
Design of Parallel Architectures of Classifiers Suitable for Intensive Data Processing

Bogusław Cyganek
AGH University of Science and Technology

Department of Electronics
Krakow, Poland

cyganek@agh.edu.pl

Kazimierz Wiatr
AGH University of Science and Technology

Academic Computer Center Cyfronet
Krakow, Poland

wiatr@agh.edu.pl

Abstract—Processing of visual data, such as object recognition
and image segmentation, is based on data classification. In this
paper architectures of ensembles of classifiers are discussed
which show superior accuracy in respect to a single classifier.
To achieve comparable response time the parallel computer
architectures need to be considered, however. In the paper we
present a parallel implementation on a graphic card of an
ensemble of one-class support vector machines for image
segmentation. We show that the parallel architecture of the
ensemble of classifiers allows both, the high accuracy and
speed up factor of two orders of magnitude compared with the
serial software implementation.

Keywords-ensemble of classifiers; OC-SVM; data processing;
GPU implementation; image segmentation

I. INTRODUCTION
Data processing highly relies on classification methods.

The two key parameters of the classifiers are their accuracy
and response time. However, a choice of a right classifier to
a given task depends on a number of factors, such as a
number of training data, their type as well as data
dimensionality, and frequently is a matter of the skills and
experience of a system designer [7][15][18]. The choice of
the right classifiers is especially important in the time critical
and massive data processing systems. To this group belong
vision processing systems addressed in this paper. They are
frequently used in such tasks as face and gesture recognition,
public area surveillance, driving assistance, and many more.

In this paper implementation issues of different
architectures of ensembles of classifiers employed to the
tasks of image processing are discussed. Such ensembles
show superior accuracy compared to a single classifier, as
reported in the literature [3]-[5][7]-[11][19]. However,
operation of many classifiers leads to excessive response
time of such systems if implemented in serial software. A
solution to this problem is parallel operation of the member
classifiers which is possible and effective if their operations
are independent as much as possible.

In this paper a number of parallel architectures of
classifiers is discussed which allow functional and data
decomposition of the classification problem and which aim
at full utilization of the multi-core processors, graphic cards
(GPU), as well as field programmable gate arrays (FPGA)
[20]. Our discussion is exemplified with the ensemble of

one-class support vector machines (OC-SVM) applied to
image segmentation, which is based on our previous work
[3][4]. In this paper, we present its parallel implementation
on the graphic card which allows real-time operation. We
also show that simple application of the data splitter and then
a group of cooperating classifiers usually leads to a better
performance compared to a single classifier trained with all
available training data.

The paper is organized as follows: In Section II, details
of the architecture of ensembles of classifiers are discussed.
In Section III, details of the data splitter and base classifiers
are provided. In Section IV, details of the parallel
implementation are discussed. Finally, the paper ends with
experimental results discussed in Section V, as well as with
conclusions presented in Section VI.

II. ARCHITECTURE OF ENSEMBLES OF CLASSIFIERS
In this section, we discuss two of the most popular

architectures of ensembles of classifiers: the serial and the
parallel ones. Architecture of the serial cascade of classifiers
is shown in Fig. 1. Input data is processed in the pipeline like
structure. Each classifier filters out data, passing the
positively classified ones to the next one in the chain, and so
on.

C1

TRAINING DATA

Training Module

C1 C1

DATA SPLITTER

Serial Cascade of Classifiers

Figure 1. Architecture of the serial cascade of classifiers. Input data is
processed in the pipeline structure. Each classifier filters out data, passing
the positivly classified ones to the next in the chain, and so on. Training is
done with the AdaBoost to amplify response on poorly classified examples.

An example of such a system is the face detection
method by Viola and Jones [19]. Training is done with the

14Copyright (c) IARIA, 2013. ISBN: 978-1-61208-258-5

INTENSIVE 2013 : The Fifth International Conference on Resource Intensive Applications and Services

AdaBoost which amplifies response on poorly classified
examples. Such strategy imposes data decomposition into
sets of usually decreasing number of elements [9].

Data processing in a serial chain of classifiers is effective
if member classifiers are able to operate in a pipeline mode.
One of the requirements in this case is that each classifier in
the chain consumes the same time quant for data processing.
The penalty of using a cascade is a delay necessary to fill up
the processing line which is proportional to the number of
used classifiers. However, in practice these requirements are
not easy to fulfill.

On the other hand, architecture with a parallel ensemble
of classifiers is depicted in Fig. 2. In this case all classifiers
are assumed to operate independently which is a big
advantage considering implementation and execution time.
However, all partial responses need to be synchronized and
collected by the answer fusion module which outputs a final
response. There are different methods of training of the
member classifiers Ci, shown in Fig. 2, as is discussed in
many publications [7]. Some of the most popular are data
bagging and data clustering, which will be discussed in the
next sections.

