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Abstract—The high fuel prices and the important costs
associated with windmill downtime during maintenance urge the
need to minimize travel time and scheduling of jobs in a short time
period. Since landing in windmills at sea is difficult and depends
on meteorological parameters, the constraint of maintenance
windows is added when searching for the optimal route. To
minimize the distance traveled, the Vehicle Routing Problem
with Time Windows (VRPTW) is solved, using three different
methods. The VRPTW is applied to two separate databases,
namely various sets of windmills to be maintained and several
numbers of customers to be serviced. Applications with 8 to 175
windmills, divided over 3 farms have shown that the VRPTW
solved by using three different methods resulted in a similar
relative gain in travel distance, compared to a randomly chosen
route. The main difference between the methods studied is the
amount of calculation time needed, which varies from 1 second to
6 minutes for the different methods. To demonstrate the general
applicability, the same three methods were executed on a set
of service tasks performed at 8 to 40 customers of a window
decoration company, distributed throughout Belgium, resulting
in similar outcomes. In a second part of the paper, the Job
Shop Scheduling Problem (JSSP) is solved to minimize the total
maintenance span of offshore windmills as an additional objective
function. This led to a relative gain of up to 62% in maintenance
time, compared to the total maximum maintenance span for an
application of 40 windmills. Finally, both objectives, minimal
distance and minimal maintenance time span, are combined,
resulting in a set of non-dominated maintenance sequences that
can be used by the planner.

Keywords-VRPTW; VRPy; OR Tools; ACO; Job Shop Scheduling;
Pareto.

I. INTRODUCTION

Due to high fuel prices and significant labor costs, it is
extremely important to limit the distance covered and the
time consumed for offshore windmill maintenance. This paper
focuses on the reduction of regular maintenance and repair costs.
Vessel routing optimization for offshore windmill maintenance
thereby is a very complex problem. It has been the topic of
recent studies [1]–[4]. To demonstrate the general applicability
of the VRPTW to obtain minimal distance routes and to show
that all three methods studied - VRPy, Operational Research
(OR) Tools and Ant Colony Optimization (ACO) - lead to
similar results for other data sets, the procedures are applied
to the discrete product installation planning. The interventions
of companies that distribute and maintain unique products per
customer - the so-called Value Added Resellers or VARs -
can be split in the installation of the products and ad hoc
maintenance of previously installed products. The planning of

the delivery and installation can be considered as proactive
planning, allowing optimization of the distance to be traveled,
and thus the amount of fuel used. Maintenance interventions are
more reactive of nature, making optimal planning more difficult.
In a second part of this paper, we focus on reducing downtime
by arranging maintenance jobs in such a way that the total
service time span is minimized. To obtain this objective, the
Job Shop Scheduling Problem (JSSP) is solved, in which the
machines are replaced by workers. For each worker, a sequence
is calculated so that all maintenance jobs are executed within
a limited time frame, reducing the total downtime of all the
windmills that need service. Finally, both objectives are applied
to the same set of windmills, resulting in a Pareto front of
non-dominated solutions offered to the planner to choose from
(Section V). It will become clear from the list of these Pareto
points that reaching both objectives at the same time is nearly
infeasible, and thus the optimal sequence must be chosen out
of this list of non-dominated solutions.

The novelties of this paper are: (i) the comparison of three
solution methods for the vehicle routing problem with time
windows applied to windmill maintenance vessels and to
discrete product installation and service, (ii) the combined
windmill sequence travel distance and maintenance time span
optimization by solving both the VRPTW and the JSSP on
the same data set, and (iii) the importance of reaching both
objectives in maintenance cost reduction.

The remainder of the paper is organized as follows. In
Section II, references are made to related work and Section
III describes the problem formulation. The three methods used
to solve the Vehicle Routing Problem with Time Windows,
as well as the solution method for the JSSP are listed in
Section IV. Section V lists the results of all the optimization
methods discussed for VRPTW and JSSP and compares both by
calculating the corresponding Pareto points. Finally, Sections
VI and VII contain an evaluation of the results and provide a
conclusion, respectively.

