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Abstract—The increasing digitalisation of machinery enhances
production facilities by laying the foundations for advanced
data analysis. To ensure effectiveness, it is essential that the
collected data is of the highest quality for optimal use in various
applications. The quality of data is subject to a variety of influences.
This includes the design and operation of data acquisition for
production systems. The implementation of Failure Mode and
Effect Analysis (FMEA) and/or Failure Mode and Symptom
Analysis (FMSA) has been proven to be challenging due to the
time-consuming and labour-intensive nature of the process. In
addition, the results can vary depending on the knowledge and
expertise of the team performing the analysis. To address these
challenges, a methodology based on the FMEA/FMSA framework
is developed using historical and operational data. Consequently,
the assessments made during FMEA/FMSA became objective,
eliminating reliance on the expertise and background of the team
conducting the evaluation. To illustrate the feasibility of our
approach, we utilise the case study of an intelligent machine
test bed. From Art to Science: Our contribution advocates for a
paradigm shift in FMEA/FMSA frameworks, moving from more
or less subjectively designed individualistic concepts towards
objectively established, harmonised solutions.

Keywords-FMEA; FMSA; Data-driven FMEA; Failure analysis;
Sensor data quality; Sensor data error detection.

I. INTRODUCTION

This section examines the motivation, challenges, aims,
research questions and contributions of this study. The objective
of our study was to improve the quality of Cyber Physical
Production Systems (CCPSs) data through digitalisation by
implementing a methodology based on Failure Mode and
Effect Analysis (FMEA) and/or Failure Mode and Symptom
Analysis (FMSA). CPPSs are comprised of self-governing
and collaborative components and subsystems. These elements
are interconnected based on contextual factors, spanning all
production levels. The integration extends from individual
processes and machinery to comprehensive production and
logistics networks [1]. The FMEA/FMSA methodology has
historically been challenging to implement owing to the
labour-intensive and time-consuming nature of the process.
Furthermore, outcomes may vary depending on the level of
expertise and experience of the team performing the analysis. To

address these challenges, a technique that involves examining
historical and present-day production information has been
developed. This approach was confirmed using an experimental
apparatus by selecting suitable sensors and data assessment
methods to forecast and recognise malfunctions.

An Internet of Things (IoT) application may have hundreds
or thousands of sensors that produce vast amounts of data, but
these data are rendered useless if the quality of the sensor data
is poor. In this study, the term sensor refers to a physical sensor
that measures the changes in physical quantity, e.g., temperature,
humidity, and light intensity of the sample or surroundings.
Poor data quality may lead to incorrect decision making results.
Sensor data quality plays a vital role in IoT applications as
they are rendered useless if the data quality is bad [2]. The
IoT describes the network of physical objects—“things”—that
are embedded with sensors, software, and other technologies
for the purpose of connecting and exchanging data with other
devices and systems over the internet. These devices range
from ordinary household objects to sophisticated industrial
tools [3].

A. Motivation

The ongoing digitalisation of machinery is enhancing pro-
duction facilities, laying the groundwork for advanced data
analysis. To fully leverage this potential, it is crucial that
the data collected are of sufficient quality to be effectively
utilised for various purposes. Therefore, the careful selection
of appropriate sensors for specific applications is crucial. This
study proposes a methodology for the Artificial Intelligence
(AI)-compatible digitalisation of CCPSs, aimed at empowering
companies to independently modernise their existing equipment
or implement digital technologies in new machinery.

B. Challenges

Although FMEA is a useful and established technique, it
can present certain challenges in failure analysis. This process
can be labour-intensive and time-consuming, particularly when
applied to intricate or extensive systems or products. Moreover,
outcomes may vary based on the knowledge and background of
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the team members involved, leading to potential inconsistencies
and subjectivity. There is also a risk of incompleteness or
inaccuracy if certain failure modes or effects are not recognised
or underestimated, or if the underlying assumptions or data are
incorrect or outdated. Finally, the effectiveness of FMEA may
be diminished if the recommended actions are not properly
executed or if the analysis is not regularly updated to reflect
current conditions [4] [5].

Additionally, many organisations have developed their own
methods for assessing failure risk; therefore the standards may
be employed as a starting point with added individualised
adaptations. Consequently, while FMEAs remain one of the
most used techniques for failure and risk assessment, the
manner in which they are conducted remains highly diverse.
In contrast, other reliability and quality techniques, such as
Reliability Prediction (RP), Reliability Block Diagram (RBD),
and Fault Tree Analysis (FTA), have defined structures and
remain fairly consistent applications. FMEAs are more fluid
in terms of their implementation and structure.

C. Aim

Many organisations face significant challenges due to un-
foreseen equipment failures, which often result in considerable
production delays and unplanned costs. As companies embrace
Industry 4.0 and enhance the digital capabilities of their
manufacturing sites, there is a concurrent increase in the
integration of sensors within machinery. These sensors are
designed to collect vital operational metrics and relay them
for further examination. The aim is therefore to implement
a scientifically grounded, data-driven objective approach for
managing the FMEA/FMSA methodologies.

D. Contribution

We propose enhancements to a methodology based on
FMEA/FMSA to improve the data quality of CCPSs. To
demonstrate the concept’s viability, a case study was conducted
using a test platform at the Dresden Technical University. The
fundamental concept involves enhancing the FMEA/FMSA
methodology through a data-driven approach.