C1

TRAINING DATA

Training Module

C2

CM

DATA SPLITTER

Parallel Cascade of Classifiers

Ci

Figure 2. Parallel cascade of classifiers. Input data is split and fed to all
classifiers in the ensemble. A final response is provided from the fusion
module. To obtain diversity of the ensemble either different classifiers are
used and/or different data partitions are used obtained from bagging or
clustering. The architecture allows parallel operation of the member
classifiers.

There are many examples of the parallel classifier
systems organized as shown in Fig. 2. In this paper we
exemplify our discussion with parallel implementations of
the two of our systems. The first one employs tensor based
classifiers (HOSVD) trained with different data partitions
obtained with data bagging [5]. The system was tested with
the problem of handwritten character recognition showing
significantly better results when compared to the single
HOSVD classifier. The second of the systems, discussed
with more details in this paper, contains one-class SVM

classifiers [16][17]. Each of them is trained with a separate
partition obtained from data clustering with the k-means and
the kernel k-means methods [3][4]. This type of ensemble is
discussed in further sections of this paper, whereas details of
the tensor based system can be accessed in [5].

III. DESIGN OF THE BUILDING BLOCKS
In this section, we discuss details of blocks of the parallel

systems of ensembles of classifiers shown in Fig. 2.

A. Data Splitters
The role of a data splitter is to arrange the training

process in order to obtain the best accuracy of the ensemble.
The two tested methods are as follows:

• Bagging - consists of creating a number of data sets
Di from the training set D with a uniform data
sampling with replacement [18]. As shown by
Grandvalet, bagging reduces variance of a classifier
and improves its generalization properties [6]. Each
set Di is used to train a separate member of the
ensemble, which contains less data than D. Thanks to
this data decomposition a better accuracy can be
obtained due to a higher diversity. Also, the problem
of processing massive data can be greatly reduced. It
is also possible to extend the ensemble with a new
classifier if new training data are available at a later
time.

• Data clustering - consists in usually unsupervised
partitioning of the input dataset D into typically
disjoint sets Di [7][10]. In our previous systems the
k-means as well as their fuzzy and kernel versions
were used. In this case a first step is the choice of
data centers. Then data distances to each center are
computed and the points are assigned to their nearest
centers. After that, positions of the centers are
recomputed to account for new members of that
partition. The procedure follows until there are no
changes in data partitioning [4][18]. Similarly to
bagging, splitting by clustering also allows better
accuracy and data decomposition useful in parallel
realizations.

B. Selection of the Member Classifiers
Choice of the member classifiers depends on many

factors, such as type and dimensionality of data. However,
the classifiers need to be chosen in a way to assure the best
accuracy and speed of operation, especially when processing
massive vision data. Good results were obtained in the tested
systems using the aforementioned tensor classifiers, as well
as using the OC-SVMs which we address in this section.
Further references are provided in [4][5].

The binary SVMs were introduced by Cortes and Vapnik
[1]. Their one-class version is due to Tax and Duin [16][17],
as well as to Schölkopf and Smola [13]. Training of the OC-
SVM relies on computation of the parameters of the
hyperplane w that separates data points Di with the maximal
margin from the origin, as shown in Fig. 3. The separating
hyperplane is defined as follows [13]

15Copyright (c) IARIA, 2013. ISBN: 978-1-61208-258-5

INTENSIVE 2013 : The Fifth International Conference on Resource Intensive Applications and Services

, 0,ρ− =w x (1)

where 〈w,x〉 is a scalar product between vector w and x.
Further, to allow some outliers in the training set Di with N
data points, the slack variables ξn are introduced. This leads
to the following convex optimization problem

1

2

, , 1

1 1min
2N

N

n
nNξ ξ ρ
ξ ρ

ν =

⎡ ⎤+ −⎢ ⎥⎣ ⎦
∑w

w
…

1
, , 0,n n nn N

ρ ξ ξ
≤ ≤
∀ ≥ − ≥w x

(2)

where ν is a training parameter that controls allowable
number of outliers. The above optimization problem can be
solved with the Lagrange multipliers αn, as follows

1 1 1

min ,
N

N N

n m n m
n mα α

α α
= =

⎡ ⎤
⎢ ⎥⎣ ⎦
∑∑ x x

…
, with

1

10 nn N N
α

ν≤ ≤
∀ ≤ ≤ , and

1

1
N

n
n

α
=

=∑ .
(3)

ρ
w

kξ
w

Figure 3. Hyperplane separating a single class of data in the feature space.
Support vectors are on the hyperplane. An outlier (black square) is a data
on the second side of the hyperplane. This one is controlled with the slack
variable.

