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Abstract—Processing of visual data, such as object recognition 
and image segmentation, is based on data classification. In this 
paper architectures of ensembles of classifiers are discussed 
which show superior accuracy in respect to a single classifier.  
To achieve comparable response time the parallel computer 
architectures need to be considered, however. In the paper we 
present a parallel implementation on a graphic card of an 
ensemble of one-class support vector machines for image 
segmentation.  We show that the parallel architecture of the 
ensemble of classifiers allows both, the high accuracy and 
speed up factor of two orders of magnitude compared with the 
serial software implementation. 
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I.  INTRODUCTION 
Data processing highly relies on classification methods. 

The two key parameters of the classifiers are their accuracy 
and response time. However, a choice of a right classifier to 
a given task depends on a number of factors, such as a 
number of training data, their type as well as data 
dimensionality, and frequently is a matter of the skills and 
experience of a system designer [7][15][18]. The choice of 
the right classifiers is especially important in the time critical 
and massive data processing systems. To this group belong 
vision processing systems addressed in this paper. They are 
frequently used in such tasks as face and gesture recognition, 
public area surveillance, driving assistance, and many more.  

In this paper implementation issues of different 
architectures of ensembles of classifiers employed to the 
tasks of image processing are discussed. Such ensembles 
show superior accuracy compared to a single classifier, as 
reported in the literature [3]-[5][7]-[11][19]. However, 
operation of many classifiers leads to excessive response 
time of such systems if implemented in serial software. A 
solution to this problem is parallel operation of the member 
classifiers which is possible and effective if their operations 
are independent as much as possible. 

In this paper a number of parallel architectures of 
classifiers is discussed which allow functional and data 
decomposition of the classification problem and which aim 
at full utilization of the multi-core processors, graphic cards 
(GPU), as well as field programmable gate arrays (FPGA) 
[20]. Our discussion is exemplified with the ensemble of 

one-class support vector machines (OC-SVM) applied to 
image segmentation, which is based on our previous work 
[3][4]. In this paper, we present its parallel implementation 
on the graphic card which allows real-time operation. We 
also show that simple application of the data splitter and then 
a group of cooperating classifiers usually leads to a better 
performance compared to a single classifier trained with all 
available training data.  

The paper is organized as follows: In Section II, details 
of the architecture of ensembles of classifiers are discussed. 
In Section III, details of the data splitter and base classifiers 
are provided. In Section IV, details of the parallel 
implementation are discussed. Finally, the paper ends with 
experimental results discussed in Section V, as well as with 
conclusions presented in Section VI.  

II. ARCHITECTURE OF ENSEMBLES OF CLASSIFIERS 
In this section, we discuss two of the most popular 

architectures of ensembles of classifiers: the serial and the 
parallel ones. Architecture of the serial cascade of classifiers 
is shown in Fig. 1. Input data is processed in the pipeline like 
structure. Each classifier filters out data, passing the 
positively classified ones to the next one in the chain, and so 
on.  
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Figure 1.  Architecture of the serial cascade of classifiers. Input data is 
processed in the pipeline structure. Each classifier filters out data, passing 
the positivly classified ones to the next in the chain, and so on. Training is 
done with the AdaBoost to amplify response on poorly classified examples. 

An example of such a system is the face detection 
method by Viola and Jones [19]. Training is done with the 

14Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-258-5

INTENSIVE 2013 : The Fifth International Conference on Resource Intensive Applications and Services



AdaBoost which amplifies response on poorly classified 
examples. Such strategy imposes data decomposition into 
sets of usually decreasing number of elements [9]. 

Data processing in a serial chain of classifiers is effective 
if member classifiers are able to operate in a pipeline mode. 
One of the requirements in this case is that each classifier in 
the chain consumes the same time quant for data processing. 
The penalty of using a cascade is a delay necessary to fill up 
the processing line which is proportional to the number of 
used classifiers. However, in practice these requirements are 
not easy to fulfill.  

On the other hand, architecture with a parallel ensemble 
of classifiers is depicted in Fig. 2. In this case all classifiers 
are assumed to operate independently which is a big 
advantage considering implementation and execution time. 
However, all partial responses need to be synchronized and 
collected by the answer fusion module which outputs a final 
response. There are different methods of training of the 
member classifiers Ci, shown in Fig. 2, as is discussed in 
many publications [7]. Some of the most popular are data 
bagging and data clustering, which will be discussed in the 
next sections. 
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Figure 2.  Parallel cascade of classifiers. Input data is split and fed to all 
classifiers in the ensemble. A final response is provided from the fusion 
module. To obtain diversity of the ensemble either different classifiers are 
used and/or different data partitions are used obtained from bagging or 
clustering. The architecture allows parallel operation of the member 
classifiers. 

