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Abstract— Echocardiography (echoCG), Cardiac Magnetic 

Resonance (CMR) and phonocardiograms (PCG) are 

becoming indispensable tools in the diagnostics and 

management of cardiac diseases due to advancements in 

imaging techniques, improvement in processing power, 

availability of large multimedia databases in Electronic 

Medical Records (EMR) and rapid lowering of cost. Image-

based and video-based data in echoCG and CMR are multi-

dimensional and exceed the capabilities of traditional statistical 

learning. Deep learning technologies provide new possibilities 

for accurate, consistent, and automated interpretation of 

echoCG, CMR, and PCG, reducing the risk of human error. 

Deep learning and signal analysis techniques are being applied 

to analyze these complex data for improved diagnosis of 

cardiac diseases involving heart muscles, valvular defects, 

cardiac chamber deformities negatively affecting blood-

oxygenation and blood-flow. This review describes applications 

of deep learning techniques, such as Convolutional Neural 

Network (CNN), Recurrent Neural Network (RNN), Long 

Short-term Memory Neural Network (LSTM), transfer 

learning, and their variations in enhancing the classification of 

heart diseases from echoCG, CMR and PCG. 

Keywords-Artificial Intelligence; CMR; deep learning; 

echocardiogram; heart diseases; machine learning; 

Phonocardiogram. 

I. INTRODUCTION 

The importance of Cardiovascular Diseases (CVD), 
Congenital Heart Diseases (CHD) and other heart-related 
diseases is significant. According to World Health 
Organization (WHO), 17.9 million persons died annually of 
CVD worldwide [1]. Total prevalence of cardiac diseases in 
2018 was around 126.9 million USA alone [2]. Infants are 
born with CHD with a mean rate of 8.2 per thousand births 
per year worldwide [3]. Their long-term prognosis for 
survival is low. Invasive surgery is expensive, risky and not 
advisable for diagnostics and maintenance of heart-
conditions post-surgery. 

Electrocardiogram (ECG), echocardiogram (echoCG), 
Cardiac Magnetic Resonance (CMR) and digital 
phonocardiograms (PCG) are minimally invasive techniques 
that have been used to assess heart abnormalities [4]-[11]. 
Computer Tomography (CT) is also used to study heart 

defects [8]. However, CT scans are associated with radiation 
and have lesser resolution than CMR [8]. 

ECG is the least invasive technique and suitable for 
indicating CVD affecting change in emitted waveforms. 
However, it is not well suited to assess localization of 
structural defects and motion-related deformities in heart-
muscles (such as hypertrophic cardiomyopathy) and heart-
valves (such as mitral valve regurgitation or aortal stenosis) 
and cannot assess blood-volume flow – an important feature 
to assess the heart diseases due to smaller volume of blood-
flow, turbulent blood-flow, stenosis, mixing of oxygenated 
and deoxygenated blood due to holes in the septum, and 
ischemia caused by plaque formation and arteriosclerosis. 

Due to improved resolution in inexpensive echoCGs, CT 
scans are less preferred and have been left out in this 
review. ECG analysis has been left out due to its limitations 
in localization of cardiac defects. In this paper, we review 
the applications of deep learning methods to analyze 
echoCG, CMR and PCG. 

Recent progress in echoCG has made it quite accurate, 
inexpensive, and a preferred alternative for assessing 
structural and blood-flow-related diseases. CMR has the 
highest resolution. However, it is expensive. EchoCG is 
preferred to measure the speed of blood-flow and blood-
turbulence present in many valvular diseases [4]. PCG is 
analyzed to diagnose limited cardiac diseases based upon 
emitted sound, while echoCG and CMR use images, image-
sequences and video-clips of heart-muscles and valves 
[7][9]-[13]. 

Guidelines have been developed to ensure accurate 
interpretation of echoCG, CMR and PCG outputs [12]. 
However, the final analysis heavily relies on the operators’ 
experience and knowledge. This causes subjectivity and 
variability in interpreting image and sound patterns [12]. 

In the last decade, image analysis and speech-
recognition has improved significantly due to rapid 
advances in deep learning techniques, such as Convolutional 
Neural Network (CNN), Recurrent Neural Network (RNN), 
Long Short-term Neural Network (LSTM), transfer 
learning, and their variations and combinations. Deep 
Neural Networks (DNN) exploit convolution-filter-based 
feature-maps, temporal context, memory, and selective 
forgetfulness in the artificial neurons to improve object-
classification [14]-[17]. 
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AI and deep learning techniques are being exploited to 
generate accurate, consistent and automated interpretation of 
echoCGs, CMR and PCG to diagnose cardiac diseases 
related to structural and heart muscles related defects, 
valvular defects, and blood-flow-related diseases [4]–[6]. 
For example, machine learning models have been shown to 
provide an instantaneous assessment of the left ventricular 
ejection fraction and longitudinal strain [13]. 