 Data points for which αn>0 lie on the hyperplane w.
These are called support vectors (SV). Solution to (3) results
with a set of SV and associated scalar multipliers αn. The
hyperplane w can be represented as the following weighted
sum of the SVs

n n
n SVs

α
∈

= ∑w x , (4)

Taking any support vector xm a distance of the hyperplane w
to the origin can be computed as the following scalar
product

, ,m n n m
n SVs

ρ α
∈

= = ∑w x x x . (5)

The real power of OC-SVM is their operation in the so
called feature space. This is obtained replacing the inner
product in (5) with the kernel function. For the latter the
most frequent choice is the Gaussian kernel function,
defined as follows [13][14]

()
2

, i j

G i jK e γ− −= x xx x , (6)

where γ is a parameter that control a spread of the kernel.
During classification of a test point xx its distance to the
hyperplane in the feature space is computed. This can be
expressed as K(w,xx), which if is greater than ρ indicates
that a point belongs to the class. Thus, a point xx is classified
if the following inequality is fulfilled

() (), ,n n x n n m
n SVs n SVs

p

K Kα α
∈ ∈

≥∑ ∑x x x x
���	��

.
(7)

To speed up response of the system the value on the right
side of (7) can be precomputed to a scalar p.

Thanks to the relatively simple classification rule (7) its
implementation on a graphic card is also not very
complicated, as will be discussed in implementation section.

C. Fusion Module
Partial answers of the members of the ensemble need to

be collected and used to produce a final response of the
system. This is a task of the output fusion module, shown in
Fig.2. Again, there are many algorithms for this task from
which the following two were tested in the discussed
ensembles:

• Majority voting
• Weighted majority voting

Further details are provided in the references [4][5][7][9].

IV. IMPLEMENTATION OF THE ENSEMBLE OF CLASSIFIERS
Two implementations were made in order to show

properties of the proposed ensemble of classifiers. The first
one is the serial software in C++ which uses the HIL library
described in [2]. On the other hand, the parallel
implementation of the system relies on the graphic cards
with the CUDA (Compute Unified Device Architecture)
environment [21]. CUDA is architecture of the parallel
computing platform and programming model of the majority
of the graphic cards by nVidia [21]. Two graphic cards were
used in the tests: the FX3800M and the GTX280. Results of
comparison of serial and parallel implementations are
described in the next section.

Implementation of the CUDA kernel function
SVM_Answer_Kernel, which carries out the OC-SVM
classification, is shown in Fig. 6. This kernel is launched in
parallel on the GPU devices. In the lines 8-11 of the listing in
Fig. 6 an offset to the data buffer is computed to find out
which part of data a kernel is assigned to. Then the
Compute_SV_DistanceTo kernel function is invoked (shown
in the line 16 of Fig. 6), which computes a distance of a test

16Copyright (c) IARIA, 2013. ISBN: 978-1-61208-258-5

INTENSIVE 2013 : The Fifth International Conference on Resource Intensive Applications and Services

point (a color pixel) to the hyperplane found in the training
process. A training is done off line exclusively on the CPU.
Found distance to the hyperplane of each of the test points is
saved in the output buffer, as shown in the code lines 17-19
in Fig. 6.

Finally, the CUDA implementation of the Gaussian
kernel is presented in Fig. 8. The function exp_kernel
operates in accordance with (6). It can process data of any
length which is provided by the kDataDim input parameter.
In the case of color pixels kDataDim=3.

V. EXPERIMENTAL RESULTS
The ensemble of classifiers was tested in a time

demanding task of human face detection from color images.
For the training, manually gathered samples of pixels of
human skin were used. However, the initial training set was
clustered into three disjoint partitions with the k-means
method, as described in Section IIIA. Then each of these
partitions was used to train a separate base OC-SVM
classifier. The parameters ν from (2) and γ from (6) of each
of the OC-SVM were found by the grid search method.
Operation of the system on the few color frames is depicted
in Fig. 4.

Input color image Face segmentation map

Figure 4. Examples of real-time face segmentation with the ensemble of
three OC-SVM classifiers. Color images shown in the left column. Face
segmentation maps shown in the right column.

Found parameters of the three base OC-SVM classifiers
of the ensemble are shown in TABLE I. The parameter #SVs
denotes number of support vectors and ρ is defined in (5).

