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Abstract—Neural networks are increasingly being used in
embedded applications. It is important to check whether the
trained network fulfills its tasks not only in simulations, but
also on real target hardware. This is of particular importance in
safety-critical applications such as plant control or autonomous
driving. For this reason, a diagnostic concept for Artificial
Intelligence (AI)-based systems based on the Universal Debug
Engine from PLS Programmierbare Logik & Systeme GmbH was
developed at the Technical University of Dresden. This concept
enables developers to verify the hardware implementation of
the neural network. After the concept was developed, it was
successfully tested on several example applications of which two
are presented in the paper.

Index Terms—neural networks, hardware, diagnosis, debug-
ging.

I. INTRODUCTION

Methods from the field of Artificial Intelligence (AI) are still
advancing and have also produced impressive applications in
connection with the Covid-19 pandemic. For example, one
application of these methods, developed by researchers at
the University of Central Florida, is able to use computed
tomography images to identify whether COVID-19 pulmonary
pneumonia is present [1]. Studies show that this AI based
algorithm, with a detection rate of 90%, has similar accuracy
as doctors who specialize in lung disease. However, in the area
of health care, the AI methods typically run on systems with
large computational power and are supervised by an expert,
such as a doctor.

But in addition to this impressive use case, AI applica-
tions are also being used more and more frequently in the
embedded area. Especially in today’s automotive systems,
techniques from the discipline of AI are increasingly being
used. In this field, neural networks are a tool that should be
highlighted, which are particularly well suited for detection
and classification tasks in the field of computer vision. One
common applications for networks is the fusion of sensor data
as described by X. Zeng et al. in [2] with focus on sensor
data in automotive systems. Another use case is the detection
and classification of traffic participants for visual environment
recognition. For this use case, plenty of public traffic data sets
like the Berkeley Deep Drive Data Set [3] or City Scapes Data
Set [4] exist. In such safety critical applications which mostly

run without any supervision, it is of great importance to verify
and test the implementation on the target hardware.

In [5] by J. Zhang et al., a large review of testing and
verification methods for neural networks is given. However,
the majority of the presented publications aim on software
verification without the inclusion of the target hardware.

A more hardware focused method, which tests the hardware
implementation of the neural network, is described by S.
Huang et al. [7]. As described in the publication title, each
layer is individually checked for correctness using an extra
transition module for a specific Field Programmable Gate
Array (FPGA)-based hardware accelerator.

In this research, the focus is set on a diagnosis concept,
which allows developers to verify the neuronal network on
a broad range of different embedded hardware solutions.
Instead of the implementation of an extra module on the
target hardware, the Universal Debug Engine® (UDE) from
PLS Programmierbare Logik & Systeme GmbH (PLS) is used
[8]. UDE is a debugger solution for various microcontroller
families such as AURIX, TriCore, Power Architecture, Cortex,
Arm, STM32 and more. The physical interface between the
hardware and the host computer with UDE is realized with
the PLS Universal Access Device (UAD).

The proposed method aims exclusively at the verification
of the neural network hardware. False results of the neural
network due to poor training, under-sizing of the neural
network, or incomplete case coverage in the training data are
not part of the diagnosis. Such issues must be clarified before
porting the network on the hardware. For example, in [6] by
A. Kirchknopf et al., methods to investigate detection results
are given.

The rest of the paper is structured as follows. In Section
2, the ”life” is described as an illustration of the different
phases of a neural network. Section 3 deals with the possible
sources of possible errors on hardware. In Section 4, the dia-
gnosis concept to detect these errors is described theoretically
whereas Section 5 demonstrates the diagnosis concept on two
hardware examples. Section 6 concludes the work and alludes
to additional features as well as the future work.
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II. THE ”LIFE” OF A NEURAL NETWORK

The ”life” of a neural network generally consists of the
following three phases:

A. Training Phase

With large amounts of data, all trainable weight and bias
parameters of the network are adjusted by gradient-based
training algorithms. At the same time, the accuracy of the
network is determined using validation data. The individual
elements of the training and validation data, consisting of pairs
of input values and the associated output values, correspond to
the structures of the input and output layers. Due to the high
computing intensity, high-performance Graphics Processing
Units (GPUs) or special cloud services are usually used to
train neural networks. Common frameworks for training neural
networks are Tensorflow [9] and Pytorch [10].