There are many examples of the parallel classifier 
systems organized as shown in Fig. 2. In this paper we 
exemplify our discussion with parallel implementations of 
the two of our systems. The first one employs tensor based 
classifiers (HOSVD) trained with different data partitions 
obtained with data bagging [5]. The system was tested with 
the problem of handwritten character recognition showing 
significantly better results when compared to the single 
HOSVD classifier. The second of the systems, discussed 
with more details in this paper, contains one-class SVM 

classifiers [16][17]. Each of them is trained with a separate 
partition obtained from data clustering with the k-means and 
the kernel k-means methods [3][4]. This type of ensemble is 
discussed in further sections of this paper, whereas details of 
the tensor based system can be accessed in [5]. 

III. DESIGN OF THE BUILDING BLOCKS 
In this section, we discuss details of blocks of the parallel 

systems of ensembles of classifiers shown in Fig. 2. 

A. Data Splitters 
The role of a data splitter is to arrange the training 

process in order to obtain the best accuracy of the ensemble. 
The two tested methods are as follows: 

• Bagging - consists of creating a number of data sets 
Di from the training set D with a uniform data 
sampling with replacement [18]. As shown by 
Grandvalet, bagging reduces variance of a classifier 
and improves its generalization properties [6]. Each 
set Di is used to train a separate member of the 
ensemble, which contains less data than D. Thanks to 
this data decomposition a better accuracy can be 
obtained due to a higher diversity. Also, the problem 
of processing massive data can be greatly reduced. It 
is also possible to extend the ensemble with a new 
classifier if new training data are available at a later 
time.   

• Data clustering - consists in usually unsupervised 
partitioning of the input dataset D into typically 
disjoint sets Di [7][10]. In our previous systems the 
k-means as well as their fuzzy and kernel versions 
were used. In this case a first step is the choice of 
data centers. Then data distances to each center are 
computed and the points are assigned to their nearest 
centers. After that, positions of the centers are 
recomputed to account for new members of that 
partition. The procedure follows until there are no 
changes in data partitioning [4][18]. Similarly to 
bagging, splitting by clustering also allows better 
accuracy and data decomposition useful in parallel 
realizations. 

B. Selection of the Member Classifiers 
Choice of the member classifiers depends on many 

factors, such as type and dimensionality of data. However, 
the classifiers need to be chosen in a way to assure the best 
accuracy and speed of operation, especially when processing 
massive vision data. Good results were obtained in the tested 
systems using the aforementioned tensor classifiers, as well 
as using the OC-SVMs which we address in this section. 
Further references are provided in [4][5]. 

The binary SVMs were introduced by Cortes and Vapnik 
[1]. Their one-class version is due to Tax and Duin [16][17], 
as well as to Schölkopf and Smola [13]. Training of the OC-
SVM relies on computation of the parameters of the 
hyperplane w that separates data points Di with the maximal 
margin from the origin, as shown in Fig. 3. The separating 
hyperplane is defined as follows [13] 
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, 0,ρ− =w x  (1)

where 〈w,x〉 is a scalar product between vector w and x. 
Further, to allow some outliers in the training set Di with N 
data points, the slack variables ξn are introduced. This leads 
to the following convex optimization problem 
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where ν is a training parameter that controls allowable 
number of outliers. The above optimization problem can be 
solved with the Lagrange multipliers αn, as follows  
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Figure 3.  Hyperplane separating a single class of data in the feature space. 
Support vectors are on the hyperplane. An outlier (black square) is a data 
on the second side of the hyperplane. This one is controlled with the slack 
variable. 

 Data points for which αn>0 lie on the hyperplane w. 
These are called support vectors (SV). Solution to (3) results 
with a set of SV and associated scalar multipliers αn. The 
hyperplane w can be represented as the following weighted 
sum of the SVs 

n n
n SVs

α
∈

= ∑w x , (4)

Taking any support vector xm a distance of the hyperplane w 
to the origin can be computed as the following scalar 
product 

, ,m n n m
n SVs

ρ α
∈

= = ∑w x x x . (5)

The real power of OC-SVM is their operation in the so 
called feature space. This is obtained replacing the inner 
product in (5) with the kernel function. For the latter the 
most frequent choice is the Gaussian kernel function, 
defined as follows [13][14] 

( )
2

, i j

G i jK e γ− −= x xx x , (6)

where γ is a parameter that control a spread of the kernel. 
During classification of a test point xx its distance to the 
hyperplane in the feature space is computed. This can be 
expressed as K(w,xx), which if is greater than ρ indicates 
that a point belongs to the class. Thus, a point xx is classified 
if the following inequality is fulfilled 
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. 
(7)

To speed up response of the system the value on the right 
side of (7) can be precomputed to a scalar p.  