This aims to identify FMEA/FMSA components objectively,
reducing dependence on the assessment team’s expertise. The
efficacy of this method in determining the likelihood of
“failure occurrence” has been previously validated through
the application of deep learning techniques to historical and
operational data in the aviation industry [6]. Our methodology
expands the data-driven approach to encompass other elements
of FMEA/FMSA, establishing a comprehensive data-driven
framework to promote a fundamental transformation in the man-
ufacturing industry’s methodology. In contrast to Blancke’s [7]
stochastic technique, which calculates probabilities even with
limited data, our the data-driven approach relies on historical
and operational data collected during the utilisation phase.

Our research illustrated that objective methods can be
developed to determine the elements of FMEA/FMSA. When
examining a specific scenario, it is crucial to choose appropriate
sensors that provide the required data. Subsequently, suitable

algorithms must be devised to enable failure detection, pro-
gnosis, and an unambiguous diagnosis. The case study focused
on “pitting” and “inadequate lubrication” as examples of failure
scenarios, employing appropriate sensors to formulate strategies
for detection, diagnosis, and prognosis.

E. Paper organisation

The structure of this paper is outlined as follows. An over-
view of relevant existing research pertaining to the described
problem is provided in Section II. A detailed description of
the strategy is presented in Section III, whereas Section IV
demonstrates the feasibility of this strategy through an example.
The presentation of the main results and discussions based
on these results constitute the content of Section V. Finally,
Section VI summarises this contribution and draws perspectives
for future work.

In summary, our work proposes a fundamental change in
approach, moving away from subjectively crafted individual
concepts in the application of the FMEA/FMSA frameworks.
Instead, we advocate the adoption of objectively established,
harmonised strategies. To illustrate our concept, a case study
of a test platform is established, and the validity of our
methodology is demonstrated through two distinct failure
scenarios. The challenges associated with our approach lie
in the appropriate selection of sensors to provide the necessary
data and development of suitable data-processing algorithms.

II. RELATED WORK

This section primarily examines the current advancements
and relevant research regarding data-driven FMEA/FMSA
methodologies, including similar approaches such as fuzzy
logic, while also introducing the fundamental concept behind
these systems.

The methodology of Failure Modes and Effects Analysis
(FMEA) was first established within the United States military
in the 1940s. It is a methodical approach for the identification
of all potential failures within a given design, manufacturing,
assembly process, product or service. This technique is widely
recognised as a common tool for process analysis.

Filz [6] introduced a data-driven FMEA approach that utilises
Deep Learning (DL) models on historical and operational
data from industrial investment goods during the use phase.
The proposed methodology aims to enhance transparency and
provide decision support for the maintenance and planning of
these goods. The framework is validated through a case study
in the aviation sector, demonstrating a fault prediction accuracy
of approximately 95%. By incorporating these findings into
a data-driven FMEA framework, the assessment of risk and
failure occurrence becomes objective, rather than subjective.
Notably, the estimation of failure probabilities does not rely
solely on employees’ experience and knowledge. Instead, data
analytics tools are employed to forecast component-specific
failure probabilities, using historical and operational data as
a knowledge source. These outcomes are then integrated into
an FMEA methodology, enabling dynamic risk evaluation of
individual components and higher-level modules [6].

60Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-236-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

INTELLI 2025 : The Fourteenth International Conference on Intelligent Systems and Applications



The study [8] establishes a methodology to enhance failure
analysis by incorporating data-driven approaches to comple-
ment traditional techniques like FMEA. Specifically, Associ-
ation Rule Mining (ARM) is employed to identify correlations
between failure modes and their associated characteristics that
tend to occur simultaneously. Subsequently, Social Network
Analysis (SNA) is utilised to visualise and examine these
relationships. The primary contribution of this research lies
in its support for maintenance management, which combines
conventional failure analysis with a data-driven strategy. The
proposed framework is demonstrated through a real-world case
study involving a hydroelectric power plant.

Blancke [7] introduces a comprehensive approach to multi-
failure mode prognosis that employs graph theory and stochastic
models to address the intricacies of failure mechanisms as
a system. Through the utilisation of Prognostic and Health
Management (PHM) and Physics-of-Failure (PoF) technologies,
the likelihood of failure mode occurrences can be dynamically
assessed, even when historical data is limited. These approaches
concentrate on equipment degradation processes and aim
to model failure mechanisms based on physical principles,
utilising existing predictive techniques.

Nevertheless, existing FMSA lacks the capability to evaluate
the efficacy of crucial technical specifications necessary for
predictive maintenance, such as detection methods (their ability
and scope), diagnostic procedures (identifying fault type,
position, and intensity), or prognostic capabilities (accuracy
and forecasting range). Nordal [9] introduces an innovative
Predictive Maintenance (PM) evaluation framework to address
these shortcomings. This framework incorporates priority in-
dices that facilitate the comparison of detection, diagnosis, and
prognosis techniques’ efficiency using qualitative descriptions
alongside quantitative values.