The output of the Training Phase is called the Golden
Model, which contains structure, trained parameters and other
meta information of the neural network. A concrete example
for the Golden Model could be a neural network which is
trained with Tensorflow and exported as a Tensorflow Keras
model file: network.h5.

B. Adaptation Phase

After the training phase, neural networks can be accelerated
using optimization steps such as batchnorm fusion or pruning.
With suitable quantization methods, the arithmetic operations
are also transformed from floating point to integer formats. The
adjustments reduce the arithmetic complexity and allow neural
networks to run on embedded processors with acceptable
power consumption and latency. A commonly known tool
for optimization and quantization is Tensorflow Lite which
is build in Tensorflow [13]. However, there are also many
custom methods for adapting neural networks as described by
I. Wunderlich, B. Koch and S. Schönfeld in ”An Overview of
Arithmetic Adaptations for Inference of Convolutional Neural
Networks on Re-configurable Hardware” [11].

The result of the Adaptation Phase is called the Silver
Model and represents the adapted and quantized version of
the Golden Model. In general, there are quantization losses
due to the optimization and adaptation steps, but these ideally
lead to minor deviations between the outputs of the Golden
and Silver Models. Nevertheless, it is advisable to carry out
further tests with test data to ensure that the deviations are
within an acceptable range.

After successfully generating the Silver Model, it can be
ported to the target device. In the example from above,
the Silver Model could be a Tensorflow Lite model file:
network.tfl.

C. Inference Phase

The inference phase describes the use or application of the
fully trained and adapted neural network. Typically, unknown
data is interpreted and evaluated accordingly.

In the example, the network is running on a STMicroelec-
tronics Micro Controller Unit (MCU). In Figure 1, the general

interaction as well as the example between the three phases,
the Golden and Silver Model are schematically visualized.

III. POSSIBLE SOURCES OF ERROR

The use of neural networks offers several advantages, es-
pecially in safety-critical applications in which large amounts
of data must be evaluated and processed within a short period
of time. But only if it works as desired on the real hardware.
Ultimately, this can only be completely clarified with a detailed
hardware diagnosis, because, unfortunately, there is a whole
range of potential sources of error. They can essentially be
divided into the following categories:

• Conversion Errors:
When converting in the adaptation phase, incorrect quant-
ization can lead to arithmetic overflows and underflows,
thus reduce the quality of the predictions immensely.

• Porting Errors:
After the adaptation, errors such as exceeding memory
limitations, incorrect programming of the interfaces or
similar can occur when porting the quantized model.

• Implementation Errors:
When implementing neural networks, there are many
sources of error related to arithmetic, flow control,
and data management. With frameworks such as STMi-
croelectronics’ X-CUBE-AI, MCU manufacturers are
already providing tested and functional code [12]. How-
ever, similar sources of error are conceivable again when
adapting or expanding. It is, therefore, essential to ensure
that neural networks are correct, especially in the case of
safety-critical applications.

In order to enable the fastest, most efficient possible check-
ing and verification of all those factors in the future, a new
diagnostic concept for AI-based systems was developed at the
Technical University Dresden in cooperation with PLS.

IV. THE DIAGNOSIS CONCEPT

The diagnosis concept is realized as a diagnosis loop, which
iteratively compares the results of the hardware with the results
of the Golden or Silver Models. In Figure 2, the diagnosis loop
is schematically shown. The diagnosis concept is implemented
as a Python project on a host computer which is connected to
the target hardware via the UAD. The individual processes
(rectangular blocks in Figure 2) are described below:

A. Data Extraction

In the first step, the input matrix xHW and corresponding
output matrix yHW are read via the Python automation inter-
face of the software debugger UDE and hardware tool UAD
from PLS.

The index (.)HW indicates that the matrices come from the
hardware. The dimensions of the matrices vary depending on
the application. In computer vision tasks, the general input
matrix x can have the following dimensions, as shown in (1):

dim (x) = (W,H,C) (1)
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Figure 1. General and exemplary interaction between Training Phase, Adaptation Phase, Inference Phase, Golden Model and Silver Model.
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Figure 2. Schematic structure of the diagnostic loop for the continuous comparator-based analysis of the hardware and model outputs. Purple dashed frame:
Processes belonging to the context of the target hardware. Green dashed frame: Processes belonging to the context of the host computer.

with W and H as the image width and height and C the color
channel, which is generally C = 3 for Red Green Blue (RGB)
images or C = 1 for grayscale images.

