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Abstract—With the increasing demands of customers in the
ornamental stone industry, both in terms of the individual
specifications of each product and in the delivery times, it
is necessary to constantly adapt the manufacturing processes
and their inherent complexity and, consequently, the automated
systems that are essential to them. There is a strong movement
of research in areas capable of generating non-destructive testing
techniques applied to production systems in this sector. Currently,
one of the main problems occurs during the ornamental stone
slab polishing phase, where there is the need to monitor the
polishing quality and diagnose possible defects in the surface
of the slab. This can be used as feedback for self-correction and
optimization of variables and process parameters in the polishing
equipment. In this paper is proposed a monitoring system, based
on machine vision techniques, used to detect defects in the surface
of polished ornamental stone slabs. This approach is based on a
weighted hybrid ensemble classifier, relying on image processing
techniques and a Convolutional Neural Network. Results show
that the ensemble classifier outperforms related classifiers.

Index Terms—Ornamental Stone, Ensemble Classifier, Convo-
lutional Neural Network, Machine Vision.

I. INTRODUCTION

Regarding the natural and ornamental stone industrial sector,
there is a positive response of ornamental stone manufacturing
companies, especially in Portugal, in incorporating Industry
4.0 related practices and technologies in their production [1].
This allows them to enhance and achieve added value in
this significant industrial sector since the transformation of
rock minerals has enormous importance in the Portuguese
market. In the stone extraction and transformation industry,
typically, the first step marks the extraction of large blocks
from quarries. There are several types of ornamental stone,
such as marble, granite, limestone, among others. Then, the
cutting and sawing process transforms these blocks into slabs.
These slabs go through a polishing process to remove the
cutting process’s imperfections and restore brightness to the
slab. Later, the slabs can suffer a final cut for smaller slabs or
tiles, which will later be used in pieces, such as countertops
and kitchen or bathroom tops. Finally, the process culminates
in the packaging of the final product.

Ornamental stone manufactured goods, such as countertops
and kitchen or bathroom tops, must satisfy specific aesthetic
requirements, namely stone surface status or its reflecting
properties, which can be accomplished by the polishing pro-
cess. According to Bonifazi & Marinelli [2], there is not
a defined way to know what constitutes a good polishing
process. This greatly depends on the type of stone, its mineral
composition, and textural attributes. Such judgment relies on
human expertise. It can be influenced by several characteris-
tics, such as mineral grains size and their relative arrangement,
background color, presence of veins and plagues, cultural level
of the human inspectors, and final destination of the stone
manufactured good. Fig. 1 represents examples of ornamental
stone manufactured goods.

Fig. 1. Ornamental stone manufactured goods, such as kitchen/bathroom tops.

Mathielo & Bolonini [3] conducted a recent study in Brazil,
where they concluded that 77% of companies in the orna-
mental stone sector perform analysis of the quality of the
polished surfaces of stone via visual inspection, only 3% do
this by measuring the brightness surface and 20% use both.
This demonstrates the subjective character and the possible
incompatibility between the analyzes of different human in-
spectors regarding the polishing quality of the finished surface.
In this sense, it is necessary to adapt the stone manufacturing
processes and their inherent complexity. Consequently, one
needs to adapt the automated systems that are essential to
them, namely automated methods to evaluate the efficiency of
the polishing process in ornamental stone. Monitoring using
sensors is a common method of recognition and adaptation to
the environment by automatic systems, and it can be assumed
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that computer vision is one of the most versatile technologies
for this purpose [4].

Computer vision is based on the interpretation of images
captured by non-invasive optical sensors, in order to extract
useful information from a real scenario for analysis and/or
process control. This technology allows identification and
analysis of geometries, position detection, supervision, quality
control, and measurement (speed, deformations, temperature,
etc.). As a non-contact measuring system, it does not suffer
considerable wear and can operate continuously even in hostile
environments. For all these reasons, it is understandable that
such a solution is of interest in a wide range of applications,
such as closed-loop control processes [5].