Similar to FMECA and FMEA, FMSA suffers from certain
limitations, yielding potentially skewed outcomes and inherent
uncertainties in its development. These issues stem from its
algorithmic structure and reliance on expert-based knowledge
inputs. To address these shortcomings, Murad [10] introduces
a fuzzy logic application as a supplementary tool for FMSA,
aiming to diminish the impact of such uncertainties. The
methodology is illustrated through a practical case study
involving a Kaplan turbine shaft system. The study compares
the monitoring priority number (MPN) derived from FMSA
with the fuzzy monitoring priority number (FMPN) obtained
through the application of fuzzy logic. This comparison demon-
strates how the proposed approach enhances the assessment of
detection and monitoring techniques and strategies.

In conclusion, the data-driven FMEA approach remains un-
derstudied to the best of our knowledge, only Filz [6] addressed
the topic by handling the component “occurrence” of FMEA
through a use case from the aviation industry. Our approach
extends the data-driven strategy to the other components of
FMEA/FMSA by setting up a generalised data-driven strategy
to facilitate a fundamental shift in the manufacturing sector’s
approach. Unlike the stochastic approach of Blancke [7], which
can determine probabilities from scarce data, the data-driven

method relies on historical and operational information gathered
during the usage phase. This transformation entails moving
away from the traditionally employed subjective, individualised
concepts in FMEA/FMSA frameworks towards more objective,
standardised solutions. This transition represents a significant
evolution in addressing critical analytical methodologies.

III. STRATEGY

In this section, we explicitly delineate the focus of the
underlying investigation and provide a concise overview of
the motivations and objectives of this study. Furthermore, we
outline a strategy that can be employed to achieve these goals.
This is in relation to the detailed use case study presented in
Section IV.

The term “failure modes” is used to denote the various
potential ways in which a system or component may malfunc-
tion. Failures encompass any errors or defects, particularly
those affecting customers, and can be either potential or actual.
The subsequent analysis of such failures is termed "effects
analysis", the aim of which is to ascertain the ramifications of
these malfunctions. The severity of consequences, frequency
of occurrence, and ease with which failures can be identified
are the three factors on which failures are to be ranked. FMEA
aims to implement measures to eliminate or mitigate failures,
beginning with those with the highest priority. FMEA also
serves to record existing knowledge and actions concerning
failure risks, aiding continuous improvement efforts. In the
context of design, the FMEA is employed to avert potential
failures. Subsequently, it is utilised for control purposes, both
prior to and during ongoing process operations. Ideally, FMEA
commences during the earliest conceptual stages of design
and continues throughout the entire lifecycle of the product or
service [11].

The initial stage of the FMEA methodology involves
identifying all conceivable failure modes within a product
or process. Subsequently, the potential origins and consequent
effects of these prospective failures must be ascertained. The
next step involves evaluating the risk level associated with each
failure mode, using predetermined criteria. Finally, methods
must be devised to detect, reduce, or avert failures with the
aim of aligning the product or process with overarching quality
and risk objectives.

The Risk Priority Number (RPN ) yields a quantitative
outcome, offering a straightforward approach to assessing
risk: elevated RPN figures signify increased risk levels. This
facilitates the creation of risk management protocols for
organisations. For example, a company might establish a policy
prohibiting the release of products with RPN s exceeding a
specified limit. Consequently, RPN enables uncomplicated risk
evaluation and contributes to the formulation of risk-reduction
strategies.

The measure RPN is calculated using the following three
components:

• Severity (Sev ): Indicates the gravity of potential con-
sequences should an issue arise. A higher value denotes
increased severity.
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• Occurrence (Occ): Reflects the likelihood of an issue
arising. To determine the frequency of occurrence, all
potential causes of failure and their probabilities must be
considered. A higher number indicates an increased risk
of occurrence.

• Detection (Det): This signifies how challenging it is to
identify an issue. A higher score suggests that an issue
is less likely to be spotted by engineers during product
development testing or by customers after release. Hence,
a higher value implies a lower probability of failure
detection.

RPN is computed by multiplying the severity, occurrence, and
detection, as defined in Equation 1. Utilising a scale of 1 to
10 for each factor results in RPN values ranging from 1 to
1000 [12].

RPN := Sev ·Occ ·Det . (1)

The following is a concise overview of the stages involved
in the FMEA procedure [13]:

a) Identify a process for analysis: Select a procedure known
to be troublesome in your establishment or one that is
commonly problematic across various facilities.

b) Establish a charter and appoint a team facilitator and
members: The leadership should provide a project charter
to initiate the team. Leadership assigns the facilitator,
whilst team members are individuals directly involved in
the process under scrutiny.

c) Outline the process: Clearly delineate the process steps
to ensure all team members comprehend what is being
examined.

d) Determine potential issues at each process stage: This
is where those directly involved in the process describe
problems that may or do arise.

e) Prioritise problems for resolution: Improvement efforts
will concentrate on issues that occur frequently and/or
significantly impact user safety, even if infrequent.

f) Formulate and implement modifications to mitigate or
prevent problems: The team decides on the most effective
process alterations to reduce the risk of harm to residents.

g) Assess the efficacy of process modifications: As with all
improvement initiatives, the impact of the implemented
changes is evaluated.

Additionally, the FMEA process involves creating a team
of professionals with expertise across different domains. The
expert team establishes Key Performance Indicators (KPIs)
for potential failure modes based on the scope of FMEA.
These KPIs can serve as the foundation for subsequent
maintenance activities, as the methodology revolves around
these failure modes. This framework offers valuable guidance
for implementing a data-driven FMEA in any maintenance-
related enterprise. The outcomes can be utilised to manage
resources, such as workforce or replacement components,
and to support decision-making in the implementation of
specific maintenance tasks, including servicing, inspections, or
repairs [6].