II. RELATED WORK

The Vehicle Routing Problem (VRP) was first investigated
more than six decades ago. This routing problem initiated
major developments in the fields of exact algorithms and
heuristics [5]. The vehicle routing problem comprises the design
of least cost delivery routes through a set of geographically
dispersed locations, subject to one or more side constraints.
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Constraints to vehicle routing problems linked to capacity
result in the Capacitated Vehicle Routing Problem (CVRP). If
a time window is added to each location, asset, or customer, we
talk about VRPTW [6]. In addition to the capacity constraint,
a vehicle in the VRPTW has to visit a location, asset, or
customer within a certain time frame. The vehicle - car,
vessel, or other - is allowed to arrive before the time window
opens, but the customer or asset cannot be serviced until the
respective time window opens. In addition, it is not allowed
to arrive after the time window has closed [7]. The different
solution methodologies for the VRP can be divided into three
categories: Exact methods, heuristics, and meta-heuristics. The
exact methods generate optimal solutions and guarantee their
optimality. This method class includes a variety of approaches,
mainly branch and X (X being cut, bound, price, etc.), dynamic
programming, and column generation methods. The heuristics
aim to methodically find an acceptable solution within a limited
number of iterations. Metaheuristics can finally be defined as
a class of heuristics that search beyond the local optima if
they exist [8]. Research papers on VRP, with or without time
windows, are quite common, since their application in daily
life is widely spread, for example, in the delivery of packages
and the route planning of nurses [9]–[12]. The principle of
using VRPTW to optimize offshore wind farm maintenance
routes for multiple vessels has never been applied.

In addition, extensive research has been done on maintenance
and production scheduling according to the flow shop method,
as well as the job shop method in different industries [13]–[15].
Al-Shayea et al. designed a model to integrate production
scheduling and maintenance planning for flow-shop production
systems. This model is based on the optimal job sequence that
will be processed on several connected machines in series. The
objective of this study is to find the optimal sequence of jobs,
while reducing total production and maintenance costs [16].
None of the papers apply, however, to maintenance scheduling
in windmill farms, while costs for this is very high, and every
hour of downtime (due to maintenance) results in an important
loss of revenue.

III. PROBLEM FORMULATION

A. Experimental Design - VRPTW

The goal of solving the VRPTW will be to find the optimal
maintenance or installation sequence to minimize the total
distance traveled, with a minimal number of vessels, taking
into account that some maintenance tasks can only be serviced
for a certain period of time. For both data sets, the load is never
an issue, neither for the vessels that only need to transport
maintenance people nor for the vans that are big enough to carry
all products that need to be installed in one day. Finally, both
data sets are directly obtained from the windmill maintenance
company and the window decoration value added reseller, and
no prefiltering or preprocessing was done, except a random
selection of a predefined batch out of the total set, ranging
from 8 to 175 windmills and from 8 to 40 VAR customers.

Figure 1 shows an example of a windmill configuration
after applying the VRP solution method with time windows.

Figure 1. Optimal windmill service routes after solving the VRP.

The configuration used in this example has one dock and
16 windmills spread over three farms to be serviced. The
different windmills are indicated as WMi (i = 1-16), where
each windmill must be visited exactly once. Solving the VRP
leads to three routes that three different vessels must take,
as shown in Figure 1. The fact that more than one vessel
is necessary to service all windmills is caused by the time
windows in which maintenance of a windmill needs to be
carried out. A similar configuration can be set up for the
customers of a Value Added Reseller, where the windmills
are then replaced by customers to be visited for installation or
maintenance of discrete products.

B. Experimental Design - JSSP

In a typical scheduling problem in the job shop, different
jobs are scheduled on multiple machines to minimize the total
production time [14][15]. However, for this research paper,
we replaced the machines on which the work is performed by
workers that manually execute the maintenance jobs. For each
worker, the sequence of jobs is optimized in such a way that
the total work span is minimized. Each job is represented by a
different shade of color, and the size of the blocks corresponds
to the amount of time it costs to complete the maintenance
task. The workflow of a job shop is complex because it is
different for every job. In this paper, the job shop scheduling
will be discussed as it is a good match with the maintenance
jobs scheduling for offshore windmill maintenance, making it
the first time, according to the author’s knowledge, the JSSP
is used for maintenance planning of offshore windmills.