In addition to computer vision, there is a research hype in
areas capable of generating other types of Non-Destructive
Testing (NDT) techniques for monitoring purposes, applied to
the several stages in the ornamental stone production process.
Montiel-Zafra et al. [6] present an impact-echo method to
analyze the internal quality of ornamental stone blocks right
after being extracted from the quarry.On the other hand,
already on the polishing stage, Maria et al. [7] propose a
wavelet technique to detect defects using images of ornamental
limestone slabs.

Considering computer vision-related approaches for mon-
itoring and defect detection, most of the literature work
focuses on exploring Machine Learning (ML) classification
techniques. This work intends to address the application of
computer vision with ML for monitoring the quality of a
stone slab polishing process by detecting defects on the stone’s
surface. The polishing defects may be seen as the presence of
scratches and irregularities in the stone surface, which could
be introduced by the polishing process itself or were already
present in the stone, and the polishing process could not
remove them. In this sense, we propose an approach, based on
computational vision, to monitor complex defects and errors
of high detection complexity during the ornamental limestone
polishing process. This approach allows the verification and
analysis of defects in polished ornamental limestone in a
non-destructive way. This classification can later be used as
feedback for self-correction for the regulation/optimization of
the polishing variables and process parameters.

This paper is organized into four more sections. Section II
provides the state of art about machine vision architectures
and techniques for defect inspection in ornamental stone.
Section III provides a detailed characterization of the proposed
approach, a weighted hybrid ensemble classifier based on
image processing and a Deep Learning model. Section IV
discusses the experimental results achieved. Finally, Section V
concludes the paper, stating final remarks about the work
presented and provides orientations for future work.

II. RELATED WORK

Tantussi & Lanzetta [8] provided a review about optical
methods for stone surface inspection. Authors mention four
main non-contact surface inspection methods, namely optical
profilometry, glossmetry, riflectometry, and artificial vision.

This section focuses on the literature review regarding artificial
vision-based approaches for automated inspection of ornamen-
tal stone surface for defects.

It was mentioned before the difficulty to assess the quality
of a stone surface due to the subjective nature of this classi-
fication, mostly by considering visible pictorial attributes and
overall aesthetic features. Efforts have been made to propose
methodologies and techniques able to quantify the aesthetic
quality level of stone-based manufactured goods [9]. In this
approach, Bonifazi et al. tried to assess the quality of the stone
by evaluating the degree of polishing of the stone surfaces and
the presence of defects, using image processing techniques.
They also classify the main defects being: 1) Grooves; 2)
Fissures and/or holes, and 3) Mineral inclusions. On the
other hand, Yarahmadi et al. [10] present a new approach
for quantifying the quality of stone products in quarries and
processing plants.

In 2005, Lee et al. [11] propose an automated process
for inspection of polished stone in order to detect process-
induced defects, i.e., tooling marks induced by the polishing
machine. The detected defects are characterized and used for
adaptive control of the polishing process. The authors used
the classical Circle Hough Transform (CHT) algorithm after
collecting images of the surface of the stone since polishing
tooling marks and scratches are distinguishable from natural
flaws, characterized by their circular geometric form. So, this
becomes a circle detection type of problem. The algorithm was
tested using a range of images presenting defects encountered
in the inspection of polished stone surfaces, obtaining good re-
sults. Issues presented were the optimization of the probability
estimation, accuracy, and the relationship between speed and
the proportion of edge pixels belonging to circular features to
the total number present.

In 2012, Bianconi et al. [12] proposed an expert system
for automatic classification of granite tiles through computer
vision. The authors experimented with several classifiers (su-
pervised ML) using a dataset of images. Classification takes
into consideration both color and texture. Results show that the
methods considered provide high granite classification accu-
racy, while Support Vector Machines (SVM) outperforms other
methods. In 2013, Martı́nez et al. [13] proposed an automated
classification approach, using ML techniques based on nu-
meric variables obtained from 2D and 3D images captured by a
linear 2D camera and a 3D laser scanner. Authors implemented
both supervised and unsupervised ML techniques, such as
SVM and Multilayer Perceptron neural networks (MLP), and
cluster analysis and self-organizing maps. Results show that
the error of automated classification was lower than for manual
classification.

