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Abstract—The power quality of a wind turbine is determined
by many factors but time-dependent variation in the wind
velocity are arguably the most important. After a brief review
of the statistics of typical wind speed data, a non-Gaussian
model for the wind velocity is introduced that is based on a
Lévy distribution. It is shown how this distribution can be used
to derive a stochastic fractional diffusion equation for the wind
velocity as a function of time whose solution is characterized
by the Lévy index. A Lévy index numerical analysis is then
performed on wind velocity data for both rural and urban areas
where, in the latter case, the index has a larger value. Finally,
empirical relationships are derived for the power output from
a wind turbine in terms of the Lévy index using Betz law and
for an idealized wave energy converter.

Keywords-Complex RIAS, Electrical power systems, Wind
turbines, Stochastic wind velocity model, Non-Gaussian statis-
tics, Lévy index, Quality control

I. INTRODUCTION

Developing appropriate models for assessing and predict-
ing the quality of power for any renewable energy source
is important throughout the energy industry. Quality of
power modeling is particularly important with regard to wind
energy as the construction of new wind farms is growing
rapidly compared with other renewable energy systems [1].
By 2030, it is estimated that up to 40% world energy supply
will be based on renewable energy sources and in countries
with an appropriate disposition to generating energy from
wind, wave and tidal power such as the UK and Ireland, the
percentage is expected to be much higher.

Quality of power modeling is often based on a statistical
analysis of the available wind velocity data which is used to
assess optimum regions for the construction of wind farms
[2]. Although the power generated by a wind turbine is based
on a range of design factors, the wind velocity as a primary
factor since, from Betz law, the power P in Watts is given
by [3]

P =
1
2
αρAv3 (1)

where v is the wind speed in metres per second (ms−1), A is
the area of the turbine in m2, ρ is the density of air in kgm−3

and α < 0.593 is the coefficient of performance. Although
other physical factors such as air temperature and pressure,

angle of attack, etc. are important, the scaling law of the
output power with regard to wind velocity (i.e., P ∝ v3)
is the most significant feature for a given design of a wind
turbine with a fixed area and coefficient of performance [4].
Thus, an understanding of the time variations in the wind
velocity for a given geographical location is of paramount
importance with regard to locating a wind farm and mon-
itoring its performance in terms of the power quality. This
requires stochastic models to be developed for the power
output [5].

The acquisition of wind velocity data over different time
intervals and localities is a common practice together with a
routine statistical analysis of the data. The analysis is almost
exclusively based on the assumption that time variations
in the wind velocity are random Brownian processes and
that the rate of change of velocity as a function of time
is Gaussian distributed, i.e., the wind velocity conforms
to a process of diffusion. However, this is not usually the
case as discussed in the following section and in this paper
we develop a non-Gaussian stochastic model for the wind
velocity that is based on a Lévy distribution and a fractional
diffusion equation. This allows us to analyze wind velocity
in terms of the Lévy index and thereby yields an approach to
assessing the quality of power for a wind turbine in terms
of this index. We provide examples of wind velocity data
that substantiate this approach and construct an empirical
relationship for the power output from a wind turbine based
on the Lévy index.

The structure of the paper is as follows: In Section II,
we provide a brief overview on the statistics of typical
wind velocity data emphasizing the non-Gaussian nature
of the velocity gradient. In Section III, we provide an
introduction to Lévy processes and introduce a specific Lévy
distribution for characterizing the wind velocity (gradient).
This section also considers the connection between using a
Lévy distribution to characterize the wind velocity function
and a description for this function in terms of a fractional
diffusion equation whose solution provides an estimate for
the wind velocity time series in terms of the Lévy index.
Based on this result, in Section IV, we consider an analysis
of the wind velocity data in terms of the Lévy index for a
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moving window process and show how the Lévy index time
signature and some of the statistical parameters associated
with this signature can be used to characterize the wind
velocity. Based on these results, in Section V, we derive
an empirical relationship between the Lévy index for the
wind velocity and an estimate for the power generated by a
wind turbine using Betz law. An analogous relationship is
derived in Section VI for an idealized wave energy converter.
The relationships obtained between the Lévy index and
the average (logarithmic) power output given in Sections
V and VI represent an original contribution although no
quantitative evaluation of these relationships is explored. In
terms of a contribution to Resource Intensive Applications
and Services, the results considered in this paper provide
a frame work for estimating, monitoring and possibly pre-
dicting the power generated by wind and wave farms based
on an analysis that is consistent with the known statistical
characteristics of the wind velocity. The approach considered
has applications is assessing the optimal location for the
construction of wind and wave farms, for example, based
on a non-standard, non-Gaussian statistical analysis when
intensive data gathering and monitoring of environmental
conditions is required.

