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Abstract—Tricky coordination challenges can emerge from
combining distributed settings with independent learners (since
these learners have only access to limited information). Still,
treating agents as independent learners can help mitigate the
problem of observing multiple agents’ joint actions. Here, we
detail and examine the Discrete Smart Surface benchmark with
two goals: 1. Follow a call to the Multi-Agent Systems community
to consider the environment as an important entity at the
application level, and 2. Show/discuss our experimental results
for combining independent learners with the Discrete Smart Sur-
face benchmark under various dimensions and agent-weighting
systems. Investigating challenges in Multi-Agent Systems can
be particularly insightful for applications that rely on multiple
decision-makers; thus, we thoroughly reflect on our experimental
results and exemplify challenges, such as action shadowing.

Keywords-action shadowing; discrete actuator arrays; indepen-
dent learners; sequential decision making.

I. INTRODUCTION

Given the accelerated advances in computational infrastruc-
ture over the past few years, is it still advantageous to study
Multi-Agent Systems (MAS) in tabular settings? Or, in other
words, what can we gain from investigating tabular worlds?
As Gronauer and Diepold [1] overview the landscape of the
multiagent deep reinforcement learning literature, they help
us answer that question: tabular worlds still offer insights
to investigating crucial challenges in MAS – “simple worlds
remain a fertile ground for further research, especially for
problems like shadowed equilibria, non-stationarity or alter-
exploration problems and continue to matter for modern deep
learning approaches” [1].

In fact, Matignon, Laurent, and Le Fort-Piat [2] investigate
coordination challenges in MAS; more specifically, challenges
that independent learners (see Section II) must overcome
to learn and accomplish coordination tasks. Inspired by a
distributed manipulation and discrete actuator arrays [3] (see
Section II), the authors provide the Discrete Smart Surface
benchmark, which we call by DSSb. The benchmark en-
lightens the investigation of challenges faced by applications
that rely on multiple decision-makers influencing each other’s
decisions, such as in multi-robot control.

A fixed 2D grid of actuators defines the DSSb, and its
successful accomplishment requires the coordination between
many situated agents to move an object to a goal location
(see our toy example in Figure 1, which is detailed in Section
III). With the benchmark, the authors [2] sought to investigate
many agents coordinating actions in a Markov Game [4] (they
used a 9 × 30 grid of 270 actuators). A trial starts with an
object at the initial location (grid’s top-center as a default)
and ends when the object reaches the terminal state (grid’s
bottom-center as a default).

We build on their work [2] to detail the DSSb and experi-
mentally test it under various settings. But why pick the DSSb
instead of another benchmark, such as the popular pursuit
domain [5]? We are particularly interested in the DSSb due
to its focus on situated agents: it enables us to run many
situated agents in a task that requires coordination between
them. Moreover, situated agents help to highlight, within the
MAS literature, the importance of having the environment
as a first-order abstraction [6]. Hence, the DSSb not only
helps to investigate challenges in MAS but also illustrates the
importance of distinguishing between agent and environment
– such importance motivated us to detail the DSSb, which is
one of our contributions.

Focusing on challenges in MAS, an interesting question to
ask is: in what ways can the DSSb help us visualize and
get a better understanding of action shadowing? We sought
to answer that question as we contextualize and explain our
experimental results. In particular, we investigated questions
such as:

• How does the agents’ success in coordinating actions
change as we increase the grid dimensions?

• How do the action pairings change as the agents learn to
coordinate actions?

• How do the agents’ weights in the decision process of
moving the object impact the task’s success? And does
an agent’s location determine its role (or importance) in
a task’s success?

• What is the role of the penalty areas, and how does that
affect the learning opportunities of an agent situated in a
penalty area? Thus, regarding learning the task, can we
say that agents are “luckier” according to their location
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in the grid? Or, in other words, does an agent’s location
determine its learning process/opportunities?

• What does action shadowing look like in the DSSb?
We investigate these questions in Sections III and IV; and

our contributions are to:
1) Detail the DSSb while making a clear distinction be-

tween agent and environment – following a call from [6],
and in the hope that others will reflect on the importance
of such a distinction, especially today, with AI systems
merging deeply into our realities and the physical/digital
boundaries getting blurrier.