More recently, in 2018, Iglesias, Martı́nez & Taboada [14]
proposed an automated inspection system for examining slate
slabs based on capturing data with a 3D color camera and
studying slate slab traits using computer vision algorithms.
The authors tested the method on real slate slabs, which were
previously classified by a human expert. Results show that the
laboratory prototype system performed well, as the inspection
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algorithms were able to accurately detect the same traits
as the human expert, except for surface irregularities. Also,
Ramil et al. [15] proposed a back-propagation Artificial Neural
Network (ANN) in order to obtain the rapid and reliable
identification of forming minerals in granitic rocks by means
of RGB images. The results obtained, though preliminary,
led to a high degree of correct identification of the forming
minerals for three different granitic types.

III. PROPOSED APPROACH

To obtain a vision-based system that is able to correctly
classify ornamental stone slabs as defective or not, we propose
an approach based on a weighted hybrid ensemble classifier.
Classification of defective slabs corresponds to the detection
of defects on the surface of the slab. The overview of this
approach is presented in Fig. 2. The ensemble is composed of
two different classifiers, one based on traditional image pro-
cessing techniques, such as adaptive filters applied according
to structural and statistical methods, and another one based on
a Deep Learning model, namely using a Convolutional Neural
Network (CNN).

Fig. 2. Overview of the proposed hybrid classifier ensemble approach.

The inspection system starts by receiving an image of the
ornamental stone’s slab. This image is pre-processed in order
to retrieve the biggest region of interest and feeding it as input
to the classifiers. Then, each classifier obtains its predicted
result separately for the input image. These predicted results
are then summarized by applying a weighted voting scheme,
obtaining the final result for that specific stone’s surface. In
this case, the result can be OK (no or non-significant defects)
or NOK (significantly defective). Following Bonifazi et al. [9]
guidelines, defect detection includes holes, fissures, decays,
grooves, or deviated mineral inclusions. These are significant
when occupying more than 0.05% of the region of interest of
the stone surface.

A. Image Pre-processing

The first step to allow the system to correctly inspect the
stone slab is provided by an image pre-processing module by
converting the raw image of the stone slab into the desired
input to the classifiers. Training/testing a model on raw images
usually leads to bad classification performances [16], so this
step helps to improve the classifier performance. Also, pre-
processing techniques allow a faster training process. To allow
the classification models to consider only the stone’s surface,
transitions between the slab and the image background or
other elements present in the image are removed. Not only
are those transitions not needed for this problem, but they
may also cause a misdirection in the classification models
since they introduce certain non-desired patterns, impacting
the performance of the classifiers.

For this, it is performed segmentation of the tile to separate
the stone slab surface from the image background. First, the
original image is converted to grayscale, and then Gaussian
filters are applied to eliminate noise while blurring the patterns
and details inside the stone. Afterward, a linear threshold is
applied, finally detecting the points that represent the outlines
of the stone slab, using the same method proposed by [17]. To
optimize memory usage, a simple approximation method can
be used, which removes all redundant points and compresses
the slab contours. With all the contours found, their features
are evaluated, and the general external outlines of the slab
stone are obtained. This step is important as one stone may
appear split in more than one slab due to top to bottom
fissures, and therefore return more than one external contour.
In these cases, each part of the stone is evaluated separately to
perceive which part needs correction, if any. This way, the pre-
processing module separates the original stone image in two,
allowing the classifiers to analyze the stone’s defectiveness as
distinct surfaces.

By using and pairing the external contour points obtained
for each stone slab, it is possible to generate all rectangles that
can be built using those pair of contour points. This enables to
quickly reach the quadrilateral Region Of Interest (ROI), the
biggest square or rectangle inside the stone slab, without any
portion of the background. The ROI is then used as input to the
classifiers, allowing to provide only stone surface information
as input. After the initial rectangles are generated, the next
set of rectangles are created by using the second point as the
reference and so on.

An example of some possible rectangles is shown in Fig. 3
c). With all the rectangles generated, they are sorted by their
area in descending order, being that the first rectangle in the
list is the biggest one. Besides the area, additional criteria
were added as sometimes the quadrilateral regions generated
still included some background. Given this, a given rectangle
was only selected if across its entire area there were no black
dots. If any point in the perimeter of a rectangle is on a spot
in which the respective pixel is 0, the respective rectangle is
not valid. The rectangle that passes the criteria and has the
biggest area is the desired one.
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Fig. 3. Pre-processing steps: a) Original stone image, b) Image after segmentation, c) All possible rectangles; and d) Final rectangle chosen.