Figure 2 shows an example of a job sequence per worker
obtained by solving the JSSP for a group of 16 windmills
spread over 3 farms. The number of workers is set to three on
the vertical axis, in analogy with the number of machines in
the original JSSP used in a production environment. In each
windmill, one worker needs to perform a service task and each
worker needs to perform several maintenance tasks in separate
windmills. Applying the JSSP solver to this configuration
leads to an optimal sequence in which each worker needs
to perform service on the windmills (s)he is responsible for,
with a different service time on each windmill, shown on the
horizontal axis. Thus, for each worker, a sequence of jobs is

31Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-236-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

INTELLI 2025 : The Fourteenth International Conference on Intelligent Systems and Applications



Figure 2. Optimal windmill service job sequence for 3 workers and different
colored jobs of various length after solving the JSSP.

shown, each corresponding with a different color and with a
size in accordance with the length of the job.

C. Output Parameters
The output parameters for the VRPTW problem are the

optimal number of vessels or trucks, the optimal sequence, and
the travel time for each vessel or truck in minutes. Furthermore,
the relative gain in travel time (∆Gt) is calculated by dividing
a randomly chosen travel time (TTt|Random) minus the Total
Travel time (TTt) by a randomly chosen travel time (see (1)).
The output parameters for the JSSP problem are an optimized
sequence of maintenance tasks per worker to minimize Total
Downtime (TDt). This is then compared to the total time
needed for one worker (TDt|OneWorker) and a relative gain
is calculated (∆Gw) by using (2).

∆Gt = 100 · TTt|Random− TTt

TT t|Random
(%) (1)

∆Gw = 100 · TDt|OneWorker − TDt

TDt|OneWorker
(%) (2)

IV. METHOD

A. Solution method - VRPTW

In this paper, three methods are discussed, namely VRPy, a
tool that uses a Column Generation Approach (CGA) [17], the
OR Tools solver, developed by Google Operational Research
[11], and an ACO algorithm, a metaheuristic solving method
[18]. Table I summarizes the three methods and describes their
characteristics. While VRPy takes (much longer) to arrive at
a result, especially for large datasets, OR Tools generates a
result almost instantaneously but of slightly less quality. These
conclusions are numerically confirmed in Tables II and III. All
calculations are done on a MacBook Pro from 2021 with the
new Apple M1 chip and 8Mb RAM.

TABLE I
COMPARISON OF ALL METHODS USED TO SOLVE THE VRPTW

Method Advantage Disadvantage
VRPy Easy Interface Less Powerful
OR Tools Fast and Accurate No optimal result
ACO Optimal results No Easy Interface

To calculate the distances between the windmills or cus-
tomers and between the starting point and the windmills or
customers, spherical trigonometry formulas are used. In this
paper, all vehicles are considered the same: they have the same
velocity, the same capacity, and unit freight. Furthermore, the
capacity and cargo of the vessel are not considered constraints.

When defining ti as the time it takes for the vessel to arrive at
location i, e as the cost of waiting and f as the cost of arriving
too late, the objective of solving the VRPTW for a collection
of vehicles A, can be written as:

min(

N∑
i=0

N∑
j=0

A∑
a=1

xija∗dij+
N∑
i=1

max{e∗(mbi−ti); 0; f∗(ti−mei)}

(3)
Where:

xija =

{
1 if the vehicle a travels from i to j,
0 in all other cases

(4)

tija =
∑

xija(ti +
dij
v

+ si) (t0 = 0, s0 = 0) (5)

The constraints are:

N∑
j=1

A∑
a=1

xjia =

N∑
j=1

A∑
a=1

xija = A (i = 0) (6)

N∑
j=0

A∑
a=1

xija = 1 (i ∈ N) (7)

N∑
i=0

A∑
a=1

xija = 1 (j ∈ N) (8)

N∑
j=1

xija =

N∑
j=1

xjia = 1 (i = 0 a ∈ A) (9)

In (3), the second part of the equation - sum of maximums -
defines the time window constraint. In (5), tija is the time it
takes the vehicle to travel from location i to j, v is the speed
and si the service at location i. At the depot (node 0 in the
equations), both t and s are equal to zero. The constraint in
(6) implies that the number of vehicles that start from the
loading point and go back there is A. Constraints (7) and (8)
mean that each location can be visited only by one vehicle.
Finally, constraint (9) represents that all the vehicles that start
from the loading point also go back there. VRPy solves the
vehicle routing problem with a column generation approach
[17]. The term refers to the fact that, continuously, routes are
generated with a pricing problem and fed to a master problem.
The latter selects the best routes among a pool so that each
node (windmill or customer in this case) is serviced exactly
once. The pricing problem is actually a shortest elementary
path problem. Additional constraints, such as the time windows
discussed in this paper, contribute to a shortest-path problem
with resource constraints. VRPy does not lead to an optimal
solution, even without time limits. Hence, when solving pricing
problems does not result in a route with negative marginal cost,
the master problem is solved as mixed integer programming.
This price-and-branch strategy does not guarantee an ideal
solution.