Large volumes of multidimensional imaging data 
generated in 2D, 3D and 4D (includes 3D images and 
temporality present in video clips) formats are available (see 
Section VII). EchoCG requires image-classification and 
video-analysis; CMR requires analysis of 2D and 3D 
cardiac images and 4D videos. PCG requires waveform 
segmentation and analysis to classify the wave-patterns. 

Many factors have contributed to the recent interest and 
the advancement of cardiac image and motion analysis: 1) 
multifold improvement in deep learning techniques in the 
last decade; 2) availability of large scale of high-resolution 
CMR and echoCG datasets; 3) lowering of the cost of CMR 
and echoCG; 4) recent acceptance of automated intelligent 
image analysis techniques by the clinicians in other disease 
domains such as mammograms; and 5) cost and side-effects 
of invasive exploration for cardiac diseases. 

The rest of this paper is organized as follows. Section II 
describes the background concepts: heart anatomy, echoCG, 
CMR, and deep learning techniques. Section III describes 
diseases associated with defects and deformities in heart 
muscles, valvular (heart-valves related) and blood-flow-
related diseases. Section IV describes echoCG analysis. 
Section V describes CMR analysis. Section VI describes 
PCG analysis. Section VII describes major data repositories. 
The last section concludes the discussion. 

II. BACKGROUND 

A. Heart Anatomy 

A heart (see Figure 1) comprises four chambers: Left 
Atrium (LA); Right Atrium (RA); Left Ventricle (LV); 
Right Ventricle (RV). LA gets oxygenated blood from the 
lungs; LV pumps oxygenated blood to the body; RA 
collects deoxygenated blood from the body; RV sends 
deoxygenated blood to the lungs. The left and right sides are 
separated by a muscle called ‘septum’ [5]. A hole in the 
septum contaminates oxygenated blood in the LV (or LA) 
with deoxygenated blood in the RV (or RA). 

 

 

 

Figure 1. An illustration of heart anatomy [18]. 

A heart has four valves: 1) aortic valve regulating blood-
flow from LV to the body; 2) mitral valve regulating blood-
flow from LA to LV; 3) pulmonary valve regulating blood-
flow from RV to lungs; 4) tricuspid valve regulating blood-
flow from RA to RV. Valves comprise two or three leaflets 
that open and close synchronously. Periodic relaxation and 
compression of cardiac chambers cause blood flow. Two 
valves, aorta and mitral, play key roles in the oxygenated 
blood-flow from the heart to the body. 

B. Echocardiogram 

EchoCG (see Figure 2 [18]) is an ultrasound-based 
technique that assesses the reflectivity and refraction of 
emitted microwaves altered by tissue type and density [5]. 
There are two types of echograms: transthoracic echoCG 
(TTE) and transesophageal echoCG (TEE). TTE is a 
noninvasive and preferred technique [19]. 

By comparing the differences between signal reflected 
between the healthy tissue and the query tissue, the technique 
assesses the presence and the extent of unhealthy tissue 
layers and their thickness [8]. By combining echoCG with 
Doppler effect, blood-flow speed and direction are also 
estimated [16]. 

C. Cardiac Magnetic Resonance (CMR) 

Cardiac Magnetic Resonance (CMR) is a high-resolution 
imaging technique using a strong magnetic field that excites 
hydrogen ions in water molecules inside tissues in a Region 
of Interest (ROI). CMR measures the emitted energy when 
hydrogen ions return to the normal state [8]. The relaxation 
time differs between healthy tissues and diseased tissues. By 
knowing the relaxation patterns of tissues, CMR images are 
formed. Pixels/voxels can be imaged [8] in an ROI by 
superimposing non-uniform magnetic-field with a static 
strong magnetic field,  

Computational combinations of multiple slices of CMR 
in images give a 3D CMR image that is visualized using 
computer graphics. As shown in Figure 3 [21], CMR is used 
to analyze the deformities in different cardiac chambers, and 
changes in their motions and blood-flow patterns [8]-[11]. 