All the pre-processing steps performed and explained above
can be seen in Fig. 3. The white square represented in Fig. 3 d)
corresponds, approximately, to the biggest rectangle regarding
the area, in the exemplified stone slab. The ROI is the region
inside the limitation provided by the rectangle, used next as
input for the classification models.

B. Weighted Hybrid Ensemble Classifier

To develop a system for inspection and detection of im-
perfections on the surface of the ornamental stone slabs, after
obtaining the image in the desired format, the ensemble model
is considered. A hybrid ensemble model is used to improve the
system’s performance and robustness. Compared to classifiers
working individually, classifiers working together usually have
the potential for a better performance.In this specific scenario,
given the diversity in types of stones, this is particularly
advantageous, as the limitations of one classification algorithm
to a type of stone can be compensated by other classifiers.

The proposed ensemble model is composed of three main
components: 1) Adaptive Filtering-based classifier that uses
traditional image processing techniques with statistical and
structural adaptations; 2) a Deep Learning model, particularly
a Convolutional neural network (CNN-based classifier); 3)
a decision-making scheme based on weighted voting. These
three components are detailed in the following sections.

1) Adaptive Filtering-based classifier: Traditional filtering
methods are utilized for a low cost, low level, and lightweight
approach for inspection systems, as they enable to detect
distinct features with no need for labeled data. Overall, these
methods usually require a reference pattern without deformi-
ties, i.e., a threshold value that delimits the normal surface
from the defective one. Typical filters are more suitable for
images that are patterned and have periodic properties.

Considering the ornamental stone industry, where different
types of stone can be extracted and used, applying a simple
filtering method with static thresholds would result in poor
classification performances. For instance, with marble slabs,
the color and texture are typically light and homogeneous
throughout its usable area, while for slate, although smooth, its
texture does not follow a pattern, and its color is usually very
dark. Granite, on the other hand, has a pattern of minerals
along its surface, being highly variable in color and pattern

(typically heterogeneous). Also, even considering the same
type of stone, there may be found clear differences, according
to the quarry. This difference in color and uniformity levels
means that a given threshold defined as the best for one
specific type of stone is not directly applicable to another.
Thus, filtering methods alone are not suitable, and normally
structural techniques are considered. By combining different
algorithms, the defective regions can be distinguished from the
stone’s natural surface.

Given this, for the proposed classifier, the first step is
to differentiate the basic pattern of each stone’s ROI from
possible defects. This step is important, as several images
have innate patterns, not derived from anomalies, which could
be wrongly perceived as a defect since they deviate from the
normal pattern of the stone. For this a thresholding technique
is applied to the image of the stone previously transformed
into grayscale, using an adaptation of the Otsu method, called
the valley-emphasis method [18]. In this method, the optimal
threshold value is selected automatically using the images’
gray-level histogram by applying the methods described in
[18]. Therefore, the threshold is adapted according to the
anomalies’ characteristics to be isolated from each image.

After thresholding, the Sobel filter was used, followed by an
oriented non-maximal suppression for edge detection. This is
important to detect boundaries between the base pattern of the
stone and anomalies. Then, morphological filters are applied
to better identify and quantify the presence of defects on the
stone surface. Each defect is identified, and its entity quantified
in defect area and perimeter and the ratio of the surface area
of the defect in respect to the ROI. This quantification allows
checking if the detected anomaly complies with the established
criteria mentioned before in Section III. If one or more defects
detected pass these criteria, then the stone slab is classified
as NOK (i.e., defective). In Fig. 4, some results from this
classifier are presented. All these algorithms that comprise the
adaptive filtering-based classifier are implemented in Python
and OpenCV functions.