Thanks to the relatively simple classification rule (7) its 
implementation on a graphic card is also not very 
complicated, as will be discussed in implementation section. 

C. Fusion Module 
Partial answers of the members of the ensemble need to 

be collected and used to produce a final response of the 
system. This is a task of the output fusion module, shown in 
Fig.2. Again, there are many algorithms for this task from 
which the following two were tested in the discussed 
ensembles: 

• Majority voting 
• Weighted majority voting 

Further details are provided in the references [4][5][7][9]. 

IV. IMPLEMENTATION OF THE ENSEMBLE OF CLASSIFIERS 
Two implementations were made in order to show 

properties of the proposed ensemble of classifiers. The first 
one is the serial software in C++ which uses the HIL library 
described in [2]. On the other hand, the parallel 
implementation of the system relies on the graphic cards 
with the CUDA (Compute Unified Device Architecture) 
environment [21]. CUDA is architecture of the parallel 
computing platform and programming model of the majority 
of the graphic cards by nVidia [21]. Two graphic cards were 
used in the tests: the FX3800M and the GTX280. Results of 
comparison of serial and parallel implementations are 
described in the next section. 

Implementation of the CUDA kernel function 
SVM_Answer_Kernel, which carries out the OC-SVM 
classification, is shown in Fig. 6. This kernel is launched in 
parallel on the GPU devices. In the lines 8-11 of the listing in 
Fig. 6 an offset to the data buffer is computed to find out 
which part of data a kernel is assigned to. Then the 
Compute_SV_DistanceTo kernel function is invoked (shown 
in the line 16 of Fig. 6), which computes a distance of a test 

16Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-258-5

INTENSIVE 2013 : The Fifth International Conference on Resource Intensive Applications and Services



point (a color pixel) to the hyperplane found in the training 
process. A training is done off line exclusively on the CPU. 
Found distance to the hyperplane of each of the test points is 
saved in the output buffer, as shown in the code lines 17-19 
in Fig. 6. 

Finally, the CUDA implementation of the Gaussian 
kernel is presented in Fig. 8. The function exp_kernel 
operates in accordance with (6). It can process data of any 
length which is provided by the kDataDim input parameter. 
In the case of color pixels kDataDim=3. 

V. EXPERIMENTAL RESULTS 
The ensemble of classifiers was tested in a time 

demanding task of human face detection from color images. 
For the training, manually gathered samples of pixels of 
human skin were used. However, the initial training set was 
clustered into three disjoint partitions with the k-means 
method, as described in Section IIIA. Then each of these 
partitions was used to train a separate base OC-SVM 
classifier. The parameters ν from (2) and γ from (6) of each 
of the OC-SVM were found by the grid search method. 
Operation of the system on the few color frames is depicted 
in Fig. 4. 

 
Input color image Face segmentation map 

 

 

 

Figure 4.  Examples of real-time face segmentation with the ensemble of 
three OC-SVM classifiers. Color images shown in the left column. Face 
segmentation maps shown in the right column. 

Found parameters of the three base OC-SVM classifiers 
of the ensemble are shown in TABLE I. The parameter #SVs 
denotes number of support vectors and ρ is defined in (5). 

TABLE I.  PARAMETERS AND CONFIGURATION OF THE ENSEMBLES 
USED IN THE EXPERIMENTS 

No. #SVs γ ν ρ 

1 5 0.016279 0.0001262 0.780138 

2 5 0.011379 0.0001198 0.864579    

3 5 0.013299 0.0001626 0.783055    
 
Accuracy of such ensembles in application of image 

segmentation reaches up to 0.85-0.90 of the F measure [18]. 
Almost in all examples an application of more than one 
classifier in an ensemble leads to the higher accuracy, as also 
discussed in [4]. However, thanks to their parallel 
architecture the real-time processing of HD images is easy to 
achieve. A plot of a speed-up ratio of the serial C++ vs. 
parallel CUDA implementation of the ensemble with the 
OC-SVM classifiers is shown in Fig. 5. 

 

 

Figure 5.  Speed-up ratio of the serial C++ vs. parallel CUDA 
implementations of the ensemble with OC-SVM classifiers. 

In the above plot, we notice that for images which a large 
number of pixels, such as the ones with resolution 
3968x2848, a speed-up ratio exceeds 180. This can be even 
higher on the FPGA platforms, at a cost of a much larger 
implementation effort, however. Also, interesting is 
comparison of serial implementations ported to the multi-
core platforms, for example with help of the OpenMP 
library. In this case, a speed-up ratio of 3-5 times was 
achieved on the system with the Intel® quad-core processor   
i7 Q820 with a clock 1.73GHz and 8GB of the system RAM.  