D. Phonocardiogram (PCG) 

Phonocardiograms are high-fidelity sound recordings 
(see Figure 4 [22]) generated by continuous opening and 
closing of cardiac valves, and blood-flow through arteries in 
heart-chambers [7][23][24]. Different valvular diseases 
create different sound-patterns (see Figure 4) helping in the 
classification and identification of valvular diseases. 

 

 
Figure 2. An illustration of echocardiogram [20]. 
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Figure 3. An illustration of CMR image [21]. 

 

 

Figure 4. Phonocardiogram of different heart defects [22]. 

PCG comprises two major sound patterns S1 and S2, for 
each cardiac cycle, as shown in Figure 4. The sound S1 
occurs at the beginning of the ventricular systole due to the 
closure of atrioventricular valves: mitral and tricuspid. The 
sound S2 marks the beginning of ventricular diastole and 
comprises two components due to the closure of aortic and 
pulmonary valves [7][23]. 

III. VALVULAR AND HEART MUSCLE DISEASES 

Classes of cardiac disease derived using deep learning 
techniques are: 1) deformity in the heart-structure or the 
presence of a tumor; 2) calcification causing a lack of 
synchronization in heart-valves resulting in blood-leak 
(stenosis), or regurgitation in the corresponding blood 
channels; 3) thickening of cardiac walls in one or more 
chambers reducing the blood-flow volume and negatively 
affecting the heart-motion; 4) plaque formation in an artery 
or vein restricting blood-flow [4][9][13][19]. 

Deformities in the valves cause stenosis - restricting the 
blood-flow, or regurgitation - turbulent blood-flow and/or 
blood-flow in reverse direction around a valve. Four classes 
of valvular diseases have been computationally analyzed 
using DNN in recent years [4][19]. The diseases are aortic 
stenosis, mitral stenosis, aortic regurgitation, and mitral 
regurgitation. Uneven calcifications on valve-leaflets cause 
a lack of synchronization in the opening and closing of 
valves resulting in regurgitation and stenosis [4]. 

Another valvular disease is Rheumatic Heart Disease 
(RHD) that occurs as an after-effect of rheumatic fever, 
resulting in valvular lesions in aorta valve, mitral valve or 
tricuspid valve, weakening the valve-function. Affected 

valves develop regurgitation and stenosis, with the most 
common being mitral regurgitation [4][19]. 

Another class of disease is Congenital Heart Diseases 
(CHD) where the cardiac structure has defect(s) since birth 
[18][19]. Common CHDs are: 1) Congenital Valve Disease 
(CVD), including Bicuspid Aortic Valve Disease (BAVD), 
Pulmonary Valve Stenosis (PVS), Aortic Valve Stenosis 
(AVS), and Ebstein’s anomaly; 2) Atrial Septal Defect 
(ASD) – a hole in the septum between upper chambers 
connecting LA and RA; 3) Ventricular Septal Defect (VSD) 
– a hole in the septum in lower chambers connecting LV 
and RV; 4) Coarctation of the aorta (CA) – narrowing of 
the aorta after it leaves the heart causing blood-turbulence; 
5) Patent Ductus Arteriosus (PDA) - connection between 
two blood channels because channels do not close after birth 
(see Figure 5 [26]). 

Ebstein’s anomaly is a severe heart defect in leaflets of a 
tricuspid valve (between RA → RV) restricting blood-flow 
to lungs, resulting into the lack of oxygenation. Tetralogy of 
Fallot is a combination of four CHDs: VSD, PVS, a 
misplaced aorta and right ventricular hypertrophy. It causes 
the lack of blood-flow and deoxygenation of blood, 
resulting in ischemia and vascular degeneration. 

Other muscle-related conditions are cardiac myopathy 
(thickening of heart muscles) and cardiac hypertrophy 
(smaller volume in heart chambers due to the thickening of 
cardiac walls) [8]. Myopathy causes heart chambers to 
contract slowly, reducing the blood-flow [13][19]. Cardiac 
hypertrophy is accompanied by myopathy [8]. Cardiac 
hypertrophy is identified by analyzing the wall-thickness 
combined with the ejection-volume estimation from the LV. 

Applications of deep learning techniques for diagnosing 
cardiac muscles-related and valvular diseases are 
summarized in Table I. 

IV. ECHOCARDIOGRAM ANALYSIS 

EchoCG analysis can diagnose valvular diseases, such as 
stenosis and regurgitation, atrial blockages, atrial 
fibrillation, congenital heart disease, coronary arterial 
disease, cardiomyopathy, cardiac hypertrophy, and murmur 
[19][25][28]-[32]. 