2) CNN-based classifier: As several images of stone slabs
are available, a Deep Learning model is created and trained
in order to classify the images as defective NOK or non-
defective OK. For this, a CNN architecture is used since it
is one of the best techniques for feature representation. It is
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Fig. 4. Extracted ROIs of original stone images fed to the classifier (top), and corresponding classification and detection result (bottom).

easier to train than other ANN models, as they have many
fewer parameters than fully connected networks with the same
number of hidden units. To choose the final model, several
different classifiers were considered with distinct combinations
of architecture blocks and hyperparameters, randomly picked.
The search space for the model was composed by four
different encoders: DenseNet121, DenseNet201 [19], Incep-
tionv3 [20], resnet101v2 [21]. Combinations include average
or max pooling, between 1 and 4 dense layers with a number
of units in a Range(Start=128, End=2048, step=128). Finally,
four different dropout values were tested: 0, 0.1, 0.2 or 0.3.

Given the search space defined above, each generated model
with a combination of different parameters was trained three
times in a dataset with a wide variety of defective and non-
defective ornamental stones (more details on this dataset in
Section IV). The data was divided into 70% of the images for
training, 20% for validation, and the remainder used as test.
The validation loss (categorial cross-entropy) was obtained
from the average loss between the three runs and was used as
the main metric for the model selection. The model selection
was performed inside the training procedure and is divided
into two stages: stage i that entails model elimination, where
the models that performed badly were excluded; and stage ii,
where the models resulted from the first stage are compared
in performances on the test dataset.

For stage i of the model selection, the ten best models with
the lowest average validation loss over the three trains were
chosen for the final selection stage. Then, in stage ii of selec-
tion, those top ten models were evaluated regarding their F1-
scores in the test dataset, where the final model selected had
the highest score. The final model architecture achieved based
on this model selection process had the following parameters:
Densetnet121 as encoder, an average pooling method, and one
dense layer with 1024 units and 0.1 of dropout. An Adam
optimizer was used, and a learning rate of 0.0001 was selected.
This final CNN was implemented in Python, using the Deep
Learning framework Keras with Tensorflow backend.

3) Weighted Voting Scheme: A weighted voting ensemble
is used as final decision-making for this system. Each model
makes a prediction (votes) for each test instance, and the
final output prediction is the one that receives more than
half of the votes. In this case, only happening when both
classifiers agree on the predicted result, which translates into a

typical Majority voting algorithm. When the classifier models
disagree, we increase the importance of one model above the
other according to its performance.

This results in an approach where each model has a
different significance, unlike majority voting. In this voting
scheme, weights are determined according to the classification
performances for each type of stone, defined by its initial
characteristics, namely its heterogeneity or homogeneity. This
criterion for weight setting is defined after the analysis of each
classifier’s performance, where it is clear that the stone sur-
face’s uniformity or lack of is the characteristic with the most
impact. The scheme associates each trained classifier with a
distinct weight according to its classification performance in
the validation set for each type of stone. The final result for
each input is done based on the highest weighted votes. If
it is established that any classifier can make more confident
predictions for a specific type of stone than the other, it is
advisable to increase their weight to obtain more successful
results.

IV. SYSTEM VALIDATION

In Portugal, the main mining district of ornamental lime-
stones is the Maciço Calcário Estremenho (MCE). Limestones
are fine to coarse-grained calciclastic sparitic rocks (rudstones
and grainstones), i.e., formed by grains cemented by small
amounts of translucid calcite [22]. There are several types
of limestones, but the ones considered in this work are the
Cadoico Azul Mónica Silva (CADOICO), Salgueira Branco
do Mar (SBM) and Salgueira Branco Real (SBR).

In this sense, we have access to a dataset of limestone
slabs’ images collected right after a polishing process. The
limestone slabs are first fed into polishing equipment in order
to eliminate the marks resulting from the abrasive cutting
processes. Fig. 5 represents a polishing equipment, namely
the StonePOLISH model, produced by CEI [23]. These slabs
may have different dimensions, with a maximum of 3.5 meters
in length and 2.5 in height. After this process, the plate is
digitized by a scanner that reproduces the image as the plate
moves on the carpet, saving the images on the polisher’s own
computer. These images are captured in an RGB color scheme
and saved in .jpg format, and occupy between 1MB to 3MB
of disk space; most have a size of 2800 by 1500. Also, all
images are collected in one dataset (CADOICO, SBM, and
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SBR), in a total of 954 copies. In this case, the classification
of limestone categories is done manually, but there are efforts
to automate this process [24]. From 954 images, 707 were
labeled as normal and 247 as defective.