Next, the above solution will be compared with the results
found for the same operational VRPTW using the solver
developed for Google OR Tools (Table I) [11]. The algorithm
based on the Python routing library wrapper results in a new set
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of optimal routes, taking into consideration that all windmills
or customers need to be serviced in a specific time frame.
As for the first method, no other restrictions are taken into
account. The algorithm used to solve VRPTW starts with the
creation of input data, followed by a callback function. After
adding the time constraints, the default search parameters and
a heuristic method are set for the first solution. Finally, the
same function is used to solve the Traveling Salesman Problem
(TSP), resulting in the route for each vehicle, the total travel
time of the vehicle route, and the solution windows of each
location. The solution window at a location is defined as the
time interval during which a vehicle must arrive, so it stays
on schedule.

The third method to solve the VRPTW with the same
entry data - like position of the windmills or customers,
service windows - is based on an ant colony optimization
algorithm [4], [18]. Ant Colony Optimization (ACO) is one
of the most recent metaheuristic approaches to combinatorial
optimization problems. The pseudocode is shown below.
All three solution methods, VRPy, OR Tools, and ACO are
heuristic methods. When it is impossible or impractical to
find an optimal solution, heuristic methods can be used to
accelerate the process of discovering a satisfactory solution.
These heuristics can be described as strategies derived from
previous experiences with similar problems.

procedure ACO Meta-Heuristic is
while not terminated do

ConstructAntsSolutions()
UpdatePheromones()
daemonActions()

repeat
end procedure

ACO is based on the foraging behavior of real ants.
They arbitrarily explore the environment, using pheromone
deposits to find the shortest routes. Therefore, ACO algorithms
are probabilistic techniques suitable for solving optimization
problems that aim at minimizing the distance traveled (e.g.,
TSP and VRP). In the first step - ConstructAntsSolutions - of
the algorithm, each artificial ant generates a solution: thereby
it randomly chooses the next city to visit, based on a heuristic
combination of the distance to that city and the amount of
virtual pheromone left behind on the arc to that city. The ants
explore and dump pheromone on each arc they traverse until
they have all completed a tour (see (10)). At this point, the ant
that has completed the shortest tour deposits virtual pheromone
along its complete route (UpdatePheromones). Equation (14)
shows that the amount of pheromone deposited is inversely
proportional to the length of the tour. Thus, the shorter the
route, the more pheromone the ant deposits on the arcs of
the corresponding tour. The deamonActions procedure is used
to carry out centralized actions that cannot be carried out by
individual ants, as they do not possess global knowledge. A
typical example of these deamonActions is the collection of
global information that can be used to decide whether it might

be useful to deposit additional pheromone to bias the search
process from a nonlocal perspective. As long as the termination
condition is not met, these three steps are repeated [19]. The
pheromone τij , associated with the edge joining locations i
and j, is updated as follows:

τij ← (1− ρ)τij +

m∑
k=1

∆τi
k
j (10)

where:
ρ = evaporation rate, (11)

m = number of ants, (12)

∆τi
k
j = the quantity of pheromone laid on edge (i, j) by ant k,

(13)

∆τi
k
j =

{
Q
Lk

if ant k used edge (i,j) in its tour,
0 in all other cases

(14)

Q = a constant, (15)

Lk = is the length of the tour built by ant k, (16)

To determine and confirm that the solutions obtained by the
three methods to solve VRPTW are applicable in other areas,
the same solution procedures were applied to two data sets. In
addition to windmill farms, a data set is used consisting of the
customer coordinates at which discrete Taylormade products
(curtains) are to be installed and maintained. Although this
data set differs quite extensively from that of the windmills, the
optimization goals are the same, namely travel time, and thus
fuel consumption reduction. Transport for Taylormade products
goes over land and cannot follow a straight line, the distances
between customers are smaller than for the windmill farms
(typically a few tens of kilometers versus a few hundreds for
the windmills) and not clustered around different farms, making
the data sets for windmills and customers quite different.