The FMEA’s methodological approach involves the determ-
ination of three risk factors by chosen team members. As a
result, the information in the FMEA is frequently ambiguous
or uncertain. Moreover, the FMEA is carried out by “experts”,
which introduces elements of subjectivity and incompleteness.
Furthermore, the FMEA team determines the values for severity,
occurrence, and detection based on their expertise and empirical
knowledge [14].

The objective of FMSA is to choose monitoring technologies
and approaches that optimise the confidence in diagnosing and
prognosticating any given failure mode [15]. This methodology
is essentially a modified version of FMECA [16] [17] and
an expanded form of FMEA, concentrating on the indicators
produced by each identified failure mode and the subsequent
selection of the most suitable detection and monitoring tech-
niques and strategies.

The DIN 13379-1 standards [15] [18] advises conducting
the FMSA utilising existing FMEA/FMECA [16] [17] process
findings, enabling prior fault identification and evaluation. This
approach enhances the subsequent assessment’s speed and
accuracy. The FMSA’s primary components involve enumerat-
ing symptoms for each abnormal condition type, along with
appropriate monitoring methods and estimated frequencies.
Subsequently, categorisation occurs using four metrics which,
akin to the FMEA’s RPN , establish the Monitoring Priority
Number (MPN ). Similar to FMEA, scores ranging from 1 to 5
are allocated for predefined categories. The standard provides
detailed specifications and descriptions of the assessment scales.

The evaluation process commences with the Detection as-
sessment (Det), which characterises the overall recognisability
of a fault condition. Subsequently, the failure severity (Sev )
is evaluated based on its associated risk, with the rating scale
uniquely capped at four. Finally, the anticipated accuracy
of Prognosis (Pgn) and Diagnosis (Dgn) is appraised. The
ultimate classification for each malfunction type is derived
from these four distinct assessments and defined in Equation 2.

MPN := Det · Sev · Pgn ·Dgn. (2)

A high value for MPN is indicative of the efficacy of a
procedure for the detection, diagnosis and prognosis of a defect
type. Conversely, a low value for MPN does not imply that
a malfunction need not be monitored; rather, it suggests that
the chosen monitoring method and frequency may yield a
low confidence level. As new insights are gained or system
modifications occur, reassessment should be undertaken.

The principle that a lower value for MPN corresponds to
reduced confidence in detection, diagnosis and prognosis using
the chosen technique and monitoring frequency was maintained.
However, the original severity scale (1 to 4), unlike the scales
for other factors (all 1 to 5), was retained, adhering to the
recommendation in ISO standard 13379-1 [18]. Consequently,
the expected accuracy for Diagnosis (Dgn) is assessed on
a scale from 1 to 5, where 1 indicates the least favourable
outcome and 5 denotes the most favourable. This rating system
seeks to identify failure modes characterised by detectable but
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non-reproducible symptoms, as well as those that are unknown
or indistinguishable from symptoms of other failure modes.

Given that various companies’ use cases rely on distinct
datasets, there is no universal set of algorithm parameters that
optimally suits all scenarios. Consequently, this framework
introduces a generalised approach applicable to diverse use
cases, aimed at enhancing the model’s precision. A primary
objective of the data-driven FMEA framework is to forecast
failure probabilities. This task utilises processed operational
data from the monitored components and sections of the
technical equipment. As the parameters and data types can
vary significantly, the selection of the data analytics model is
heavily influenced by these characteristics.

The incorporation of operational data from the examined
systems enhances automation, reducing subjectivity and reli-
ance on experience. This enables even novice staff to identify
and evaluate failure modes, as well as efficiently plan required
maintenance tasks with greater precision. Furthermore, utilising
operational data improves the comparability of FMEA/FMSA
outcomes and enhances the precision of strategies and measures
implemented.

To summarise, the data-driven methodology initially employs
the conventional FMEA/FMSA technique, which involves
identifying all potential failure modes within a product or
process and calculating priority numbers. As historical and
operational data accumulate, this method is further enhanced.
Consequently, the priority figures are adjusted, providing a
more accurate and impartial representation of the analytical
procedure. The proposed data-driven methodology advocates
a paradigm shift in the manufacturing sector, transitioning
from subjectively designed individualistic concepts traditionally
employed in addressing FMEA/FMSA frameworks towards
objectively established, harmonised solutions.

IV. USE CASE

This section illustrates the practicality of the proposed
solution concept as described in Section III. To demonstrate this,
the concept has been implemented in the “Intelligent Machine
Bed” case study from the chair “Machine Tools Development
and Adaptive Controls” at Technische Universität Dresden
in Germany (see Figure 2 for a picture of the machine bed
and Figure 3 for the representation of the IT concept behind
it). Additionally, see [19] for a survey regarding digitisation
workflow for data mining in production technology applied
to a feed axis of a CNC milling machine. The increasing
digitisation of Cyber Physical Production Systems (CCPSs)
aims to establish a foundation for AI, encompassing data
mining and predictive data analytics. The initial objective
of the case study was to analyse the system, determine the
necessary data sources, measurement points, and sensors to
be chosen, assessed, and incorporated into the machine’s IT
infrastructure based on a specific analysis question and its
associated requirements.