2) Show and discuss our experimental results for combin-
ing independent learners with the DSSb under various
dimensions and agent-weighting systems.

In future work, we will expand our experiments to cover
more agent dimensions and weighting systems; we will ana-
lyze and contrast them with other settings, such as the pursuit
domain [5], the Michigan Intelligent Coordination Experiment
(MICE) [7], multi-turn games [8] and other settings, such as
[9] and [10].

This work is organized as follows: we introduce our work
in Section I, provide background information and related
literature in Section II, detail the functioning of the DSSb
in Section III, provide observations to support experimental
analysis followed by experimental results in Section IV, and
conclude in Section V. Finally, the questions provided in the
Introduction (Section I) are addressed in Sections III - IV.

II. BACKGROUND AND RELATED WORK

In this section, we provide background information as we
visit related literature and contextualize the DSSb, which ad-
dresses situated agents, independent learners, identical payoffs,
and Markov games. We start by describing the work [3] that
inspired the design of DSSb [2].

Distributed Manipulation and Discrete Actuator Arrays.
Luntz and Messner [3] build upon their previous model [11]
to create a distributed manipulation system that coordinates
to induce motion and manipulate larger objects. The authors
explore distributed control after considering it would be im-
practical for a single centralized controller to control thousands
of cells. Their system uses actuator arrays of many small
stationary elements called cells. If one wished to visualize
the system in the context of a macro-scale actuator, one
could do it through a fixed 2D grid of motorized wheels. For
intuitive purposes, here is a loose example to mentally picture
the system: imagine a 2D grid of motorized wheels moving
checked bags at an airport. An object lies on supporting cells,
and as the object moves, its supporting cells change. Cells that
support the object provide a traction force, and their combined
action, through coordination, determines the object’s motion
(both translation and rotation). The modeling considers a) the
interaction between actuators and the object, b) the object’s
weight distribution among the support, and c) the system’s
discrete nature. In the system, each cell communicates with
its neighboring cells, and each cell is equipped with binary
sensors to detect the presence of an object [3].

Situated Agents. A situated agent has spatial coordinates
and interacts with other agents in a hosting environment [12].
In response to a bottleneck, [12] propose an approach to the
modeling and simulation of large-scale situated MAS. The
observed bottleneck sits within parallel/distributed simulation
of situated agents such that the environment represents a sub-
stantial shared variable that requires cautious treatment, and
regular agent access to environment information can quickly
become a bottleneck that diminishes system performance and
scalability.

MAS and Environments. Weyns, Vizzari and Holvoet [6]
identify issues among the MAS community in defining en-
vironments, e.g., “environment” may refer to a) the logical
entity in which agents and resources are embedded, or b) the
software infrastructure on which it is executed, or even c)
the running underlying hardware infrastructure. They illustrate
those issues through a situated setting (like the DSSb, in
which agents have an explicit position in the environment), as
they propose a three-layer model to help distinguish between
the environment and the infrastructure on which the MAS is
deployed. According to the authors, although there are aspects
conceptually apart from the agents themselves and thus should
not be assigned or hosted inside agents, the MAS community
often considers the environment as infrastructure instead of an
important entity at the application level.

Weyns and colleagues [13] aim to push the community
to make the environment’s logical functionalities explicit, or
in other words, to treat concerns of environments as first-
class entities. While describing the MAS application layer,
the authors identify two classes of concerns: the ones related
to the structure of the environment and the ones related to the
environment’s activity. “Agents and objects of a MAS share
a common environment. The agents as well as the objects
are dynamically interrelated to each other. It is the role of the
environment to define the rules under which these relationships
can exist and can evolve. As such the environment acts
as a structuring entity for the MAS” [13]. We follow the
authors’ call as we make a clear distinction between agent
and environment in the DSSb, in addition to treating concerns
of environments as first-class entities (see Section III).