Fig. 5. Example of a polishing equipment.

Data augmentation was performed by applying rotations to
the original images with 90º, 180º, and 270º, resulting in a
total of 3816 images. This step was implemented to improve
the CNN-based classifier performance, as data augmentation
is widely recommended for image classification [25]. This
augmented dataset was then split into train, validation, and
test sets, with the same percentages mentioned before in
Section III-B2. This division was needed for the CNN-based
model, as only this classifier needs training and validation. For
this training, an image input size of 400 was defined due to
computational resources’ limitations.

The proposed ensemble method was evaluated on the test
set of the augmented limestone dataset mentioned before
over standard performance metrics. From the three types
of limestone mentioned, two levels of surface uniformity
(calculated as detailed in Section III-A) were found: high
homogeneity/uniformity for SBM and SBR (uniformity val-
ues bellow 9) and low uniformity/ high heterogeneity for
CADOICO (uniformity values above 10). As the model’s
performance is highly impacted by this uniformity level, the
performance metrics were retrieved for three variations of
the dataset: (a) augmented homogeneous dataset (SBM and
SBR augmented data); (b) augmented heterogeneous dataset
(CADOICO augmented data); and (c) the complete augmented
dataset (CADOICO, SBM, and SBR).

Also, to measure the performance improvement, the pro-
posed model was compared with the isolated classifiers. A
common metric like accuracy is suitable to assess the per-
formance in defect detection but does not allows assessing if
the classifier is good to distinct instances of OK and NOK.
The ROC curve can be used for this, as it is a popular
method for performance evaluation, plotting a graph with true
positive rates over false positive rates. This way is possible to
describe in a unique metric the trade-off between accurately
classified positives and incorrectly classified negatives. The
Area under the ROC curve (AUC) has been suggested as a
robust classification performance metric, independent of the
imbalance rate of the dataset, and can be used to compare
performance between models completeness.

Given this, for validation of the classifier and comparison
purposes, we have used AUC as the main evaluation metric.

TABLE I
AUC ON THE DIFFERENT AUGMENTED DATASETS WITH ADAPTIVE

FILTERING, CNN-BASED, AND HYBRID WEIGHTED ENSEMBLE
CLASSIFIER.

Datasets (a) Homogeneous (b) Heterogeneous (c) Complete

AUC AUC AUC

Adaptive
Filtering-based 96.91% 84.84% 88.42%

CNN-based 93.3% 93.2% 95.8%

Hybrid Weighted
Ensemble 96.96% 93.2% 96.04%

Table I shows the comparison of experimental results between
each classifier alone (Adaptive filtering-based classifier and
CNN-based classifier) and the proposed hybrid weighted en-
semble method.

The AUC for an ideal and inaccurate model has values
of 1 and 0.5, respectively. Given this, the average scores
show that all the models perform accurately as well as exact
and completeness. By comparing the AUC in the different
variations of the dataset, it is clear that the adaptive filtering
classifier works much better for homogeneous stones than for
heterogeneous. This is mainly due to the classifier’s difficulty
with differentiating non-uniform patterns from defects, leading
to false positives. Regarding the CNN-based model, although
the AUC is worse than the filtering approach for the homo-
geneous stones, it is far more stable throughout all datasets,
with less than 1% in AUC difference. When compared to the
single models, the proposed ensemble model maintains the
best performance from the isolated models, except in the total
dataset where the AUC is increased.

The ensemble method’s AUC in the homogeneous test
stones outperforms the filtering model performance by a very
small margin, indicating that the CNN-based model likely
provided small betterment in classification when compared
to the classification provided by the filtering approach alone.
Conversely, in the heterogeneous dataset, the adaptive filtering
model is not able to compensate for any CNN model’s short-
comings, so the ensemble achieves the best possible result,
the CNN’s AUC. The ensemble model only shows significant
improvements in the complete dataset. This is also where the
applicability of this approach is more important. This increase
in performance is derived from the compensation of the weak
points of each isolated model.