TABLE I. PARAMETERS AND CONFIGURATION OF THE ENSEMBLES
USED IN THE EXPERIMENTS

No. #SVs γ ν ρ

1 5 0.016279 0.0001262 0.780138

2 5 0.011379 0.0001198 0.864579

3 5 0.013299 0.0001626 0.783055

Accuracy of such ensembles in application of image

segmentation reaches up to 0.85-0.90 of the F measure [18].
Almost in all examples an application of more than one
classifier in an ensemble leads to the higher accuracy, as also
discussed in [4]. However, thanks to their parallel
architecture the real-time processing of HD images is easy to
achieve. A plot of a speed-up ratio of the serial C++ vs.
parallel CUDA implementation of the ensemble with the
OC-SVM classifiers is shown in Fig. 5.

Figure 5. Speed-up ratio of the serial C++ vs. parallel CUDA
implementations of the ensemble with OC-SVM classifiers.

In the above plot, we notice that for images which a large
number of pixels, such as the ones with resolution
3968x2848, a speed-up ratio exceeds 180. This can be even
higher on the FPGA platforms, at a cost of a much larger
implementation effort, however. Also, interesting is
comparison of serial implementations ported to the multi-
core platforms, for example with help of the OpenMP
library. In this case, a speed-up ratio of 3-5 times was
achieved on the system with the Intel® quad-core processor
i7 Q820 with a clock 1.73GHz and 8GB of the system RAM.

VI. CONCLUSIONS AND FUTURE WORK
In the paper different architectures of ensembles of

classifiers suitable for parallel processing were discussed. It

17Copyright (c) IARIA, 2013. ISBN: 978-1-61208-258-5

INTENSIVE 2013 : The Fifth International Conference on Resource Intensive Applications and Services

was demonstrated that an application of an ensemble of
classifiers usually leads to a higher accuracy when compared
with a single classifier. In the paper an ensemble of OC-
SVM classifiers was used in the problem of color image
segmentation in real-time. It was shown that thanks to the
highly parallel architecture, the ensemble with OC-SVM
classifiers allows two-orders of magnitude speed-up ratio in
the CUDA implementation when compared with the serial
software version. Details of the parallel implementation with
the CUDA code are also provided. It is worth noticing that
the method is more general and allows classification of other
than visual types of data as well.

Further research will be focused on development of new
architectures with different base classifiers which are well
suited for parallel implementations on different computer
platforms.

ACKNOWLEDGMENT
Financial support in the years 2012-2013 of the National

Center for Research and Development of the Republic of
Poland, under the project SYNAT is greatly appreciated.

REFERENCES
[1] C. Cortes and V. Vapnik, Support vector machines. Machine

Learning, Vol. 20, 1995, pp. 273-297.
[2] B. Cyganek and J.P. Siebert, An Introduction to 3D Computer

Vision Techniques and Algorithms, Wiley, 2009.
[3] B. Cyganek and K. Wiatr, Image Contents Annotations with

the Ensemble of One-Class Support Vector Machines.
International Conference on Neural Computation Theory and
Applications, 24-26 October, Paris, France, 2011.

[4] B. Cyganek, One-Class Support Vector Ensembles for Image
Segmentation and Classification. Journal of Mathematical
Imaging & Vision, Vol. 42, No. 2-3, Springer, 2012, pp. 103–
117.

[5] B. Cyganek, Ensemble of Tensor Classifiers Based on the
Higher-Order Singular Value Decomposition. HAIS 2012,
Salamanca, Springer, Part II, LNCS 7209, 2012, pp. 578–589.

[6] Y. Grandvalet, Bagging equalizes influence. Machine
Learning, Vol. 55, 2004, pp. 251-270.

[7] L.I. Kuncheva, Combining Pattern Classifiers. Methods and
Algorithms. Wiley Interscience, 2005.

[8] M. Kurzyński and M. Woźniak, Combining classifiers under
probabilistic models: experimental comparative analysis of
methods. Expert Systems, Vol. 29, No. 4, 2012, pp. 374–393.

[9] R. Polikar, Ensemble Based Systems in Decision Making.
IEEE Circuits and Systems Magazine, 2006, pp. 21-45.

[10] A. Rahman and B. Verma, Cluster-based ensemble of
classifiers. Expert Systems, 2012.

[11] E. Rafajłowicz, Classifiers sensitive to external context theory
and applications to video sequences. Expert Systems, Vol. 29,
No. 1, 2012, pp. 84–104.

[12] J. Sanders and E. Kandrot, CUDA by Example. An
Introduction To General-Purpose GPU Programming.
Addison-Wesley, 2011.

[13] B. Schölkopf and A.J. Smola, Learning with Kernels, MIT
Press, 2002.