 

TABLE I. DNN LEARNING BASED ANALYSIS FOR CARDIAC DISEASES 

 

 

Disease Class Input Mode DNN Technique 

Valvular stenosis + 
regurgitation 

echoCG and 
PCG  

CNN-based segmentation and 
TGNN + CNN + LSTM 

Fetal heart defects 
echoCG + 

CMR 

CNN-based segmentation for 

wall boundaries 

Myocardium 

hypertrophy and 

myopathy 

Doppler 

echoCG + 

CMR 

Hybrid CNN + LSTM + 
encoders and decoders for 

wall thickness, chamber 

boundaries and blood flow 
volume 

Ischemia and 

myocardial 
infarction 

CMR 
CNN based tissue 

classification 

S1 S2 
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Figure 5. An illustration of PDA [26]. 

Aortal and mitral valve regurgitations have been 
identified using R-CNN (region-based CNN) on color 
Doppler echoCG [19]. R-CNN uses a bounding rectangular 
box around the objects and uses a combination of CNN and 
Support Vector Machine (SVM) for classification and 
object-detection [17]. Regurgitation is estimated semi-
quantitatively using jet-area ratios. The area of an orifice is 
measured using ‘proximal flow convergence’ of blood-flow 
measured using Doppler effect [32]. 

Segmentation for valvular regurgitation uses multiple 
techniques, such as non-linear anisotropic diffusion [8][32]. 
Regurgitation is estimated using Proximal Isovelocity 
Surface Area (PISA), which occurs when fluid flows through 
a circular orifice [33]. As fluid passes through a narrow 
orifice, it speeds up that can be measured. 

CHDs have been identified using multiview (five views) 
echoCG analysis using multichannel CNN [25]. The 
advantage of having multiple views is clarity and supporting 
evidence from other views [19][25]. To reduce overfitting 
due to the limited availability of data, depth-wise separable 
convolution has been used. A standard convolution filter 
combines inputs in the same step. Depth wise convolution 
filters and combines in two separate layers, reducing the 
computational complexity. 

Video of each view is fed to an encoder for frame-
independent feature representation. It uses RNN to assign 
different weights to frames with the highest weight to the 
most relevant frame and progressively reduces weights for its 
neighbors. It uses temporal convolution to identify the 
neighboring frames [34]. Temporal convolutions are used on 
time-series data to maintain temporality and causality. 

Common fetal heart defects are: (1) tetralogy of Fallot; 
(2) ventricular dysplasia; (3) Ebstein’s anomaly. The major 
problem in a fetal heart defect is the malformation of a 
subset of cardiac chambers and the leakage between the 
chambers due to holes in the septum. Major problems in the 
identification of cardiac chambers from infants’ echoCGs 
are: 1) artifact; 2) discrimination between chambers; 3) 
missing boundaries. The physical boundaries between atrium 
and ventricles are missing when the corresponding valves are 
opening. This requires deep learning techniques for echoCG 
analysis to identify four chambers and their motions 
accurately using segmentation. 

Researchers have developed a cascaded dual layered 
Deep Wide Neural Network (DW-net) for semantic 

segmentation of echoCGs [35]. DW-net comprises two 
layers: (1) Dilated Convolutional Chain (DCC) and W-net. 
DCC collects local and global features for the localization of 
ROI. W-net derives precise boundaries in ROI by repeated 
applications of encoders and decoders. 

EchoNet, a CNN based model, detects cardiac structure 
and anatomy, blood-flow volume, the presence of 
pacemakers, LV hypertrophy, enlargement of LA chamber 
along with the prediction of age, sex, and gender of a patient 
[33]. It is trained on a large feature-set comprising age, sex, 
weight, BMI, presence of a pacemaker, LA enlargement, 
LV hypertrophy, End Systolic Volume (ESV), End 
Diastolic Volume (EDV), and Ejection Fraction (EF) [33]. 

V. CMR ANALYSIS 

CMR imaging is a reference for imaging due to higher 
resolution. The cardiac region is identified knowing that 
heart movements change voxel-intensities in the dynamic 
part of a heart. LV, being the largest moving chamber, has 
been targeted for segmentation. LV also circulates maximum 
blood volume. After a ROI is identified, segmentation 
techniques are applied to derive the LV. After identifying the 
LV region, model-based techniques, augmented with deep 
learning techniques, derive other chambers and boundaries. 