B. Solution Method - Job shop

To apply the solver to maintenance planning, we have made
the following assumptions: the machines in the JSSP are
replaced by the workers performing maintenance jobs (the
job is a sequence of windmills to be serviced), and the tasks
are linked to the windmills. The processing time is chosen
randomly, as are the workers for each maintenance job. The
final result of the algorithm created to solve the JSSP will be
a schedule optimized for each worker to minimize the total
maintenance span. Figure 3 shows the building blocks of the
algorithm used to solve JSSP with the OR solver.

Each of the steps in the flow chart are further defined as:
• Data Creation: For each maintenance job, several tasks are

defined, that is, the windmills or customers to be serviced.
For every windmill or customer, the worker that needs to
perform the task and the service time needed are given.

• Declaration of the model, a Constraint Programming (CP)
model that includes variables and constraints that will be
solved via the CP solver.
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Data Creation

Declaration of the model

Definition of the variables

Defining the constraints

Determining the objective

Call the solver

Show the results

Figure 3. Flow Diagram of the JSSP solution method.

• Definition of the variables, which are the start and end
time, the duration (end minus start) and the interval of
the task.

• Defining the constraints: A worker cannot work at two
windmills at the same time, plus the condition that, for any
two consecutive tasks in the same maintenance job, the
first must be completed before the second can be started.

• Determining the objective as the minimization of the make
span.

• Call the solver and show the results.
The objective function (17) and the constraints of the job shop
scheduling problem are written as:

min CS (17)

where:
C1j − w1j = rj + p1j ∀j (18)

Ci−1j − Cij + wij = −pij i = 2, ...,mj , ∀j (19)

Cik − Cij ≥ pik or Cij − Cik ≥ pij ∀i, ∀j, k ∈ Ji (20)

Cij , wij ≥ 0 i = 1, ...,mj ∀j (21)

Constraint (18) implies that a maintenance job can only start
after its respective ready time. Constraint (19) specifies that a
job j follows its processing sequence. The machine capacity
constraint (20) finally ensures that a worker can process only
one operation at a time, and an operation will be finished once
it starts.

C. Pareto front

Solving the VRPTW and JSSP leads to sequences in which
windmills or customers need to be visited, each with a different
objective function. Hence, for the VRPTW, the objective
is to minimize the total distance traveled, while the JSSP
attempts to reduce the total maintenance time. Since both
objectives are possibly contradictory, the solution methods are
compared by calculating Pareto points and a corresponding
Pareto front. Therefore, the maintenance sequences resulting
from the VRPTW, with a minimal route distance, are offered
to the second objective function to calculate the corresponding
total maintenance time. Additionally, maintenance sequences

with minimal maintenance are calculated by solving the JSSP
and the corresponding total route distance is determined. Both
lead to a set of two-dimensional coordinates of which the
Pareto points are calculated. Pareto optimal points are non-
dominated, meaning that there does not exist another solution
that rigorously dominates the Pareto optimal solution in terms
of any objective. The Pareto front is the multi-objective and
multi-dimensional alternative for the individual optimal solution
resulting from single objective optimisation problems (VRP
and JSSP).

V. RESULTS

A. Sequence comparison VRPy - OR Tools - ACO for windmill
maintenance

Table II lists the best results obtained by applying all three
solution methods, and this for different configurations, ranging
from 8 to 175 windmills. The relative gain shows how much
better the optimized solution is than the randomly chosen one.
The optimal number of vessels proposed by the VRPTW solvers
is shown in the Vessel column, and finally the Runtime column
lists the time needed to solve the VRPTW problem. For VRPy
and OR Tools, the same sequence was obtained when running
10 tests for each. With ACO, the best result represents the
shortest routes obtained after 20 tests, with 50 ants and 1000
iterations. The randomly selected route is considered identical
and is expressed in minutes of travel time for the maintenance
vessels. The values correspond to the total travel time of all
vessels used in the maintenance schedule. Applying VRPy on a
selection of 16 windmills to be maintained, to solve the Vehicle
Routing Problem with time constraints, leads to a relative gain
compared to the randomly chosen route of a little more than
44%. To obtain this minimal total travel time, three vessels
need to be deployed simultaneously, each following a separate
route.