Agent Coordination. Malone and Crowston [14] provide a
definition useful for highlighting aspects of a task that requires
coordination: it is “the act of managing interdependencies
between activities performed to achieve a goal”. Building
on that, “agent coordination is the ability to manage the
interdependencies of activities between agents while agent
cooperation is the process used for an agent to voluntarily
enter a relationship with another to achieve a system derived
goal” [15].

Tan [16] compares independent learners with cooperative
agents (defining cooperation in the sense of agents shar-
ing episodes, learned policies, or instantaneous information).
Sukhbaatar, Szlam, and Fergus [8] apply fully cooperative
tasks to examine CommNet, a neural model that uses con-
tinuous communication; the model uses multiple agents that
learn to communicate alongside their policy. According to the
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Figure 1. Left. Each cell corresponds to a situated agent. Agents task: to move the object from an initial position i into the goal state g (which defines the
terminal state). The 3 × 2 object is color-coded in blue. Arrows inside the grid correspond to actions selected by agents under or by the object (circles for
‘stay still’). The leftmost and rightmost columns are penalty areas, which agents also occupy.

authors, their findings show simple but effective strategies
for solving the tasks since, in some of the experiments, it
is possible to interpret the language used by the agents.
Although the DSSb applies non-communicative agents, the
work described in [8] is worth mentioning due to one of the
tested environments, which is a 14× 14 grid. It consists of a
4-way junction: at each time step, a new car enters the grid
with a certain probability from each of the four directions;
each car occupies a single cell and is randomly assigned to
one of three possible routes.

Switching gears to a robot’s manipulative repertoire, Stuber
and colleagues [17] describe pushing as an essential motion
primitive and that, despite a considerable amount of work and
models on robot pushing, there would be work to be done
on generalizations to novel objects – emphasizing the non-
triviality of the problem. For instance, robotic grasping and
manipulation would not be trivial even if we considered ideal
conditions (described by the authors as structured environ-
ments in which an agent has access to a complete model of the
environment and ideal sensing abilities). The authors mention
the importance of using MAS to move large-scale objects in
real-world applications and how control and decision-making
are critical issues in those scenarios. For instance, agents must
not only coordinate actions, but the point of view changes as a
consequence of their actions, bringing yet another challenge: to
predict outcomes from pushing given by the action of multiple
agents. Finally, Acuña and Schrater [18] provide an interesting
study on human decision-making and structure learning in
sequential decision tasks.

Coordination and Communication Issues in Robotic
Applications. Matignon, Jeanpierre, and Mouaddib [19] study
multi-robot exploration under communication breaks con-
straints. Working under the assumptions of full local observ-
ability, limited information sharing between the agents, and
breaks in communication, their research addresses global and
local coordination of decentralized decision-makers. They de-
velop and apply a method to multi-robot exploration scenarios;
according to the authors, experimental results in real-world
contexts show that their method is robust to communication
breaks and successfully helps to coordinate a team of robots.

Independent Learners and Markov Games. In Robotic
tasks that require many agents to coordinate actions to ac-
complish a task, it is tricky to observe the agents’ joint
actions [2] (e.g., find and coordinate actions to collect and
move an object). To navigate the issue, we can treat the agents

as independent (non-communicative) learning agents [20]. In
opposition to joint-action learners, independent learners are
agents that ignore or cannot observe the actions and reinforce-
ments of other agents in the environment and, therefore, can
apply the off-policy temporal difference control algorithm [21]
Q-learning [22] in a classic sense and dismiss other agents’
existance [20]. However, in the case of distributed settings,
the limited information brings about interesting challenges, or
“pathologies” [1] for independent learners (which we explore
in Section IV).

Boutilier [23] provides an insightful bridge analogy to think
of coordination problems when agents have common interests.
Consider a team of agents modeled as acting on behalf of
a single individual and, therefore, acting to maximize the
individual’s utility. Suppose a team needs to cross a bridge
that can only support one agent at a time; in that case, agents
would need to coordinate the ordering of crossing to avoid the
bridge collapsing (and destroying the crossing agents along
with it). For each agent, the crossing ordering may not be
important as long as it crosses it and pursues its goals. Further,
Boutilier [23] reflects on scenarios where each agent’s abilities
are such that it does not really matter what agent pursues
which goal (as long as all or most of the goals are pursued).
When there is some flexibility in each agent’s role, they may
end up pursuing the same goal, and lack of coordination can
range from delays in accomplishing a task to never really
accomplishing it. Such context can be generalized to other
team contexts, such as logistics planning [23].