As the weights given to each model’s prediction derive
from the stone’s uniformity retrieved in pre-processing, more
significance is given to the CNN in case of a low uniformity
level and more to the filtering approach in case of a high
uniformity value. This ensemble method also has the advan-
tage of not utilizing extremely complex models that usually
need more time in training and multiple parameter tuning,
allowing for a lighter and simpler approach that achieves
good performance while combining methods from different
natures. By combining a supervised method with an adaptive
filtering approach, the system is also more capable of correctly
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inspecting new types of stones or defects that may appear in
the future when compared to a typical supervised approach.

V. CONCLUSIONS AND FUTURE WORK

Considering the ornamental stone industrial sector, the au-
tomated detection of process-induced defects in stone slabs
during the polishing phase is a common and important prob-
lem. Currently, most of the polishing quality inspection is
performed manually by human experts. This inspection is
very subjective since it is based on aesthetic properties. We
propose an automated monitoring system based on machine
vision to assist human operators with the quality of a polishing
process. This monitoring system relies on a weighted hybrid
ensemble classifier, which classifies polished ornamental stone
slabs as NOK or NOK. Tests were performed to classify the
polishing quality in limestone slabs by using a dataset of
images collected after a polishing process. By inspection of
results, it is possible to conclude that the proposed approach
outperforms isolated classifiers in the same conditions.

However, there are some limitations in this study. For
starters, the proposed solution may not be considered a truly
online monitoring system since tests were performed in a
dataset of images, where ideally, they should be performed
using images collected in real-time during the polishing pro-
cess of stone slabs. Secondly, the dataset considered is limited
to limestone slabs from a specific Portuguese region, which
reduces the flexibility of an automated monitoring approach.
Thirdly, the proposed approach considers only the classifi-
cation of the stone slabs. It is out of scope the automated
classification feedback for self-correction of the polishing
process. Finally, the stone slab classification in this study does
not consider some important parameters used manually for
quality inspection, such as the final destination of the stone
manufactured good and the requirements from a specific client
in that product.

As future work, we will deploy and validate the solution
in real polishing equipment for real-time monitoring. Also,
considering all the possible aesthetic requirements related to
the stone manufactured good, we are considering an active
or reinforcement learning approach to be considered in the
ensemble approach.

ACKNOWLEDGMENT

This research was supported by the project PRODUTECH-
SIF - Solutions for the Industry of the Future, financed by
the Portuguese National program COMPETE 2020 and by
Portuguese funds through FCT – Fundação para a Ciência e
a Tecnologia (UID/EMS/00712/2013).

REFERENCES

[1] A. da Silva and I. Almeida, “Towards industry 4.0— a case study in
ornamental stone sector,” Resources Policy, vol. 67, p. 101672, 2020.

[2] G. Bonifazi and S. Marinelli, “Ornamental stone finished product aes-
thetic inspection and characterization through a digital spectrophotomet-
ric approach,” in Machine Vision Applications in Industrial Inspection
XI, vol. 5011. International Society for Optics and Photonics, 2003,
pp. 243–250.

[3] J. G. Mathielo and T. M. Bolonini, “Diagnóstico do processo de
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[13] J. Martı́nez, M. López, J. M. Matı́as, and J. Taboada, “Classifying slate
tile quality using automated learning techniques,” Mathematical and
Computer Modelling, vol. 57, no. 7-8, pp. 1716–1721, 2013.

[14] C. Iglesias, J. Martı́nez, and J. Taboada, “Automated vision system for
quality inspection of slate slabs,” Computers in Industry, vol. 99, pp.
119–129, 2018.
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[24] M. Tereso, L. Rato, and T. Gonçalves, “Automatic classification of
ornamental stones using machine learning techniques a study applied
to limestone,” in 2020 15th Iberian Conference on Information Systems
and Technologies (CISTI). IEEE, 2020, pp. 1–6.

[25] A. Mikołajczyk and M. Grochowski, “Data augmentation for improving
deep learning in image classification problem,” in 2018 international
interdisciplinary PhD workshop (IIPhDW). IEEE, 2018, pp. 117–122.

49Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-882-2

INTELLI 2021 : The Tenth International Conference on Intelligent Systems and Applications