Table II shows that the three solution methods, VRPy, OR
Tools, and ACO, lead to an almost equal relative gain compared
to a random route time of all vessels involved. This accounts
for all configurations, varying from 8 to 40 windmills, and
increases gradually as the number of windmills to be maintained
grows. Except for the configuration of 8 Windmills, the number
of vessels proposed by each method are the same, making
comparison easier. The only significant difference between
the VRPTW solvers is the calculation time required to obtain
an optimized solution. Although the average calculation time
for the smallest configuration is almost zero and comparable
for all options, it rises very fast - almost exponentially - for
the VRPy solution, up to more than 350 seconds for the 40
windmills. The calculation time of the ACO algorithm also
increases, but is linear and thus not as distinct as for the VRPy
solution method. OR Tools finally results in a set of optimized
routes instantaneously, even for the set of 40 windmills.

Table II further contains the results obtained using the three
VRPTW solution procedures for a large set of 175 windmills.
For this sample, there is a (very) high relative gain for all three
solvers, but also a significant difference between the yields
obtained by VRPy and OR Tools and that by ACO. Although
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TABLE II
OPTIMIZATION RESULTS FOR ALL METHODS FOR DIFFERENT WM

CONFIGURATIONS

Method Rel gain (%) Vessels Run-time (sec)
8 Windmills

VRPy 11.8% 3 0.33
OR Tools 16.6% 2 0.03
ACO 16.6% 2 1.23

16 Windmills
VRPy 44.1% 3 1.59
OR Tools 44.1% 3 0.04
ACO 44.0% 3 2.87

24 Windmills
VRPy 68.3% 3 10.02
OR Tools 68.4% 3 0.05
ACO 68.3% 3 4.52

32 Windmills
VRPy 70.2% 3 70.61
OR Tools 70.3% 3 0.12
ACO 70.2% 3 7.67

40 Windmills
VRPy 77.3% 3 351.39
OR Tools 77.3% 3 0.09
ACO 76.3% 3 19.71

175 Windmills
VRPy 91.4% 3 >24h
OR Tools 91.7% 3 3.51
ACO 81.2% 9 507.50

not negligible, the calculation time for OR Tools is only 3.5
seconds, while ACO now requires more than 8 minutes to
obtain a much worse result for a larger number of vessels.
VRPy takes an extremely long time to get to a set of optimized
routes.

TABLE III
OPTIMIZATION RESULTS FOR ALL METHODS FOR DIFFERENT CUSTOMER

CONFIGURATIONS

Method Rel gain (%) Vessels Runtime (sec)
8 Customers

VRPy 29.1% 3 0.45
OR Tools 28.7% 3 0.03
ACO 28.8% 3 2.04

16 Customers
VRPy 52.5% 4 1.70
OR Tools 52.9% 3 0.03
ACO 52.1% 4 2.98

24 Customers
VRPy 65.0% 3 11.53
OR Tools 59.9% 3 0.04
ACO 63.4% 4 6.64

32 Customers
VRPy 64.8% 3 47.93
OR Tools 64.8% 3 0.09
ACO 62.8% 4 7.89

40 Customers
VRPy 70.5% 4 70.09
OR Tools 70.3% 4 0.12
ACO 64.1% 4 11.08

B. Sequence comparison VRPy - OR Tools - ACO for customer
interventions

The same solution methods were applied to another data set.
This set contains the coordinates of customers of a company
that performs interventions on site. These clients are distributed
throughout Belgium and are chosen at random from the
company’s database. The main difference with the windmill
configuration is the way the locations are spread: while the
windmills are grouped in three so-called parks, the customers
are scattered throughout the Belgian territory.