Within robotics applications, Matignon and colleagues [2]
are interested in those in which a group of robots can
accomplish a task faster than a single robot. The authors,
similarly to [23], adopt the terminologies cooperative robots
and learning algorithms in fully cooperative MAS to convey
settings in which agents share common interests or the same
utility function, i.e., there is a correspondence between each
agent’s achievement and the group’s and therefore, the learning
goal is defined as maximizing the common discounted return.

Or, as [23] puts it, fully cooperative MAS in which we
assume that it is possible to set a common coordination
mechanism and that agents do not have a reason to deliberate
strategically. The authors [2] use Markov Games instead of
Stochastic Games to distinguish their settings from stochastic
(non-deterministic) Markov Games. “Markov games are a
superset of Markov decision processes and matrix games,
including both multiple agents and multiple states”, and all
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agents are supposed to observe the complete state s, and the
transition and reward functions depend on the joint action of
agents [2]. If all agents are fed the same rewards, then the
Markov game is called fully cooperative by some authors, as
“a best-interest action of one agent is also a best-interest action
of every agent” [2] – identical payoff stochastic game [24] is
another possible terminology. We describe the DSSb next.

III. THE DISCRETE SMART SURFACE BENCHMARK

In this section, we detail a DSSb environment and the rules
that dynamically connect agents and objects. In Figure 1, we
illustrate the DSSb: suppose the agents coordinate their actions
to move the object to the goal state using the optimum number
of steps. Then, from left to right, the five images show the
object’s position step by step within a trial, whereas numbers
progressively show how often under/by agents played a role
as they moved the object to the goal state. The object reaches
the terminal state in the final step, which is not shown here.

Figure 2. Upper left: a toy example; numbers within cells represent a situated
agent. Upper right: a state in which 16 agents’ actions play a role in the
transition function F ; remaining 14 agents are ignored (ws = 0). Lower level:
15 possible states given by the grid and the object’s dimensions (intermediary
row omitted).

In the DSSb, agents have common interests, and a common
coordination mechanism is assumed; the agents’ task is to
identify a joint sequence of actions that maximize the long-
term common discounted return. Let a Discrete Smart Surface
G = {M,N,E,m, n, S, F,R,A,L}, where (see Figure 1
left):
1)M is the width, and N the height of a 2D array of actuators,
each driven by an agent. Therefore, there are M×N actuators
– we refer to each actuator as an agent.
2) A motion of a 2D object that is placed on the 2D grid’s
surface is determined by a weighted sum of the agents’ actions.
The object does not rotate and cannot leave the surface.
3) m is the width, and n is the height of the object (m < M
and n < N ).
4) E is the width of the grid’s right and left borders, which
are penalty areas. Borders have equal width and height, such
as 1×N each.
5) S is the set of states. Each possible object’s position defines
a unique state; hence, there are (M−m+1)(N−n+1) states.
Initial and terminal states correspond to the object’s initial and
goal positions (we interchangeably use terminal/goal state).
6) Trials start from placing the object on the initial position i
and finish once the object’s top left reaches the goal state g.

7) The state transition and reinforcement function depend on
the agents’ joint actions. F is the transition function that
applies a weighted sum of the agents’ actions to decide the
object’s motion/state transition. F categorizes agents into three
groups: agents by the object, agents under the object, and
remaining agents. Each group has a weight that impacts the
transition dynamics: wb, wu, ws, respectively.
8) R is the reinforcement function: agents receive identical
payoffs.
9) A is the set of actions available to each agent, and A =
{left, right, up, down, still}. At each time step, agents select
an action from A and simultaneously execute it.
• Finally, L represents the agent structure applied to drive
the actuators, such as the agents’ implemented reinforcement
learning techniques and action-selection mechanism. Although
the agents act in an environment that offers affordances [25],
[26], agents are distinct from the environment. Thus, within
G, we group two classes of concerns: the ones related to the
environment’s structure and the ones related to its activity.