A common novice example of neural networks is a clas-
sification network which assigns to the input matrix x the
classes ”cat” or ”dog”. In this case, the input matrix might
have the dimensions dim (x) = (128, 128, 3) and the output
is typically encoded by a two-element output matrix y with
dim (y) = (2, 1) where the elements correspond to the class
probability for ”cat” or ”dog”.

B. Inference with Reference Model and Comparison

Depending on availability, either the Golden or Silver Model
or both can be used as the reference model. The inference with
the chosen reference model is performed on the host computer
and yields the reference output matrix yRef .

Afterwards, a comparison between yHW and yRef is per-
formed. If the hardware implementation of the neural network
is correctly implemented, the following relationships between

the output matrices must apply in every single iteration of the
diagnosis loop:

yHW = yRef, Silver (2)
yHW ≈ yRef, Golden (3)

The relationship from equation (2) can be easily checked using
a binary equivalence test for yHW and yRef, Silver, as shown
in (4).

Eq (yHW, yRef, Silver) =

{
True, yHW = yRef,Silver

False, yHW ̸= yRef,Silver
(4)

If they match exactly, ”True” is returned, otherwise ”False”.
For the second relationship from equation (3), the deviations to
be expected are quantified by a difference metric, for example
the Mean Squared Error (MSE), as shown in (5).

MSE (yHW, yRef, Golden) =
1

N

∑
u∈yHW

v∈yRef,Golden

(u− v)2 (5)
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Other difference metrics, like the squared Euclidean [14]
distance are suitable as well.

The results of the comparison are stored for each iteration
of the diagnosis loop for later visualization and evaluation pur-
poses. Optionally, the input matrices xHW of each diagnosis
iteration can be stored as well. This data can later be used for
training or validation purposes.

C. Program Continuation and Wait for Breakpoint

All necessary interactions with the target hardware can be
effectively implemented with the Python automation interface
of UDE. The debugger software UDE not only supports most
high-end micro controllers but also multi-core SoCs (System
on Chips), which are well suited for AI applications. With
the access devices of the UAD family, also fast and secure
communication with the respective target system is ensured.

Additionally to the data extraction process, the program flow
needs to be controlled by starting the system and setting a
breakpoint where the input and output matrices can be read.
After the inference and comparison processes are done, the
program is resumed until the next breakpoint is reached.

In this context, setting the breakpoints is not trivial. It is
essential to ensure that the read input and output matrices
belong together. As a rule, this must be done manually and
for each application individually.

V. THE PRACTICE TEST

In order to clarify whether the diagnostic strategy described
can generally be implemented in practice, extensive tests were
carried out with conventional development boards for different
AI applications. Two of the applications are described in detail
below.

A. Acoustic Scene Classification

STMicroelectronics’ Sensor Tile Kit (STEVAL-
STLCS01V1) is an all-round sensor system [15]. It is
equipped with the following components, among others:

• STM32L476JGY Low Power MCU with Arm Cortex-M4
Floating Point Unit

• BlueNRG-MS-Bluetooth-Prozessor
• Various sensers: microphone, barometer, thermometer,

accelerometer, etc.
In Figure 3, the hardware setup consisting of STM32 Sensor

Tile and UAD2pro is visualized.
AI applications for the sensor tile are already pre-

implemented in the FP-AI-Sensing1 function package
provided by ST from the STM32Cube software development
system [16]. From these examples, the Acoustic Scene Clas-
sification (ASC) was selected for the practical test of the
diagnostic concept. In this application, the ambient noise is
analyzed with a neural network based on microphone data
and assigned to the classes ”indoor”, ”outdoor” and ”vehicle”.
The input matrix xHW is a transformed spectrogram with the
dimensions dim (xHW) = (32, 30, 1) and the output matrix
yHW is a three-element matrix dim (yHW) = (3, 1) with the
respective class probabilities. The golden model and the silver

PLS UAD2pro

Figure 3. STM32 Sensor Tile connected to the PLS UAD2pro.

model of the neural network for the ASC are already available
in the FP-AISensing1 function package, so the training and
adaptation phases can be skipped. The Golden and Silver
Models are available as a Tensorflow Keras model (ASC.h5)
and as a Tensorflow Lite 8-Bit quantized Model (ASC.tfl).