The selection of data sources, measurement points, and
sensors must be guided by specific analysis questions and their

associated requirements. The study included the following
steps:

• System analysis focusing on characterisation of all relevant
influencing and disruptive factors, along with their impact
patterns,

• Identification of appropriate measurement parameters
and specifications (e.g., measurement scope, sampling
frequency, etc.),

• Formulating of an experimental protocol incorporating
variations in influential and disruptive factors,

• Investigating and choosing various sensor categories and
types,

• Development and implementation of a framework for data
collection, storage, and visualisation for the chosen data
sources (including interfaces, protocols, database systems,
and IT infrastructure),

• Assessment of the strategy’s efficacy for certain data
sources and measurement locations and evaluation of its
appropriateness for detecting and analysing the intended
patterns and their quality.

Figure 1. Pitting damage to a ball rolling element at LWM.

The FMEA standards typically include widely adopted scales
for Severity, Occurrence, and Detection. Whilst the terminology
of the following example is tailored to automotive applications,
it can be readily adapted for use in other industries [12]. To
illustrate this example, please find No. 4 entry below:

• the severity rating scale is “Appearance or Audible Noise,
vehicle operable, item does not conform and noticed by
most customers (> 75%)”,

• the occurrence rating scale is “Isolated failures associated
with similar design or in design simulation and testing”
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TABLE I. DIAGRAM PRESENTING AN OVERVIEW OF THE SOLUTION CONCEPT WITH HIGHEST PRIORITISED FAILURE CASES ACCORDING TO FMEA.

Possible failure effects

System Failure type Local effect Final effect Se
ve

ri
ty

Possible cause of
failure

Failure mechanism O
cc

ur
re

nc
e

D
et

ec
tio

n

R
PN

Guide rail Pitting Poorer running
behaviour, Loss of
accuracy, Abrasion

Significant reduction
in service life, failure

8 Excessive continuous
load

Material fatigue 4 4 128

Guide rail Installation error Higher displacement
forces depending on
the slide position

Reduction in service
life

4 Design errors,
Assembly errors

Additional tensioning,
Friction

5 8 160

Guide carriage Inadequate lubrication Higher displacement
forces, Increased
friction

Wear of the rolling
elements

7 Maintenance errors,
Damages

Insufficient
maintenance intervals

5 5 175

Guide carriage Pitting Poorer running
behaviour, Loss of
accuracy

Significant reduction
in service life, Failure

8 Excessive continuous
load

Material fatigue 5 4 160

TABLE II. DIAGRAM PRESENTING AN OVERVIEW OF THE SOLUTION CONCEPT. FAILURES WITH THE HIGHEST FMSA MPN.

Possible failure effects

System Failure type Failure symptoms Failure effect Failure description D
et

ec
tio

n

D
ia

gn
os

is

M
PN

Guide rail Pitting Vibration Vibration excitation,
Higher amplitude

Certain damage rollover
frequency when
travelling over the
damage

5 4 20

Guide rail Pitting Optical changes Change in image
information

Material breakouts are
visually recognisable as
part of image
recognition due to
changes in the raceway

5 4 20

Guide rail Installation error Motor current Higher motor current
depending on the
carriage position

An installation error
results in additional
tension, which causes a
higher displacement
force

3 4 12

Guide carriage Inadequate lubrication Motor current Continuously increased
motor current

Insufficient lubrication
leads to an increase in
the coefficient of
friction µR over the
entire rail

3 4 12

Guide carriage Inadequate lubrication Vibration Vibration excitation Excitations due to the
contact of roughness
peaks of the rolling
partners, due to the
lack of lubricant

3 4 12

Guide carriage Inadequate lubrication Ohmic resistance Reduction in ohmic
resistance

There is a change in
the resistance between
the carriage and the
profile rail

3 5 15

Guide carriage Pitting Vibration Damage rollover
frequency, Higher
amplitude

Certain damage rollover
frequency when
travelling over the
damage during rail and
carriage contact

4 4 16

64Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-236-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

INTELLI 2025 : The Fourteenth International Conference on Intelligent Systems and Applications



1 2 3 4

4.1 4.2

Figure 2. “Intelligent Machine Bed” test stand.
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Figure 3. IT concept of the “Intelligent Machine Bed” test stand.

and
• the detection rating scale is “Product validation (reliability

testing, development or validation tests) prior to design
freeze using test to failure (e.g., until leaks, yields,
cracks).”

a) Severity:
8: Downtime more than 4 hours. Scrap more than one

part. No safety issues.
7: Downtime 2 to 4 hours. Scrap one part lost. No safety

issues.
4: Downtime less than 30 minutes. No scrap, very minor

rework. Operator fix required. No safety issues.
b) Occurrence:

5: One failure per month.
4: One failure every 3 months.

c) Detection:
8: Remote chance that the design controls will detect

a potential cause and subsequent failure mode, or
equipment control will provide an indicator of an
imminent failure.

5: Moderate chance the design controls will detect a poten-
tial cause and subsequent failure mode, or equipment
control will will prevent an imminent failure (stop
machine) and isolate cause.

4: Moderate high chance the Design controls will detect
a potential cause and subsequent failure mode and may
require equipment controls.