II. STATISTICAL ANALYSIS OF THE WIND SPEED

Figure 1 shows a typical example plots of the wind veloc-
ity and wind direction as a function of time together with
the associated histograms illustrating a marked difference
in their statistical characteristics. This data shows wind
velocities (in metres per second) and wind directions (in
degrees) and consists of 8000 samples recorded at Dublin
Airport, Ireland over intervals of 1 hour from 00:00:00 on 1
January 2008 to 06:00:00 on 29 November 2008. The The
wind velocity v(t) has a typical Rayleigh-type distribution
with a mode of 5ms−1 and a maximum wind velocity of
21.1ms−1. The wind direction has a marked statistical bias
toward higher angles with a primary mode of 240 degrees
which is characteristic of the prevailing wind direction for
the region.

Figure 2 compares the velocity gradient dtv(t) (which
represents the force generated by the wind for a unit
mass computed using a forward differencing scheme) with
the output from a zero-mean Gaussian distributed random
number stream. By comparing these signals, it is clear that
the statistical characteristics of dtv(t) are not Gaussian. The
plot of dvt obtained from the wind velocity data clearly
shows that there are a number of rare but extreme events
corresponding to short periods of time over which the
change in wind velocity is relatively high. This leads to
a distribution with a narrow width but longer tail when
compared to a normal (Gaussian) distribution. Non-Gaussian
distributions of this type are typical of Lévy processes which
are discussed in the following section.

Figure 1. Plots of the wind velocity (top-left in metres per second) and
wind direction (bottom-left in degrees) and the associated 22-bin and 360-
bin histograms (top-right and bottom-right), respectively.

Figure 2. Plots of a zero-mean Gaussian distributed stochastic signal
obtained using MATLAB V7 randn function (above) and the gradient of
the wind velocity given in Figure 1 (below).
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III. LÉVY PROCESSES

Lévy processes are random walks whose distribution has
infinite moments. The statistics of (conventional) physical
systems are usually concerned with stochastic fields that
have PDFs (Probability Density Functions) where (at least)
the first two moments (the mean and variance) are well de-
fined and finite. Lévy statistics is concerned with stochastic
processes where all the moments (starting with the mean)
are infinite. Many distributions exist where the mean and
variance are finite but are not representative of the process,
e.g., the tail of the distribution is significant, where rare
but extreme events occur. These distributions include Lévy
distributions [6]. Lévy’s original approach to deriving such
distributions is based on the following question: Under what
circumstances does the distribution associated with a random
walk of a few steps look the same as the distribution
after many steps (except for scaling)? This question is
effectively the same as asking under what circumstances
do we obtain a random walk that is statistically self-affine.
The characteristic function P (k) of such a distribution p(x)
was first shown by Lévy to be given by (for symmetric
distributions only) [6]

P (k) = exp(−a | k |γ), 0 < γ ≤ 2 (2)

where a is a constant and γ is the Lévy index. For γ ≥ 2,
the second moment of the Lévy distribution exists and the
sums of large numbers of independent trials are Gaussian
distributed. If a stochastic process is characterized by a
random walk with a step length distribution governed by
p(x) with γ = 2, then the result is normal (Gaussian) diffu-
sion, i.e., a Brownian random walk process. For γ < 2 the
second moment of this PDF (the mean square), diverges and
the characteristic scale of the walk is lost. For values of γ
between 0 and 2, Lévy’s characteristic function corresponds
to a PDF of the form

p(x) ∼ 1
x1+γ

, x→∞ (3)

Furthermore, Lévy processes characterized by a PDF of this
type conform to a fractional diffusion equation as we shall
now show [7].

The evolution equation for a random walk process that
generates a macroscopic field denoted by f(x, t) is given
by

f(x, t+ τ) = f(x, t)⊗x p(x)

where ⊗x denotes the convolution integral over x and p(x) is
an arbitrary PDF. From the convolution theorem, in Fourier
space, this equation becomes

F (k, t+ τ) = F (k, t)P (k)

where F and P are the Fourier transforms of f and p
respectively. From equation (2), we note that

P (k) = 1− a | k |γ , a→ 0

so that we can write
F (k, t+ τ)− F (k, t)

τ
' −a

τ
| k |γ F (k, t)

which for τ → 0 gives the fractional diffusion equation

σ
∂

∂t
f(x, t) =

∂γ

∂xγ
f(x, t), γ ∈ (0, 2]

where σ = τ/a and we have used the result

∂γ

∂xγ
f(x, t) = − 1

2π

∞∫
−∞

| k |γ F (k, t) exp(ikx)dk

In terms of the application considered in this paper, the func-
tion f(t) is taken to represent the wind force (the velocity
gradient) with a non-Gaussian distributed time signature of
the type illustrated in Figure 2 and taken to conform to the
distribution in by equation (3) with a characteristic function
given by equation (2) for a → 0. However, since, for unit
mass, f(x, t) = ∂v(x, t)/∂t, we can consider the equation