In order to determine suitable interfaces for data transfer
using the UDE debugger, the FP-AI-Sensing1 function pack-
age must first be compiled and build with the STM32Cube
Integrated Development Environment (IDE). The resulting
Executable and Linkable Format (ELF) file SENSING1.elf
is then programmed into the flash memory of the sensor tile
with the UDE Multi Program Loader and a breakpoint is set
in line 188 of the asc_processing.c module for the ASC
diagnosis, as shown in Figure 4. At this code line, both the
input matrix xHW and the associated output matrix yHW can
be read via the automation interface of the UDE.

The diagnostic loop can then be run using the analysis
system and the reference models. In Figure 5 an example of
diagnosis loop with 100 iterations is shown. It can be seen
that the output matrices of the hardware implementation and
those of the silver model always match. The averaged MSE is
µMSE = 3.3 ·10−4 and is therefore within a range which is to
be expected based on the tensorflow lite quantization. Further
tests with larger iteration counts and different acoustic envir-
onments have shown the same behavior, so that in summary it
can be said that the equations 2 and 3 apply and the hardware
implementation is working correctly.

B. Recognizing People

A development board for image processing algorithms from
STMicroelectronics based on the 32-bit low-power MCU
STM32H743VI was selected as a further application example
of the diagnostics environment. The OpenMV (Open Source
Machine Vision) Cam H7 camera module can be used, among
other things, to implement neural networks for computer vis-
ion applications [17]. The OpenMV Github repository offers
already implemented AI entry-level examples [18]. The focus
of the following test is on recognizing people. A classification
network assigns a two-element probability matrix yHW with
the classes ”person” and ”no person” to the input image matrix
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Figure 4. View of the core function of ASC. At the position of the selected breakpoint, the input matrix xHW and the associated output matrix yHW for the
diagnostics from the hardware can be read.

Iterations

Figure 5. Evaluation diagram with 100 iterations of the diagnostic loop for
the Sensor Tile diagnosis system.

xHW. The neural network uses a grayscale image with the
resolution dim (xHW) = (640, 480) as the input matrix for
the person classification. Similar to the implementation of the
diagnostic system for the ASC, a breakpoint is set at a suitable
point in order to read out the input and output matrices via
UDE. Here, too, the evaluation of the diagnostic loop confirms
that the outputs of the OpenMV Cam and the predictions of
the silver model always match. The deviations between yHW

and yRef, Golden are withing acceptable range as well.

Figure 6 shows the hardware setup, an example image for
person detection and the corresponding output matrices yHW

and yRef, Silver.

Using the developed diagnostic system based on the debug-
ger UDE, not only the correctness of the AI implementation
can be verified for the computer vision application but also
the collected data xHW from each iteration is saved and can
later be used as new training or validation data. Especially for
computer vision tasks, it is a great benefit to collect data of the
target camera with its distinctive lens and exposure settings to
increase the performance of the neural network.

Figure 6. Hardware setup with OpenMV Cam H7 connected with the
PLS UADpro and an example of an input image for recognizing people.
The reference models and hardware implementation certainly recognized the
person (Ilkay Wunderlich) in the image.

VI. CONCLUSION

As the examined application examples show, efficient dia-
gnostic systems can be implemented with suitable tools for AI-
based embedded applications. With the comparisons between
the predictions of the target hardware and the reference
models, developers can ensure that the AI implementation is
working correctly. The debugger UDE realizes the Python-
based diagnostic system as a system in the loop. Additional
features such as data collection, processing time measurement
or continuous integration can be flexibly integrated into or
around the diagnostic loop via the UDE Python interface.

The future work is on the one hand to generalize the
Python-based concepts in order to add a direct neural network
diagnosis feature to UDE and, on the other hand, to extend
the approach to other emerging or established AI methods
such as spiking neural networks, decision trees, hidden Markov
models, etc.
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