To conclude, a developer should keep in mind that there
are parameters intrinsic to F , R, and L (e.g., weight values,
reinforcement values, and learning rates); also, if one wishes
to introduce uncertainty to account for actuator errors (e.g.,
actuators or sensors presenting issues due to unexpected ex-
ternal or internal factors), that can be done by making an agent
apply a random action with a small probability [2].

A. Sequential Decision-Making and Trials

In the DSSb, a simulation is a defined number of trials
run in sequence, and agents must learn to coordinate actions
to move the object to the terminal/goal state. A trial starts
with the object at the initial state (even if random) and ends
once it reaches the terminal state. A trial lasts for at least the
minimum number of steps needed to successfully accomplish
the task (object reaching the goal state). Within a trial:

• Agents have access to their own actions and current state
(given by the object’s top-left position) but not to other
agents’ actions. Agents simultaneously select an action.

• The transition function F uses the agents’ actions and
corresponding weights wb, wu, ws (which are dynami-
cally matched given an agent’s location in relation to the
object’s position) to set the next state (object’s motion).

• The state transition triggers the reinforcement function,
which feeds identical payoffs to all agents.

• Agents use their learning mechanisms to learn and select
actions in response to the environment.

• A trial ends once the object reaches the goal state (or if
the trial meets another pre-defined halt condition corre-
sponding to a task’s failure, such as hitting a maximum
number of steps).

Does an agent’s location interfere with the number of
times it will participate in the object’s motion? Yes; in fact,
given the initial and goal states and weights wb, wu, ws, we
can dissect how often an agent’s actions are to be considered
by the transition function F . Observe Figure 1 left and note
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that five steps are needed for the object (3× 2 size and color-
coded in blue) to reach the goal state. Now, suppose a) an
enough number of agents have learned to move the object
from the initial state i to the goal state g (both color-coded in
yellow), and b) only agents under or by the object matter, in
other words, wu > 0, wb > 0, and ws = 0. The sequential
images in Figure 1 show, step by step within a trial, how
many times each agent’s action plays a role in the state
transition (we omit zeros for clarity).

Therefore, agents’ actions and corresponding locations in
the grid are key to contextualizing experimental results for
the DSSb. We reflect on that and bridge it to challenges in
MAS. Does that mean that an agent’s location interferes with
its role (or importance) in the task? To answer that question,
we built another toy example, shown in Figure 2, upper left.

Consider settings as follows: M = 7 and N = 4, m = 3
and n = 2. Therefore, there are 15 possible states, shown in
Figure 2, lower part (we omit the third-row states for space
reasons). These are the states that follow as the object moves:
five columns sideways by three rows in the up/down directions.
Within the states, we show the corresponding agents that
would be under the object. At each time step, the object’s top-
left provides st, the state s at the time step t. As in the other toy
example, we consider wb > 0, wu > 0, and ws = 0. Finally,
Figure 2 upper right depicts a state with the following agents
under the object: 10-12 and 17-19. Now, see the interplay
between state and agent role/importance: in this state, only 16
out of 28 agents play a role (agents by and under the object
only). Hence, Figure 2 helps notice that the number of agents
by the object varies as the object moves: for this example, 5
agents if at the corners, 7 if at the top or bottom states, 8
sideways, and 10 otherwise – whereas the number of agents
under the object remains constant.

IV. EXPERIMENTS

In this section, we experimentally investigate situated in-
dependent learners in a sequential decision-making setting as
defined by the DSSb. We test five different grid dimensions:
{7 × 7; 9 × 9; 11 × 11; 13 × 13; 15 × 15}; therefore, the
resulting number of tested agents is, respectively: 49, 81, 121,
169, 225. For clarity, we refer to the “situated independent
learners” simply as “agents”.