σ
∂

∂t
v(x, t) =

∂γ

∂xγ
v(x, t), γ ∈ (0, 2] (4)

for the wind velocity v. The solution to this equation with
the singular initial condition v(x, 0) = δ(x) is given by

v(x, t) =
1

2π

∞∫
−∞

exp(ikx− t | k |γ /σ)dk

which is itself Lévy distributed. This derivation of the
fractional diffusion equation reveals its physical origin in
terms of Lévy statistics.

For normalized units σ = 1 we consider equation (4) for
a ‘white noise’ source function n(t) and a spatial impulse
function −δ(x) so that

∂γ

∂xγ
v(x, t)− ∂

∂t
v(x, t) = −δ(x)n(t), γ ∈ (0, 2]

which, ignoring (complex) scaling constants, has the Green’s
function solution [8]

v(t) =
1

t1−1/γ
⊗t n(t) (5)

where ⊗t denotes the convolution integral over t and v(t) ≡
v(0, t). The function v(t) has a Power Spectral Density
Function (PSDF) given by (for scaling constant c)

| V (ω) |2=
c

| ω |2/γ

where

V (ω) =

∞∫
−∞

v(t) exp(−iωt)dt

and a self-affine scaling relationship

Pr[v(at)] = a1/γPr[v(t)]
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for scaling parameter a > 0 where Pr[v(t)] denotes the PDF
of v(t). This scaling relationship means that the statistical
characteristics of v(t) are invariant of time accept for scaling
factor a1/γ . Thus, if v(t) is taken to be the wind velocity
as a function of time, then the statistical distribution of this
function will be the same over different time scales whether,
in practice, it is sampled in hours or seconds, for example.

IV. LÉVY INDEX ANALYSIS

The PSDF | V (ω) |2 provides a method of computing
γ using the least squares method based on minimizing the
error function

e(c, γ) = ‖2 ln | V (ω) | − ln c− 2γ−1 ln | ω | ‖22, ω > 0

Figures 3 and 4 show the computation of γ(t) for a moving
window of size 1024 elements. The accompanying tables
(Table I and Table II) provide some basic statistical infor-
mation with regard to γ(t) for these data sets. Application
of the Bera-Jarque parametric hypothesis test of composite
normality is rejected (i.e., ‘Composite Normality’ is of type
‘Reject’) and thus γ(t) is not normally distributed.

Figure 3. Cork Airport (12/11/2003-1/1/2007) for hourly (averaged)
sampled data. Above: Normalized wind velocity data v(t) (blue) and the
Lévy index γ(t) (red) for a look-back moving window of 1024 elements.
Below: 100-bin histogram of γ(t).

These result illustrates that the wind velocity function is
a self-affine stochastic function with a mean Lévy index of
∼ 1.5. Based on these results, Figure 5 shows a simulation
of the wind velocity based on the computation of v(t)
in equation (5) for γ = 1.5. The simulation is based on
transforming equation (5) into Fourier space and using a
Discrete Fourier Transform. The function n(t) is computed
using MATLAB (V7) uniform random number generator
rand for seed = 1.

Table I
STATISTICAL PARAMETERS ASSOCIATED WITH THE LÉVY INDEX

FUNCTION GIVEN IN FIGURE 3.

Statistical Parameter Value for γ(t)
Minimum Value 1.3001
Maximum value 1.8142
Range 0.5141
Mean 1.5615
Median 1.5613
Standard Deviation 0.0569
Variance 0.0032
Skewness 0.0759
Kertosis 3.1966
Composite Normality ‘Reject’

Figure 4. Knock Airport (12/11/2003-1/1/2005) for hourly (averaged)
sampled data. Above: Normalised wind velocity data v(t) (blue) and the
Lévy index γ(t) (red) for a look-back moving window of 1024 elements.
Below: 100-bin histogram of γ(t).

Table II
STATISTICAL PARAMETERS ASSOCIATED WITH THE LÉVY INDEX

FUNCTION GIVEN IN FIGURE 4.

Statistical Parameter Value for γ(t)
Minimum Value 1.3846
Maximum value 1.7600
Range 0.3754
Mean 1.5777
Median 1.5788
Standard Deviation 0.0510
Variance 0.0026
Skewness -0.1538
Kertosis 3.0764
Composite Normality ‘Reject’
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The results given in Figure 3 and Figure 4 are for wind
velocity data obtained in rural areas, i.e., at Cork and Knock
airports, respectively. It is interesting to note that, in urban
areas, the Lévy index may be expected to increase as a
result of the further ‘diffusion’ of the wind velocity through
‘random scattering’ of the wind from buildings in the
local vicinity when, according the model being considered,
γ → 2. An example of this is given in Figure 6 and
Table III in which the average Lévy index is ∼ 1.72 thereby
confirming this expectation.