VI. CONCLUSIONS AND FUTURE WORK 
In the paper different architectures of ensembles of 

classifiers suitable for parallel processing were discussed. It 
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was demonstrated that an application of an ensemble of 
classifiers usually leads to a higher accuracy when compared 
with a single classifier. In the paper an ensemble of OC-
SVM classifiers was used in the problem of color image 
segmentation in real-time. It was shown that thanks to the 
highly parallel architecture, the ensemble with OC-SVM 
classifiers allows two-orders of magnitude speed-up ratio in 
the CUDA implementation when compared with the serial 
software version. Details of the parallel implementation with 
the CUDA code are also provided. It is worth noticing that 
the method is more general and allows classification of other 
than visual types of data as well.  

Further research will be focused on development of new 
architectures with different base classifiers which are well 
suited for parallel implementations on different computer 
platforms.  
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1 __global__ void SVM_Answer_Kernel( const float * inDataBuf, unsigned char * outDataBuf,  
2          float * outValuesBuf, const int kTotalNumOfData,  
3          float * SV_vectors, float * alpha_vector,  
4          const int kNumOfSVs, const float kGamma,  
5          const float kRho, const int kDataDim  ) 
6 { 
7  // Here we map threadIdx and BlockIdx to pixel position in the buffer 
8  int x = threadIdx.x + blockIdx.x * blockDim.x; 
9  int y = threadIdx.y + blockIdx.y * blockDim.y; 
10  
11  int offset = x + y * blockDim.x * gridDim.x; 
12  
13  if( offset < kTotalNumOfData ) { 
14    const float * this_data_offset = inDataBuf + offset * kDataDim;  
15    // since inDataBuf and SV_vectors actually are 2D structures 
16    float distance = Compute_SV_DistanceTo(  this_data_offset, SV_vectors,    

           alpha_vector, kNumOfSVs, kGamma, kDataDim ); 
17    float val = distance - kRho; 
18    * ( outValuesBuf + offset ) = val; 
19    * ( outDataBuf + offset ) = val > 0.0 ? 0 : 255; 
20  } 
21 } 

Figure 6.  Implementation of the CUDA kernel for the OC-SVM classifier. The Compute_SV_DistanceTo function is called (shown in Fig. 7) which 
computes a distance of a test point (a pixel) to the hypersphere. 

18Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-258-5

INTENSIVE 2013 : The Fifth International Conference on Resource Intensive Applications and Services



 
 
1 // SV_vectors and alpha_vector should be in the constant memory 
2 __device__ float Compute_SV_DistanceTo(  const float * data_point, const float * SV_vectors,  
3           const float * alpha_vector, const int kNumOfSVs,  
4           const float kGamma, const int kDataDim ) 
5 { 
6  // We assume RBF kernels ONLY!! 
7  float alpha = 0.0; 
8  float kernel_product = 0.0; 
9  
10  // Compute the second term 
11  register double theSum = 0.0; 
12      #pragma unroll 
13  for( register int i = 0; i < kNumOfSVs; ++ i ) 
14  { 
15 #if USE_CONST_MEMORY 
16  
17    kernel_product  = exp_kernel( in_SVs_vector_GPU + i * kDataDim, data_point, kGamma, kDataDim ); 
18    alpha  = in_alphas_vector_GPU[ i ]; 
19  
20 #else //USE_CONST_MEMORY 
21  
22    kernel_product = exp_kernel( SV_vectors + i * kDataDim, data_point, kGamma, kDataDim ); 
23    alpha  = alpha_vector[ i ]; 
24  
25 #endif //USE_CONST_MEMORY 
26  
27    theSum  += alpha * kernel_product; 
28  } 
29  
30  return theSum; 
31 } 
 

Figure 7.  CUDA kernel function executed for each pixel. The function invokes the exp_kernel function shown in Fig. 8. 

 
 
1 __device__ float exp_kernel( const float * x, const float * y, const float kGamma, const int kDataDim ) 
2 { 
3  register float tmp = 0.0; 
4  register float sum = 0.0; 
 

5  #pragma unroll 
6  for( register int d = 0; d < kDataDim; ++ d ) 
7  { 
8    tmp = x[ d ] - y[ d ]; 
9    sum += tmp * tmp; 
10  } 
 

11  return expf( - kGamma * sum ); 
12 } 
 

Figure 8.  CUDA implementation of the exponential (Gaussian) kernel. 
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