Table III shows that the relative gain obtained by the OR
solver, VRPy and ACO is again increasing as the number of
customers to be served grows. Also, the conclusions about the
calculation times are similar to those made for the windmill
case: very limited for OR Tools, being almost instantaneously;
slightly increasing for the ACO algorithm, ranging from 2
seconds for 8 customers up to 11 seconds for 40 customers
and evolving in a more or less linear way; and finally more
largely increasing for VRPy, from less than 1 second for 8 to
over 70 seconds for 40 customers, following a more exponential
curve. However, there are some important differences. First,
there are slightly larger gaps between the relative gain obtained
for every solution method, while for the windmill case, the
results are nearly equal. This is probably due to the fact that
there is a clustering around the different farms, making it easier
for each method to get stuck in local minima much faster in
the previously discussed windmill case. In the taylormade data
set, there is no clustering and thus this phenomenon does not
arise. Second, the optimal number of vehicles is not always
equal for each solution, making the comparison more difficult.

C. Job Shop - Workers and windmill maintenance combined

Table IV shows the results of the tests with a different
number of windmills, divided over 3 separate farms, ranging
from 8 to 40 assets. If all maintenance jobs would be carried out
consecutively by one worker without waiting time - being the
worst-case scenario for the total maintenance time span - the
total time span for all jobs would be 18h for 8 windmills and
120h for 40 windmills. However, if we optimize the schedule
for more workers, the total time span would be much lower,
being 11 hours for 2 workers in the 8 windmills configuration
and 45h for 6 workers in the 40 windmills configuration.
This corresponds to a relative gain in maintenance time of
respectively around 39% and 62% in the total maintenance
time span with respect to the single worker case. By employing
more workers simultaneously, the total maintenance time lost is
(more than) halved, and therefore downtime is reduced by (more
than) 50%. Although the total number of working hours is
higher when using three workers instead of one, the amount of
money gained by halving the downtime is significantly higher,
hence the huge advantage of the JSSP solver. According to
the average price per kWh in December 2022, the loss per
windmill for 1h downtime is at least 203C per hour if we
presume that a windmill operates 24h per day, 365 days per
year. A reduction of the downtime by 67h (with 3 workers)
thus leads to a cost reduction of more than 13.6K Euro per
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windmill. If we further estimate the average labor cost per
worker at 60 euros per hour and compare the total amount
of hours worked by three workers (154 hours) with the 120
hours needed for one worker, then the extra costs would be
34 times 60 euros, or 2K euros. The net gain would then be
13.6K minus 2K, thus 11.6K.

TABLE IV
JSSP OPTIMIZATION BY USING OR TOOLS

Use Case Relative gain
08 Windmills - 2 workers 38,9%
16 Windmills - 3 workers 48,7%
24 Windmills - 4 workers 53,8%
32 Windmills - 5 workers 59,6%
40 Windmills - 6 workers 62,5%

Table V shows that in the 40 windmill configuration, the
largest downtime gain is obtained when switching from one
to two workers (44%) and a much lower but significant gain
when switching to three workers. From 4 workers onwards,
the total maintenance time span does not lower very much
when adding extra workers. The trade-off can thus be put at
4 workers or, when labor is expensive, at 3 workers. Remark
that when using as many workers as there are tasks to perform,
the relative gain is obtained by dividing the longest task by
the total time for all tasks, and thus results in a very high
optimization (95% in our case).

TABLE V
JSSP OPTIMIZATION IN FUNCTION OF THE NUMBER OF WORKERS FOR 40

WM AND 80 WM

Number of workers Rel gain 40WM Rel gain 80WM
2 44.2% 45.7%
3 55.8% 56.0%
4 60.0% 59.0%
5 60.8% 61.2%
6 62.5% 62.5%

Table V also shows similar results for a configuration of
80 windmills. A large reduction in total maintenance time
when a second worker is added, with a relative trade-off at 4
workers. The same results can be extrapolated to the use case
of Taylormade products, since results are based on randomly
chosen maintenance times, and the location of windmills and
customers does not influence the final results of the JSSP.

D. Combined results and Comparison

In order to determine the link between the optimal route
resulting from solving VRPTW and the routes determined by
solving the JSSP to minimize the time span of all maintenance
jobs, a Pareto front is calculated. To compute this Pareto
front with non-dominated solutions, tests were run on the two
separate problems, and each result was then offered to the other
problem. To clarify this, the following example is described:
the ACO algorithm, VRPy and OR Tools solution methods ran
to solve the VRPTW resulted in maintenance sequences with
minimal total traveling distance. For this windmill sequence,

the corresponding total time span for all maintenance tasks
are calculated by adding the maintenance time for all jobs
in this sequence. On the other hand, the total distances are
computed for the sequences resulted from solving the JSSP
(with minimal time span). This is done for sequences of 40
windmills and 3 vessels. Figure 4 shows the Pareto front.