For further details and explanations please see [20].
Consequently, it is crucial to identify appropriate sensors,

and thus, the corresponding failure detection algorithm for each
specific failure scenario. Within this use case, a methodology for
the data mining-compatible digitisation of CCPSs is developed,
enabling companies to independently upgrade existing ma-
chinery or digitise new equipment. By examining the resulting
effect pattern descriptions, this study establishes measurement
technology requirements and determines suitable sensors and
their optimal placement, and thus, the corresponding failure
detection algorithm for each specific failure scenario. Following
the integration of sensor technology into the machine’s IT
infrastructure, an experimental validation was conducted for
individual data sources and measurement locations. The results
demonstrate that, using this method, an appropriate sensor and
corresponding failure detection algorithm can be identified for
each examined failure condition.

The fundamental configuration of the “Intelligent Machine
Bed”, (see Figure 2 ) comprises a machine bed (1) and table
(3), along with a synchronous linear motor (2) serving as the
propulsion system. Two roller profile rail guides (4) regulate
the translatory motion, each consisting of two guide rails (4.2)
with a pair of guide carriages (4.1). The rails are positioned
horizontally on the machine bed.

To provide a more comprehensive understanding, Figure 3
illustrates a schematic overview of the IT concept, incorporating
the required sensors. The "intelligent machine bed" (10) houses
a control cabinet containing an analogue input module, which
is linked to the analogue acceleration sensor (8) via the signal
conditioner (13). The input module converts the incoming
analogue signals into digital format before transmitting them
to the controller. Following this process, the data packets are
transmitted to the Node- RED server on the edge computer
(6) using Ethernet and User Datagram Protocol (UDP). Node-
RED is a visual programming tool that incorporates JavaScript
functionality. It enables the connection of various input,
output and processing nodes through flows, facilitating the
management and supervision of IoT applications.

One of the universal programmable sensor device and
prototyping Bosch XDK platforms (1) is linked to the current
clamp (9). The second Bosch XDK platform (2), designed
for vibration detection, is firmly attached to the measurement
location, ensuring the integrated acceleration sensor is posi-
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tioned precisely where the vibration is to be measured. Both
sensor platforms transmit their internally digitised data via
WiFi and UDP, utilising distinct ports, to a WiFi router (5).
From there, the information is relayed through an Ethernet
connection to the edge computer’s server. The data from the
trainer’s drive controller (7) is directly accessed via Ethernet
and stored on the Node-RED server. Subsequently, Node-RED
transmits all incoming data packets to a database (11) where
they are stored. InfluxDB, a database management system
specifically designed for time series data, is employed. Various
input, output, and processing nodes are linked together to create
flows, enabling the control and monitoring of IoT use cases.
Finally, the measurement data from the database is transferred
to Grafana (12), which enables the graphical visualization of
the data.

To establish a dependable foundation for future failure pre-
diction, that is, to have a reliable database for predicting failure
scenarios, additional research on anticipated effect patterns is
essential to determine sensor technology specifications. The
following section provides a more detailed examination of
the expected error patterns for the chosen combinations of
measured variables and symptoms utilising both quantitative
and qualitative characteristics. This analysis is based on Table II,
with the objective of achieving an initial categorisation to aid
in selecting the appropriate measurement technology.

To enhance comprehension, the cause-effect relationships of
failure cases are illustrated using the cause-and-effect principle,
as depicted in Table II. This principle, which traces the cause
identified in the FMEA to the selected measured variable
from the FMSA, allows for bidirectional inference between
the cause and measurable variables (cf. [21, p. 77]). As an
extension of the cause-and-effect principle, information about
the dependencies of the measurand is provided in the form
of the influencing variables. These are intended to serve as
a guide for subsequent tests, offering potentially adjustable
parameters for future experiments on the “Intelligent Machine
Bed”.

The principle that a lower MPN corresponds to reduced
confidence in detection, diagnosis and prognosis using the
chosen technique and monitoring frequency is maintained.
However, the original severity scale (1 to 4), unlike the scales
for other factors (all 1 to 5), was retained, adhering to the
recommendation in ISO standard 13379-1 [18].

For example, the anticipated accuracy for Diagnosis (Dgn)
was evaluated on a scale of 1 to 5, with 1 representing
the least favourable outcome and 5 the most favourable
outcome. This rating system aims to identify failure modes with
symptoms that are detectable, but not reproducible, unknown,
or indistinguishable from the symptoms of other failure modes.
The criteria for the diagnosis rating are outlined as follows:
(1) There is a remote likelihood that this failure mode

diagnosis will be accurate;
(2) There is a low likelihood that this failure mode diagnosis

will be accurate;
(3) There is a moderate likelihood that this failure mode

diagnosis will be accurate;

(4) There is a high likelihood that this failure mode diagnosis
will be accurate; and

(5) It is virtually certain that this failure mode diagnosis will
be accurate [10] [18].

Diverging from the standard, only two key figures were
considered in this study as potential performance indicators.
This deviation is due to two factors: firstly, the Severity (Sev )
from the FMEA should not be reassessed, and secondly, the
Prognosis (Pgn) does not contribute additional value to the
assessment. Instead, the focus is on evaluating the probability
of detection (Det) and the Diagnostic capability/symptom
visibility (Dgn). These two factors combine to form the MPN .
In detail, MPN will be calculated as given in Eq. 3.