In addition, we ran five weighting settings per grid dimen-
sion. To accomplish that, we set different weights for agents
by and under the object; the weights are: {wb = 1, wu = 1};
and {wb = 1, wu = 5}; and {wb = 3, wu = 5}; and {wb = 5,
wu = 1}; and {wb = 5, wu = 3}. The higher the weight,
the higher the impact of an agent category on deciding the
transition dynamics given by F (i.e., on deciding the object’s
motion/state transition). Note that we kept ws = 0 consistent
across all experiments. Other parameters and settings kept
consistent across experiments are:

1) A simulation consists of multiple trials run in sequence
(simulations are independent of each other).

2) A trial begins with the object at the initial state (grid’s
top-center) and terminates once the agents manage to

Figure 3. Results for the last trial only: distribution of “down” actions
per agent category and across experiments. Results averaged across 100
simulations.

move it to the terminal state (grid’s bottom-center).
Therefore, one can use N − n to obtain the minimum
number of steps required to complete a trial.

3) Object size m = 3 and n = 2.
4) Anytime the object moves to the left or right from the

initial state, it enters the penalty area E. To completely
avoid a penalty area, the object must remain in the
exact middle of the grid throughout an entire trial. If the
object remains in the penalty area, it triggers a negative
reinforcement at every step it stays there.

5) If multiple actions have the same weighted sum of
agents’ actions, F chooses randomly among those.

6) As a result of a state transition, all agents receive
reinforcement r = N if the object reaches the goal state;
a punishment r = −0.5 if the object is on a penalty area,
and r = −0.1 otherwise.

7) Learning phase vs. performance phase: we alternate the
learning and performance phases such that every odd
trial is a learning phase whereas every even trial is a
performance phase. In the latter, there is no learning
and agents pick their current best response (randomly
between them, if more than one action).

8) Our results depict the performance phase, and they are
averaged across 100 simulations for the performance
phase only.

9) We used the Java programming language (Java 17, more
specifically), and followed the practices from [27].

Total number of trials. To facilitate the data graphics
visualization, we ran a different number of trials per grid
dimension (the larger the grid, the higher the number of trials
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within a simulation).
Agent Structure. The applied reinforcement learning tech-

niques and related parameters are kept consistent across ex-
periments and are as follows: each agent implements the
Q-Learning algorithm [22], [28] with the ϵ-greedy policy
with a fixed exploration rate of 10% and a discount rate
γ = 0.9 so that the return objective takes future rewards more
strongly [21]. For the learning rate, we use α = 1/k, where k
is the number of times the state-action pair (s, a) has occurred
so far.

Figure 4. Weights: wu = 1, wb = 1, ws = 0. Over trials, the distribution
of actions’ percentage per agent category, and the number of steps taken to
complete a trial. Left: 9×9 grid. Right: 15×15 grid. Results averaged across
100 simulations.

Observations to Support Experimental Analysis:

1) The number of agents under the object is consistent over
trials since the object’s shape does not change.

2) However, the number of agents by the object varies
according to the object’s position; see Figure 2. The
object’s motion implies that the group of agents under
and by the object changes over time.

3) Therefore, an agent may participate in the three cate-
gories within the same trial: under, by, and remaining.
However, once central agents learn to select the down
action, agents away from the center of the grid stop
participating in F ’s transition process, as they remain in
the “remaining agents” category, and ws = 0.

4) As the agents move the object toward the left or right
from its initial center position, it enters the penalty
areas. To completely avoid them, the agents must learn
to coordinate actions and keep the object in the center
columns of the grid throughout an entire trial.

5) A penalty helps agents learn to avoid the left and right
borders but also impacts the number of times agents at

      Weight under = 1, weight by = 5 

 

 
Weight under = 5, weight by = 1 

 

 

Figure 5. Upper level. Weights: wu = 1, wb = 5. Lower level. Weights:
wu = 5, wb = 1. Over trials, the distribution of actions’ percentage per
agent category, and the number of steps taken to complete a trial. Left: 9× 9
grid. Right: 15× 15 grid. Results averaged across 100 simulations.

the borders play a role in the state transition (as agents
coordinate actions to avoid those areas).

A. Results Across Grid Dimensions and Weights

How do different grid dimensions and weights impact agent
coordination? Figure 3 shows an overview/comparison across
experiments: results depict, within the last recorded trial after
convergence, the percentage of agents that selected the down
action. Down is the optimal action if an enough number of
agents continuously select down from the beginning until the
end of a trial - which is expected to happen after convergence.