CMR analysis is also applied to estimate EDV, ESV, EF, 
and Myocardial Mass (MM) [36][37]. This quantification 
has been used to study blood ejection from each chamber, 
especially LV, and has been used to estimate the extent of 
cardiac myopathy and cardiac hypertrophy [37][38]. 

A major problem in CMR analysis is the segmentation of 
various boundaries in the heart to detect chambers, valves, 
artery, septum, muscles and valvular defects, especially in 
the presence of variations of pathologies in different patients. 
Segmentation approaches are image-driven or model-driven 
[37]. The image-driven approach uses intensity-based 
histogram analysis and thresholding, clustering, region 
growing, pixel/voxel level classification and active contours 
to identify blood-pool, myocardium or appendages. The 
model-based approach uses statistical analysis to derive atlas 
or shape contours. 

The segmentation methods are classified as pixel-level 
classification, graph-based methods, probabilistic models, 
such as Markov Random Fields, deformity-based models, 
atlas-based methods, CNN and LSTM based deep learning 
models, and hybrid techniques that integrate deep learning 
techniques and deformity-based models [39][40]. Deformity-
based models are based upon shape estimation. However, 
pixel-level classification, shape-based models, including 
deformity-based models (shape contours), and probabilistic 
models suffer from inaccuracies [40]. Random forest models 
are based on intensity classification that causes inaccuracy. 
Combined with deep learning models, deformity-based 
models accurately estimate the dynamic shape of various 
chambers [40]. 

LV segmentation has been used to derive motion 
estimation, wall thickness on different sides, local 
deformation and myocardial strain during systole and 
diastole phases [37]. Wall thickness changes for an ischemic 
heart [38]. Wall thickness in the LV during the systole phase 

Pulmonary Artery 

Aorta 

PDA 
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is used to estimate malfunction in myocardial ischemia or 
myocardial infarction. Most of the clinical assessment is 
done qualitatively by visual assessment [38]. Quantitatively, 
a LV strain indicates deformation of the ventricles, which is 
used as a parameter in Doppler echoCG analysis to estimate 
the extent of ischemia, myocardial infarction, and ventricular 
dyssynchrony. 

The LV End-diastole Volume (LVEDV) and the LV End-
systole Volume (LVESV) are used to estimate the LV Stroke 
Volume (LVSV) - the total ejection rate from the LV in each 
cycle. The Left Ventricle Ejection Fraction (LVEF) is 
derived by dividing LVESV by LVEDV. LVEF quantifies 
the fraction of blood pumped out by the LV in each cycle 
[37]. 

One technique to derive the LV region is the application 
of the Hough transform at the end of diastole and model the 
region using concentric circles. The region showing the 
maximum projected intensity near the center of concentric 
circles is a viable candidate for the LV seed [37]. Other 
properties of the LV region are homogeneity and high grey 
level. The segmentation, identification techniques, and 
quantification techniques for other chambers are similar. 

CMR images are acquired using fixed periodic time after 
the occurrence of R-waveforms – the most prominent 
waveform in ECG associated with the compression of the 
LV. Patients with arrhythmia have varying heart-cycle which 
degrades the image quality. There are challenges because 
different chambers and walls have similar intensity profile, 
making contrast-based segmentation difficult [39]. Artifacts, 
noise, lighting conditions and heterogeneity due to blood-
flow also affect the intensities [39][40]. 

VI. PCG ANALYSIS 

PCG analysis is based upon signals derived from systolic 
and diastolic phases of blood-flow turbulence to estimate 
the occurrence of valvular diseases like stenosis, 
regurgitation, atherosclerotic disease, and murmur (see 
Figure 4) [23][41]. However, unlike image-based 
techniques, PCG cannot accurately localize valvular and 
muscle-deformity-related diseases, such as myopathy or 
hypertrophy, and diseases related to blood-leakage. 

PCG analysis requires signal analysis in the time-domain 
using discrete wavelet or packet wavelet transforms [23] or 
in frequency domain using FFT [27]. 

Intelligent PCG uses Time Growing Neural Network 
(TGNN) based analysis to segment the time-series of 
diastolic and systolic sound patterns of stenosis of aortic, 
pulmonary and tricuspid valves [42]. TGNN combines 
windowing to extract signal frames with neural network for 
the classification. Windowing uses a fixed starting point but 
growing endpoints to identify varying size time-framed 
windows containing the signal. 

