have consisted in the
movement of the last authority on the right under a the first
authority on the left of the XRI tree.

Our experiments have been performed considering a
testbed deployed inside a computer running a Redhat En-
terprise Linux AS Release 3.0.8 operating system having
the following hardware features: Blade LS21 AMD Opteron
Biprocessor Dual Core 2218 2.6GHz 8GB RAM. Instead,
in order to emulate a cloud middleware interacting with the
SOAP web service interfaces of the CNSM front-end, we
used JMeter, an open source automatic client tool, which has
been deployed within another computer. More specifically,
we store a typical cloud behavior pattern and then we applied
it repetitively.

To estimate the workload of OpenXRI ARS 1.2.1 we
evaluated the Response Time of the system expressed in
msecs. We have measured the time interval between the
request phase to the XRI CNSM front-end at Ts and the
response time at Tr, taking place in the receiving phase. In
our graphs we reported the total time spent to accomplish
each task: Tt = Ts + Tr. The exchange of requests and
responses is measured in a local network (LAN, without any
Internet connection), since the measurements are not affected
from the network communication parameters (e.g., through-
put, delays, jitter, etcetera). The series of tests executed
(50 runs for each simulation) guarantee a wide coverage of

possible results. The confidence interval (at 95%) indicates
the goodness of our analysis. Figure 5 summarizes the
response time trend regarding the authority movement tasks
using the “Wide Tree” and considering 10, 100, and 1000
authorities. On the x-axis we have represented the number of
considered nodes, whereas on the y-axis we have represented
the response time expressed in milliseconds. Observing the

Figure 5. Authority movement tasks in the “Wide Tree” case with 10,
100, and 1000 authorities.

graph, we notice that with 1000 nodes we have a response
time of 40 seconds, a rather high value, but reasonable
considering the presence of 1000 operating VEs. Instead, in
the case of 10 and 100 nodes, the “Wide Tree” needs a time
that ranges from about 1 to 5 seconds in order to perform
authority movement tasks. This latter results are reasonable
in cloud environments, in particular, if we assume a scenario
where a single VE needs to be boot up, from an unrunning
state. Usually, the time needed for the VE boot-up is higher
than the time spent by OpenXRI ARS for any type of tree
reconfiguration.

Instead, the graph depicted in Figure 6 shows the response
time trend concerning authority movement tasks considering
a “Deep Tree” with 10, 20, and 30 tree levels. On the x-
axis we have represented the number of levels, whereas on
the y-axis we have represented the response time expressed
in milliseconds. Observing the graph the worst case (an
authority movement within a tree with 30 levels) implies

Figure 6. Authority movement tasks in the “Deep Tree” case with 10, 20,
and 30 levels.

30

INTERNET 2011 : The Third International Conference on Evolving Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-141-0

12 seconds. In reality, the case under analysis may be
considered as an event with a low probability in cloud
computing environments. In fact, it represents an hierarchical
structure with 30 levels in which we should identify 30
CNEs with hierarchical relationships. However, with a few
levels, and with our hardware configuration the response
time we can achieved is rather low.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper we presented a solution for identifying and
resolving VMs and more in general various other CNEs in
different operating cloud contexts. Particularly, we presented
the XRI technology as a possible solution to these problems,
evaluating one of its open implementation, that is OpenXRI.
This works has highlighted how several tasks can be accom-
plished using OpenXRI for the management of cloud name
spaces. The conducted experiments show the goodness of
OpenXRI and how it is particularly suitable to our goals. In
future works we are planning to apply some improvements
to the OpenXRI Authotity Resolution Server 1.2.1 for the
accomplishment of the tasks needed for the management of
cloud name spaces.

ACKNOWLEDGEMENTS

The research leading to the results presented in this paper
has received funding from the European Union’s Seventh
Framework Programme (FP7 2007-2013) Project RESER-
VOIR under grant agreement number 215605 and from
the Union’s Seventh Framework Programme (FP7 2007-
2013) Project VISION-Cloud under grant agreement number
217019.

REFERENCES

[1] OpenXRI Project, XRI applications and libraries,
http://www.openxri.org/.

[2] A. Celesti, M. Villari, and A. Puliafito, “Ecosystem of cloud
naming systems: An approach for the management and inte-
gration of independent cloud name spaces,” (Los Alamitos,
CA, USA), pp. 68–75, IEEE Computer Society, 2010.

[3] G.-J. Ahn, M. Ko, and M. Shehab, “Privacy-enhanced user-
centric identity management,” in IEEE International Confer-
ence on Communications, ICC ’09, pp. 14–18, June 2009.

[4] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and
grid computing 360-degree compared,” in Grid Computing
Environments Workshop, 2008. GCE ’08, pp. 1–10, 2008.

[5] R. L. Grossman, “The case for cloud computing,” in IT
Professional, vol. 11, pp. 23–27, March 2009.

[6] D. Yang, Y. Qin, H. Zhang, H. Zhou, and B. Wang, “Urns: A
new name service for uniform network resource location,”
in Wireless, Mobile and Multimedia Networks, 2006 IET
International Conference, pp. 1–4, 2006.

[7] Y. Doi, S. Wakayama, M. Ishiyama, S. Ozaki, T. Ishihara,
and Y. Uo, “Ecosystem of naming systems: discussions on a
framework to induce smart space naming systems develop-
ment,” in ARES, p. 7, April 2006.

[8] Y. Doi, “Dns meets dht: treating massive id resolution using
dns over dht,” in Applications and the Internet International
Symposium, pp. 9–15, January 2005.

[9] Extensible Resource Identifier (XRI) Syntax V2.0, Committee
Specification, OASIS, 2005.

[10] Extensible Resource Identifier (XRI) Resolution V2.0, Com-
mittee Draft 03, OASIS, 2008.

[11] “Security assertion markup language, oasis, http://www.oasis-
open.org/committees/security.”

[12] “Web services security: Soap message security 1.0, oasis,
http://www.oasis-open.org/committees/wss.”

31

INTERNET 2011 : The Third International Conference on Evolving Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-141-0