Figure 3 shows one data graphic per weight set, in the
following order: {wu = 1, wb = 1}; and {wu = 1, wb = 5};
and {wu = 3, wb = 5}; and {wu = 5, wb = 1}; and
{wu = 5, wb = 3}. We chose that ordering to facilitate
visual comparison across flipped weights. Then, within each
data graphic, the results across grid dimensions are split by
agent category (if under or by the object).

We added boxes in Figure 3 to highlight experiments in
which not all simulations converged to the optimal steps
number within a trial (the optimal number is given by N−n):
a dashed box means that simulations converged to [0, 3) more
steps in relation to the optimal, a not-dashed box to [2, 7), and
no box to [0, 1). You may ask: “Why are the final number
of steps shown as ranges?” Our results are averaged across
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Weight under = 3, weight by = 5 

 

 
Weight under = 5, weight by = 3 

 

 
 

Figure 6. Upper level. Weights: wu = 3, wb = 5. Lower level. Weights:
wu = 5, wb = 3. Over trials, the distribution of actions’ percentage per
agent category, and the number of steps taken to complete a trial. Left: 9× 9
grid. Right: 15× 15 grid. Results averaged across 100 simulations.

simulations and, similar to what the authors [2] observed in
their experiments, not all learned policies are stable, and both
lack of robustness against exploration and miscoordination
penalties interfere with individual policies. As expected, these
issues are more visible as we increase the size of the grid; for
instance, 15×15, weights wu = wb = 1, and wu = 5, wb = 3
have the worst results: both converged to [2, 7) more steps
than the minimum needed to accomplish the task.

Figure 3’s upper level shows that when wu = wb = 1,
agents select the down action with similar percentages. The
remaining four graphics show that agent categories with higher
weights facilitate their learning to select the optimal action.
However, flipping weights lead to a slightly different distribu-
tion: observe when agents under the object have higher weight
(wu = 5, wb = 1 and wu = 5, wb = 3) and compare it
with when they have the lower weight (wu = 1, wb = 5 and
wu = 3, wb = 5). If set to higher weights, more agents under
the object learn to select the optimal action than would be the
case for agents by the object. We suppose that happens due to
a combination of the chosen parameters (such as the grid and
object’s dimensions) and the number of agents under the object
(usually smaller than the number of agents by the object, see
Figure 2) – therefore, making it easier for the agents under
the object to learn to coordinate actions.

B. A Closer Look into the Grids 15× 15 and 9× 9

In this section, we focus on Figures 4, 5, and 6. Here,
we investigate our largest grid, 15× 15, along with the most
successful within the largest ones, 9× 9 (by most successful,
we mean that the object gets to the goal state within the
minimum number of steps for all five sets of examined
weights). For easy comparison, we always depict the results
side by side: 9×9 at the left and 15×15 at the right. Each figure
focuses on a set of weights: Figure 4 shows wu = wb = 1.
Then, Figure 5 shows wu = 1, wb = 5 at the top, followed by
wu = 5, wb = 1. Finally, Figure 6 shows wu = 3, wb = 5 at
the top, followed by wu = 5, wb = 3. Here, we examine the
action distribution within trials and across simulations to help
check if/when the learned policies are close to the best policy.
Therefore, Figures 4-6 depict the action distribution (down,
up, left, right, still) over trials as well as the total number of
steps within trials (we rounded the steps to the nearest whole
number to facilitate visualization). Results are split by agent
category: depicting first the agents under the object, followed
by the agents by the object.

Given that agents always select an action per step within a
trial, percentages are averaged within a trial and across simula-
tions. To facilitate visualization, different grid dimensions have
a distinct number of trials within each of the 100 simulations
– this is why 15 × 15 shows a higher number of trials than
9× 9 at the x-axis.