A hybrid model combining CNN and LSTM has been 
used for the classification of PCG [43]. CNN is used to 
analyze the frequency-related features derived using Mel 
Frequency Cepstral Coefficient (MFCC), and LSTM is used 
to derive temporal dependencies. Another research 
combined CNN and bidirectional LSTM to detect aortic 

stenosis, mitral stenosis, mitral regurgitation, and mitral 
valve pro-lapse [44]. 

 

VII. MAJOR DATASETS 

EchoNet-Dynamic database contains 10,030 labeled 
apical-4-chamber echocardiography videos and human 
expert annotations in the form of measurements, tracings, 
and calculations to study cardiac motion and chamber sizes 
[45][46]. Data is accompanied by EF values of LV and frame 
numbers of end-systole and end-diastole frames determined 
by medical practitioners. 

CREATIS repository provides multimodal 2D and 3D 
cardiac imaging data, application-software, and diagnostics 
to evaluate computational methods and enhance 
collaboration around heart imaging and analysis [47]. The 
repository is a collection of multiple databases: 1) CAMUS 
synthetic database contains 2D apical myocardial motion in 
four chambers; 2) Duplex database contains twenty 
simulated sequences; 3) Cetus database contains 3D 
echoCG sequences of 45 clinical patients; 4) Multimodal 
Straus database contains 3D echoCG data, cine-MRI and 
tagged-MRI data of eighteen virtual patients; 5) Revolus 
database contains 2D echoCG of both simulated and actual 
sequences; 6) ACDC database contains 3D CMR data along 
with manual contouring to mark LV endocardium and RV 
endocardium for both diastolic and systolic phases; 7) 
Minimalist Immediate Mechanical Intervention (MIMI) 
dataset comprises a multicentric randomized trial 
comparing immediate and delayed stenting in 140 patients 
treated with Percutaneous Coronary Intervention (PCI). 

The Harvard dataverse comprises cardiac imaging 
datasets, such as CMR images of 35 patients with mitral 
regurgitation, 4D-flow echoCG image-sequence, and CMR 
data from 108 subjects (patients and healthy subjects) [48]. 

The Heart database comprises 3D CMR images of LV 
with automated segmentations validated by clinicians, tools 
to compute quantitative measures, and software packages 
for automated image segmentation [49]. 

The EMIDEC database comprises datasets for classifying 
normal and pathological cases of 150 MRI exams from 
different patients for studying LV in the cases of myocardial 
infarction symptoms [50].  

The Physionet database contains nine PCG databases and 
applied deep neural networks to classify heart murmurs 
[51]. 

The Cardiac Atlas Project (CAP) database contains data 
of asymptomatic and pathological hearts to facilitate 
collaborative statistical analysis of regional heart shapes and 
characterize cardiac function for multiple population groups 
[52]. 

VIII. DISCUSSION AND CONCLUSION 

This review has described the trend of applying deep 
learning techniques for cardiac image segmentation needed 
for detecting cardiac chambers, blood-channels, blood-flow 
and its quantification, and its various defects, such as heart 
muscle deformation, plaque formation, calcification and 
valvular defects. It also describes the combination of frame 
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segmentation and deep learning networks to classify sounds 
collected in PCG. 

The advantage of deep learning is in identifying feature-
maps due to intensity and texture variations using 
convolution layers, and repeated patterns of encoders and 
decoders, providing temporality as required in analyzing 
various phases of blood-flow, sound generation and heart-
muscle movements in heart cycles. CMR and echoCG 
images contribute to the better quantification-based image 
analysis. Traditional quantification techniques such as 
blood-flow estimates, augmented with deep learning-based 
boundary detection and strain detection have significantly 
improved the diagnosis and the classification of heart-
defects. 

The drawbacks in image analysis are the presence of 
noise such as speckles due to blood-flow that hinder 
segmentation, inability to separate similar defects such as 
ischemic and infarcted regions, inaccurate detection of 
boundaries of wall chambers, especially when the valves are 
open. Another drawback is the absence of a large dataset 
required to improve the accuracy in deep learning 
techniques. This problem is being resolved progressively, as 
described in Section VII. Despite clinical validation of 
results, a major criticism of a deep learning model is the 
black box approach with no causality-based explanation. 

In the next decade, deep learning techniques, combined 
with continuously reducing cost of use, will be established 
as a valuable tool for automated diagnostics and fast and 
accurate decision support system to identify noninvasively 
the extent and localization of the muscle, motion and valves 
related cardiac diseases. 
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