MPN = Det ∗Dgn. (3)

The assessment of monitorability using the MPN is con-
ducted qualitatively through estimation, similar to FMEA’s risk
priority number. A high MPN indicates a relevant measurand
with good monitoring ability. Table II displays the potential
measured variables with the highest MPN values for the
“intelligent machine bed”. Despite high MPN values, certain
measured variables may not be feasible owing to structural
limitations of the test bed. In such cases, alternative measured
variables with the next highest MPN were selected for
further analysis. When MPN values are equal, both measured
variables are considered in subsequent evaluations.

Implementing the optical detection of pitting errors for
the profile rail would have necessitated the redesigning of
the existing IT concept, which is beyond the scope of this
study, see Figure 1 for a picture of a pitting damage to a ball
rolling element. Moreover, optical measurement technology
is impractical for detecting defective changes in real-world
applications because the cooling lubricant used during the
machining processes can obscure damage or interfere with
optical measurements. Furthermore, the detection of inadequate
lubrication through alterations in ohmic resistance is not a
viable option due to the fact that the machine bed is not
engineered to withstand electrotechnical influences, such as
fault currents from the linear motor. Consequently, the vibration
measurement was selected as the primary measured variable
for both pitting cases. For instances of inadequate lubrication
and installation faults, the alterations in motor current were
designated as the measured variables.

To enhance comprehension, the cause-effect relationships of
failure cases are illustrated using the cause-and-effect principle,
as depicted in Table II. This principle, which traces the cause
identified in the FMEA to the selected measured variable
from the FMSA, allows for bidirectional inference between
the cause and measurable variables, see [21, p. 77]. As an
extension of the cause-and-effect principle, information about
the dependencies of the measurand is provided in the form of
the influencing variables. These are intended to serve as a guide
for subsequent tests, offering potential adjustable parameters
for future experiments on the “Intelligent Machine Bed”.

Vibration excitation occurs when the roller profile guideway
lacks adequate lubrication. This occurs due to metallic contact
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between roughness bumps on the rolling surfaces, which are
typically separated by a lubricating film (refer to chapter 2.2.1).
These contacts generate vibrations at approximately 104 Hz.
Additionally, insufficient lubrication diminishes the damping
effect, see [22, p. 44, 55, 102]. The resulting vibrations were
manifested as high-frequency broadband components in the
acceleration signals detected by the vibration sensors. The
amplitude of these vibrations correlates with travelling speeds,
intensifying as speed increases, see [22, p. 102, 120].

Insufficient lubrication also alters the coefficient of friction
µR, which leads to increased friction. This results in a greater
friction force, which, similar to the parallelism deviation, causes
higher displacement forces, see [22, Eq. 4.2]. Consequently,
an increase in the motor current, see [22, Eq. 4.4]. However,
Klein’s research indicates that meaningful measurements of
motor current changes can only be obtained at travelling speeds
of 40 m/min or higher, see [22, p. 123]. Unlike assembly errors,
inadequate lubrication causes a consistent percentage increase
in the motor current along the entire guide rail length, rather
than a position-dependent increase. Figure 4.7 of [22] illustrates
the cause-effect principle for insufficient lubrication on both
measured variables. As per Equation 4.2 of [22], the influencing
factors include traversing speed, the load creating the normal
force, and the friction coefficient itself. Similar to other error
states, a combination of additional errors can also act as an
influencing variable.

Control unit drive signals were utilised for diagnostics in
drive-based data acquisition. The commonly recorded variables
include control signals for the drive, such as currents, positions,
accelerations and speeds, along with the corresponding setpoint
signals of the control system, see [21, p. 33]. For the failures
examined by Walther, see [21, p. 85], the motor current signal
varies with the drive-torque, resulting in an increase in its mean
value as the drive-torque increases. Consequently, this method
is appropriate for diagnosing failures that influence friction,
thereby increasing the drive torque, see [21, p. 57].

In conclusion, to demonstrate the practicality of our meth-
odology, we employed a case study involving the “Intelligent
Machine Bed” from the “Machine Tools Development and
Adaptive Controls” chair, at TU Dresden in Germany. This
use case centred on “pitting” and “inadequate lubrication” as
practical examples of failure scenarios, utilising appropriate
sensors to develop compliant strategies for detection, severity,
prognosis, and diagnosis.

V. OUTLINE OF THE RESULTS

In the following, the results are outlined, the advantages and
disadvantages of the proposed solution are discussed and some
of the areas in which it is applicable are given.

This study involved developing a method for data-mining-
compatible digitalisation of CCPSs for an analytical use case.
A system analysis was conducted on the ’intelligent machine
bed’ trainer by employing adapted versions of FMEA, FMSA,
and effect pattern analysis. Structural analysis of the FMEA
revealed that the guide carriage and rail had the highest error
potential for the trainer, leading to their selection for further

examination. Subsequently, pitting and insufficient lubrication
were identified as high-priority faults for the carriage, whereas
pitting and installation errors were prioritised for the guide
rail. Based on these faults, the potential measurable variables
were listed and evaluated using the corresponding FMSA.
The analysis results indicated that vibration was a suitable
measurement variable for detecting pitting and inadequate
lubrication. Additionally, the motor current proved to be an
appropriate measure for both installation faults and insufficient
lubrication.