[14] J. Shawe-Taylor and N. Cristianini, Kernel Methods for
Pattern Analysis, Cambridge University Press, 2004.

[15] R. Tadeusiewicz and M.R. Ogiela, New Diagnostics
Perspectives Connected with a Concept of Automatic Patterns
Understanding. Chapter, in book by Korbicz J., Patan K.,
Kowal M., Fault Diagnostics and Fault Tolerant Control,
EXIT, Warsaw, ISBN 83-60434-32-1, 2007, pp. 43-49.

[16] D.M.J. Tax, One-class classificatio. PhD thesis, TU Delft
University, 2001.

[17] D. Tax, R. Duin, Support Vector Data Description, Machine
Learning, Vol. 54, 2004, pp.45-66.

[18] S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th
ed., Academic Press, 2009.

[19] P. Viola and M. Jones, Robust real-time face detection,
Proceedings of the International Conference on Computer
Vision, 2001, pp. 747-755.

[20] K. Wiatr, CYFRONET supercomputers in support of modern
research projects, KU KDM 2011, fourth ACC Cyfronet AGH
users' conference, Zakopane, March 09–11, 2011.

[21] www.nvidia.com

1 __global__ void SVM_Answer_Kernel(const float * inDataBuf, unsigned char * outDataBuf,
2 float * outValuesBuf, const int kTotalNumOfData,
3 float * SV_vectors, float * alpha_vector,
4 const int kNumOfSVs, const float kGamma,
5 const float kRho, const int kDataDim)
6 {
7 // Here we map threadIdx and BlockIdx to pixel position in the buffer
8 int x = threadIdx.x + blockIdx.x * blockDim.x;
9 int y = threadIdx.y + blockIdx.y * blockDim.y;
10
11 int offset = x + y * blockDim.x * gridDim.x;
12
13 if(offset < kTotalNumOfData) {
14 const float * this_data_offset = inDataBuf + offset * kDataDim;
15 // since inDataBuf and SV_vectors actually are 2D structures
16 float distance = Compute_SV_DistanceTo(this_data_offset, SV_vectors,

 alpha_vector, kNumOfSVs, kGamma, kDataDim);
17 float val = distance - kRho;
18 * (outValuesBuf + offset) = val;
19 * (outDataBuf + offset) = val > 0.0 ? 0 : 255;
20 }
21 }

Figure 6. Implementation of the CUDA kernel for the OC-SVM classifier. The Compute_SV_DistanceTo function is called (shown in Fig. 7) which
computes a distance of a test point (a pixel) to the hypersphere.

18Copyright (c) IARIA, 2013. ISBN: 978-1-61208-258-5

INTENSIVE 2013 : The Fifth International Conference on Resource Intensive Applications and Services

1 // SV_vectors and alpha_vector should be in the constant memory
2 __device__ float Compute_SV_DistanceTo(const float * data_point, const float * SV_vectors,
3 const float * alpha_vector, const int kNumOfSVs,
4 const float kGamma, const int kDataDim)
5 {
6 // We assume RBF kernels ONLY!!
7 float alpha = 0.0;
8 float kernel_product = 0.0;
9
10 // Compute the second term
11 register double theSum = 0.0;
12 #pragma unroll
13 for(register int i = 0; i < kNumOfSVs; ++ i)
14 {
15 #if USE_CONST_MEMORY
16
17 kernel_product = exp_kernel(in_SVs_vector_GPU + i * kDataDim, data_point, kGamma, kDataDim);
18 alpha = in_alphas_vector_GPU[i];
19
20 #else //USE_CONST_MEMORY
21
22 kernel_product = exp_kernel(SV_vectors + i * kDataDim, data_point, kGamma, kDataDim);
23 alpha = alpha_vector[i];
24
25 #endif //USE_CONST_MEMORY
26
27 theSum += alpha * kernel_product;
28 }
29
30 return theSum;
31 }

Figure 7. CUDA kernel function executed for each pixel. The function invokes the exp_kernel function shown in Fig. 8.

1 __device__ float exp_kernel(const float * x, const float * y, const float kGamma, const int kDataDim)
2 {
3 register float tmp = 0.0;
4 register float sum = 0.0;

5 #pragma unroll
6 for(register int d = 0; d < kDataDim; ++ d)
7 {
8 tmp = x[d] - y[d];
9 sum += tmp * tmp;
10 }

11 return expf(- kGamma * sum);
12 }

Figure 8. CUDA implementation of the exponential (Gaussian) kernel.

19Copyright (c) IARIA, 2013. ISBN: 978-1-61208-258-5

INTENSIVE 2013 : The Fifth International Conference on Resource Intensive Applications and Services