Figure 4. Pareto front for VRPTW-JSS comparison.

Our research has led to a group of Pareto optimal mainte-
nance sequences as a result of the multi-objective optimization
model (see coordinates in Table VI). However, it has proven
to be very difficult to find a maintenance sequence that is
optimal for both objectives. For example, the first and second
jobs to be carried out initially according to minimize the total
time span can be far away from each other, resulting in a
total distance higher than the one obtained by solving the
VRPTW. The tests resulted in maintenance paths that either
have a low total time span and a high distance, or have a low
distance but a high maintenance time span. In determining the
optimal sequence, the planner has to decide which parameter
is most important when making the choice. From all studied
maintenance sequences, a list of 4 non-dominated solutions
is obtained. Three of the solutions offer a path with a lower
distance and a higher maintenance time span, one is showing a
large distance and a lower time span. None of the tests resulted
in a path with low values for both objectives.

TABLE VI
PARETO POINTS

Coordinates Distance VRPTW (min) Distance JSSP (min)
1 2156 4080
2 2436 3900
3 2037 4200
4 4444 3180

To compare the financial gain obtained by applying VRPTW
and JSSP, we consider the case of 40 windmills and 3 workers.

• When reducing the distance from 8380km to 2064km with
VRPTW, the financial gain is around 6180C. Fuel con-
sumption is calculated as the distance traveled, multiplied
by the weight of the vessel (30 tons), divided by 1000.
The speed of the vessel is set at 5.5 km per hour, the fuel
price is 2C per liter, and no wind or current is taken into
account.
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• When setting the cost per hour downtime at 203C and,
from Table V, the reduction of the downtime at 67h, the
total financial gain is 13600C.

The JSSP method thus leads to a much greater benefit than
the distance reduction of the VRPTW solution.

VI. DISCUSSION | EVALUATION

Of all methods tested to solve VRPTW, the OR Tools solver
offers the quickest solutions, while VRPy and ACO generate
similar results but much slower. Both use cases - windmill
maintenance and product installation - show similar results with
respect to the outcome of the solution method used and the
calculation time needed. Also, for the JSSP, the OR Tools solver
has proven to be fast and accurate. Comparing the solutions
for both objective functions, being distance minimization and
maintenance time span optimization, led to sequences that
are only optimal for one of the two objectives. Therefore,
Pareto points are calculated to obtain solutions that are as
optimal as possible for both objectives. The planner can then
use these resulting sequences to schedule maintenance tasks for
a windmill park to minimize the distance traveled, downtime,
or both. In all cases, this leads to a significant reduction in
maintenance costs by reducing the fuel used or the loss of
energy production. However, several constraints were not taken
into account when solving VRPTW, such as sea currents, wind,
and the capacity of the vessel. These can be integrated in
future work to determine the impact they could have on the
final results.

VII. CONCLUSION AND FUTURE WORK

When adding constraints to the VRP in the form of time
windows for every windmill in which maintenance was needed,
the relative gain obtained is 77% for a set of 40 windmills and
17% for a group of 8 windmills, spread over 3 farms, and this
for all VRPTW solution methods used. Similar results were
found and the same conclusions can be drawn for the second
use case, the installation and maintenance of discrete products,
showing the general applicability of all methods used to solve
the VRPTW. A relative gain of the total maintenance span of
almost 62.5% compared to the situation where all maintenance
was done by one worker for a configuration with 40 windmills
and 39% for 8 windmills was obtained when solving the JSSP.
The total time needed for every added worker resulted in a
higher total number of working hours to be paid. However, the
total maintenance time span was more than halved, resulting
in a significant gain in up-time.

In future research, other methods for solving VRPTW and
JSSP can be studied and benchmarked. Possible other modi
operandi to solve the VRPTW are (nonexhaustive): Harmony
Search Algorithms (HAS), Memetic algorithms (MA), Genetic
Algorithms (GA), the Hexaly solver, etc. For calculating
the JSSP, heuristics or metaheuristics - such as Simulated
Annealing, Tabu Search, ACO and Genetic Algorithms - can
be compared. In addition, extended and different data sets can
be investigated to further determine the applicability of the
methods discussed.
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