The subsequent phase involved an analysis of the effect
patterns, wherein all pertinent qualitative and quantitative
variables and the dependencies of the respective measured
variables were identified. By utilising the determined effect pat-
terns, requirements, such as measurement ranges and sampling
rates, can be formulated and approximated. Based on these
requirements and associated research, two distinct systems were
developed for each measurement. For each measured variable,
sensors of varying types, price ranges, and direct/indirect
measurement capabilities were selected and evaluated. The
subsequent task involves determining the optimal measurement
locations within the system for the selected sensors. Finally,
an experimental validation was conducted for individual data
sources and measurement locations.

Initially, the groundwork was laid for the existing IT
framework, encompassing the integration of sensor technology
into the IT system, establishment of a database, and provisions
for graphical representations of the recorded measurement
data. Subsequently, trial runs were conducted to assess the
functionality of the IT system, revealing the necessary modi-
fications which were implemented. The next phase involved
analysing specific error cases using the ’intelligent machine
bed’. As certain sensor requirements could only be estimated
beforehand, preliminary tests were conducted for precise
specifications. These tests revealed that the current clamp was
already operating beyond its intended parameters, underscoring
the importance of preliminary testing when requirements are
unclear.

Further experiments were conducted to identify suitable
measurement locations on the system. Three distinct measuring
points on the carriage and adapter block were examined,
considering variations in influencing and disturbance variables.
The findings indicated that acceleration measurements in the
direction of travel were unsuitable because of the additional
acceleration occurrences. Finally, the selected data sources were
validated using a test plan that varied the identified influencing
variables and error states. Upon reviewing the test datasets,
it was determined that one of the two sensors selected per
measured variable could diagnose the desired effect patterns,
making them appropriate for visibility analysis.

With a focus on the organisation of maintenance activities,
data-driven FMEA combines the revealed correlation from
past maintenance events with the experience of employees
and provides support, especially for inexperienced employees
during the planning of maintenance and repair. Therefore, using
the developed framework the FMEA, risk assessment is no
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longer subjective because every employee will have the same
results. These results were comparable because the relevant
factors were determined based on the data basis of the use
phase.

In conclusion, the method developed in this thesis achieves
its objective and is thus suitable for analysing CCPSs for data
mining purposes in the context of digitalisation. Conversely, the
approach to data-mining-compatible digitalisation of CCPSs
outlined in this study is not easily applicable to other scenarios,
nor is it readily adaptable to different industry sectors.

VI. CONCLUSION AND FUTURE WORK

This study further develops and validates a data-driven
FMEA/FMSA methodology to digitise machinery, thereby
enhancing production facilities and enabling advanced data
analysis. Initially, the setup for FMEA/FMSA components
relies on the team’s best guesses, but over time as data
accumulates, components of FMEA/FMSA are improved by
using AI technologies on historical or current data. Moreover,
to ensure accurate failure prognosis and/or correct failure type
diagnosis, suitable sensors should be selected and detection/-
forecasting/diagnostic algorithms should be established. This
process can be complex, as the engineering effort required
during the development and testing phases is substantial and
should not be underestimated. The case study’s experiment is
overly specific and may not be broadly applicable across various
industries. Nonetheless, it demonstrates the technical viability
of the concept whilst highlighting some challenges that need
to be addressed. Consequently, achieving greater precision in
determining FMEA/FMSA components necessitates appropriate
engineering research outcomes and adequate sensor technology.
This investigation examined the feasibility of a completely
data-driven FMEA/FMSA, exploring computational methods
to calculate all RPN/MPN parameters, rather than depending
on expert pre-definitions.

The existing methodology [6] enabled the creation of a data-
driven FMEA by calculating failure likelihoods and employing
preset severity and detection parameters for FMEA. The
resulting risk/monitoring priority figures for individual failure
modes provide valuable guidance and enhanced clarity for
maintenance scheduling. This is especially advantageous for
new or less experienced personnel in estimating expenses
and time requirements for forthcoming maintenance or repair
tasks. While predicting failure probabilities is essential, the
FMEA/FMSA delivers a more thorough evaluation of failure
modes, their consequences and the strategy of avoiding them.
A key benefit of this approach is its impartiality in risk
assessment, as all staff utilising the developed tool will reach
consistent outcomes. Moreover, by anticipating failures during
the planning stage, it enables the optimisation of production-
related processes, including logistics and the procurement of
spare parts. The proposed methodology enhances sustainable
maintenance strategies. By accurately predicting faults, the
system ensures that parts are only replaced when absolutely ne-
cessary, thereby maximising their lifespan. This approach leads

to conservation of resources through minimised maintenance
operations and less frequent component substitutions.

As production processes and supply chains receive greater
focus on optimisation, there exists an opportunity to create an
automated FMEA/FMSA system that continuously updates
the risk/monitoring priority numbers. This innovative tool
could forecast failures in specific machine components, thereby
enhancing overall system efficiency. Such an approach has
the potential to transform manufacturing systems into self-
regulating entities for maintenance operations, based on real-
time parameters, see also [6].

In summary, based on finding regarding the FMEA/FMSA
components, the development of a knowledge database for
failure scenarios, sensors, detection and forecasting algorithms
is essential for a data-driven FMSA.
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