In Figure 4 only, we show the results for the other agents
– we use a different background color to highlight a different
scale, which was chosen to facilitate observation. However, we
omit the other agents from Figures 5-6 since agents who are
neither under nor by the object do not influence F ’s transition
process (since ws = 0). Therefore, their action distribution
remains within 1\(#of actions), or 1 \ 5, which is 20% per
action, as Figure 4 shows. Due to the zero weight, actions from
that agent category do not matter; consequently, they receive
reinforcements in response to the actions of agents either under
or by the object.

Overall, our results show that, as agents learn to select the
down action, the number of steps used to successfully finish a
trial diminishes: if not to the optimal number (given by N−n),
to a number close to that (see Section IV-A). What is the main
difference between Figures 4-6? Figure 4 shows that, in both
grid dimensions, results for agents under and by the object are
very similar – as one would expect given the identical weights.

Figure 5 shows a two-fold result: when agents by the object
have higher weight (wu = 1, wb = 5), their percentages for the
down action are higher; also, as one would expect, the opposite
happens if we flip the weights (wu = 5, wb = 1). Finally, in
Figure 6, although agents with higher weight still show higher
percentages for the down action, this setting shows a higher
overall selection for that action (under/by agents with more
than 35% to that action).

The DSSb is resourceful in investigating challenges faced
by a large number of agents to coordinate actions in a Markov
game; as the authors [2] point out, the DSSb “brings together
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action shadowing induced by penalties, Pareto-selection as
there are several possibilities to reach the goal state”. In fact,
Figures 4-6 provide interesting examples of action shadowing.
Still, before getting into action shadowing, let us visit the
non-stationarity problem. As mentioned in the background
section, independent learners ignore each others’ presence and,
therefore, can treat other agents as part of the environment.
However, from each agent’s perspective, the environment no
longer appears Markovian and stationary since the “transition
probabilities associated with the action of a single agent from
one state to another are not stationary and change over time as
the action choices of the other agents change. These choices
are probably influenced by the past history of play, and so the
history of play influences the future transition probabilities
when revisiting a state” [2], [29].

Now, suppose agent x selected an optimal action, while
most of the other agents selected actions that move the object
to a penalty area. Thus, the agent’s x action will be shadowed
by a transition to a penalty area. Conversely, what happens
if agent x selects an action towards a penalty area while
most agents select actions away from it? How can agent x
learn not to pick poor action choices? In Figures 4-6, note
how the actions left and right drop initially as agents learn
to avoid the penalty areas but then increase a bit. Once an
enough number of agents coordinate actions and learn to avoid
the penalty areas, it does not matter what agent x selects.
There is a point at which just enough agents learn the proper
state/action pairs, impacting other agents’ learning. To put
it in simple terms, it is almost like a portion of agents at
each step carries the entire team of agents one step closer
to the goal. By looking into Figure 3, one may assume that
higher percentages of agents always selecting the optimal
action lead to better results overall. However, that is not
completely true. Of course, enough agents need to select it
so that the object moves to the goal state; however, once that
happens, it does not matter how many more agents select
that action. For instance, look at Figure 5, 9 × 9, weights
wu = 5, wb = 1; the down action keeps increasing, but
trials are such that the optimum number of steps has already
been reached. From an agent perspective, it should matter
to learn the optimal state/action pairs; however, from a task
perspective, successfully accomplishing it is likely to be the
overall goal.

V. CONCLUSION

In this paper, we first detail the Discrete Smart Surface
benchmark while making a clear distinction between agent
and environment. Then, we address the research questions
listed in the Introduction and investigate the benchmark using
various grid dimensions and agent weighting values – for
example, we show how the distribution of actions per agent
category varies over trials as agents learn to coordinate actions.
Finally, the situated agents from DSSb offer important lessons
for challenges in MAS; for instance, our experimental results
contextualize and exemplify action shadowing, which we
hope will be insightful for others investigating challenges in

MAS. In future work, it would be interesting to study other
grid dimensions, object shapes, and sizes, including different
weighting systems (to contrast the roles of agents under versus
by the object). The study would help to investigate questions,
such as: if someone wanted to exploit the system and insert
a number of agents with a fixed strategy only to deteriorate
individual policies, what should be the minimum number of
agents, and what grid cells should they occupy so as to
maximize their effect?
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