V. POWER QUALITY ESTIMATION FOR WIND ENERGY
GENERATION

Given equation (1) and equation (5), we can obtain an
expression for the power output by a wind turbine in terms
of the Lévy index γ as a function of time. Let the noise
function in equation (5) be a simple impulse at an instant in
time so that n(t) = δ(t). Then

v(t) =
1

t1−1/γ

and, from equation (1),

P (t) =
β

t3(1−1/γ)

where β = αρA/2 so that

lnP (t) = lnβ − 3 ln t+
3
γ

ln t

Given that β is a constant, it is then clear that, for any
time t, the magnitude of lnP is determined by γ−1. In this
sense, γ−1 is a coefficient of power quality as a function
of time and we see that, according to this model, power
output increases as γ decreases. Thus, the signal γ(t) given
in Figure 3 and Figure 4, for example, represents a time
varying measure of the average output power at a time τ
according to the scaling law

〈lnP (t)〉τ = A+
B

γ(τ)

where 〈lnP (t)〉τ denotes the (moving) average value of
lnP (t) at a time τ and A and B are scaling constants
associated with a given wind turbine obtained by calibration.

VI. ENERGY QUALITY ESTIMATION FOR WAVE POWER
GENERATION

From equation (5), the force generated for a unit mass is
given by

f(t) = dtv(t) =
1

t1−1/γ
⊗t dtn(t)

Working in a one-dimensional space, the wave equation is
then given by (for unit wave speed)(

∂2

∂x2
− ∂2

∂t2

)
u(x, t) = δ(x)f(t)

Figure 5. Simulated normalized wind velocities computed for a Lévy
index γ = 1.5 (above) and the corresponding 100-bine histogram (below)

Figure 6. Example of urban data analysis using wind velocities recorded at
Dublin Institute of Technology, Kevin Street, Dublin 8 from 14 September
2010 at 22:20:44 to 15 September 2010 at 10:11:51 and sampled in seconds.
Above: Normalized wind velocity data v(t) (blue) and the Lévy index γ(t)
(red) for a look-back moving window of 1024 elements. Below: 100-bin
histogram of γ(t).

where we considered a source function with a spatial im-
pulse δ(x). The Green’s function solution to this equation
is given by (ignoring scaling constants)

u(t) =
1
π

sin(Ωt)
Ωt

⊗t v(t), Ω→ 0 ∀x

where Ω is the bandwidth of the wave spectrum. The PSDF
of u(t) is therefore given by (for scaling constant c)

P (ω) =| U(ω) |2=
c

| ω |2/γ
, | ω |≤ Ω
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Table III
STATISTICAL PARAMETERS ASSOCIATED WITH THE LÉVY INDEX

FUNCTION GIVEN IN FIGURE 6.

Statistical Parameter Value for γ(t)
Minimum Value 1.3209
Maximum value 2.1358
Range 0.8149
Mean 1.7236
Median 1.7204
Standard Deviation 0.0944
Variance 0.0089
Skewness 0.1939
Kertosis 3.0374
Composite Normality ‘Reject’

and for a fixed bandwidth Ω, it is clear that the power output
depends upon γ associated with the wind velocity according
to the model compounded in equation (5). Thus we can
consider a time dependent wave power scaling relationship
of the form

〈lnP (ω)〉τ = A− B

γ(τ)
where A and B are scaling constants for a given wave energy
converter determined by calibration.

VII. SUMMARY

We have considered a Lévy distributed model and con-
structed a fractional diffusion equation for the wind velocity
whose temporal solution is characterized by the Lévy index.
Analysis of wind velocity data (some examples of which
have been provided in this paper) according to this model
shows that the Lévy index is a time varying non-Gaussian
stochastic function. Based on the data analyzed to date, the
index appears to be larger ∼ 1.7 for urban areas compared to
rural areas when γ ∼ 1.5. These results are consistent with
the underlying rationale associated with the model, where,
as γ → 2, the stochastic processes become increasingly
diffusive. The model presented allows times series for wind
velocity to be simulated whose statistical properties are
consistent with experimental data (e.g., Figure 5. Moreover,
based on the calculations performed in Sections 5 and
6, the Lévy index may provide a useful measure on the
power quality of wind turbines and wave energy generators
respectively. Further investigation are required to ascertain
whether it may be possible to use the signal γ(t) for short
term predictive analysis on power quality following methods
developed for financial risk management [9].
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