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Abstract— Human emotion prediction is an important aspect of 
conversational interactions in social robotics.  Conversational 
interactions involve a combination of dialogs, facial expression, 
speech modulation, pose analysis, head gestures, and hand 
gestures in varying lighting conditions and noisy environment 
involving multi-party interaction.  Head motions during 
conversational gestures, multi-agent conversations and varying 
lighting conditions cause occlusion of the facial feature-points.  
Popular Convolution Neural Network (CNN) based predictions 
of facial expressions degrade significantly due to occluded 
feature-points during extreme head-movements during  
conversational gestures and multi-agent interaction in real-
world scenarios.  In this research, facial symmetry is exploited 
to reduce the loss of discriminatory feature-point information 
during conversational head rotations.  CNN-based model is 
augmented with a new rotation invariant symmetry-based 
geometric modeling.  The proposed geometric model 
corresponds to Facial Action Units (FAU) for facial expressions.  
Experimental data show hybrid model comprising a CNN-based 
model and the proposed geometric model outperforms the CNN-
based model by 8%-20%, depending upon the type of facial-
expression, beyond partial head rotations. 

Keywords-Artificial Intelligence; conversation; emotion analysis; 
facial expression analysis; facial occlusion; facial symmetry; head 
movement; multimedia. 

I.  INTRODUCTION 
Due to an aging population in the developed world and 

limited workforce [1], there is a growing need of social 
robotics for elderly care and healthcare [2].  To show empathy, 
interact, and converse with humans, social robots need to 
understand human emotions and pain [3], [4] in the wild i.e. 
emotions are derived from the living systems in real-time 
scenarios, such as attending elderly patients or helping a 
frustrated elderly person in a home setting [5], [6]. 

Predicting emotions in the wild is complex and requires 
multimodal multimedia analysis involving dialogs [7], voice-
modulation (including timed silence) [8], gestures (including 
postures, gaze, conversational head and hand gestures, and 
haptic gestures) [9], facial expressions [10]-[13], pain, and 
tears.  Many desirable human-robot interactions, such as 
conversational gestures, including human warmth and 
affection, frustration, irritation, encouragement, impatience 
and pain shown by a combination of voice-modulation, 

speech-phrases, gestures, facial expressions are yet to be 
achieved.  Compared to emotions exhibited in dialogs, 
utterances and gestures, facial expressions are exhibited more 
involuntarily [4], [10]. 

Multimedia analysis of facial expressions requires a 
sequence of video frames, dimension reduction, intelligent 
image analysis, and analysis of the intensity of facial 
expressions.  In cognitive psychology, two approaches are 
used to study facial  expressions: basic six emotions (anger, 
disgust, fear, happiness, sadness, and  surprise) popularized by 
Ekman and others [14]; Valence-based Plutchik’s wheel of 
emotion that relates positive and negative emotion classes in 
multiple intensity levels [15].  Computational analysis is 
currently limited to recognizing six basic emotions [4], [10], 
[11] due to tractability of the underlying problem and explicit 
correspondence of basic emotions to facial muscles modeled 
by facial action units [14]. 

Previous studies are mostly limited to the frontal facial 
view [11] or static aligned poses [16] using curated databases 
[17]-[20] showing nonoccluded pure facial expressions in 
proper lighting conditions.  In recent years, many researchers 
have suggested techniques to handle information loss caused 
by partial occlusion due to external face-obstructing objects, 
such as eye-glasses, hats, scarfs, and medical masks; hand 
gestures; hair and mustaches; ambient lighting conditions 
[21]-[29].  These schemes are based on reconstruction of 
small patches of a partially occluded face using nonoccluded 
(or global) facial texture.  None of these techniques are suited 
for extreme loss of discriminatory feature-points during 
extreme head-rotations in argumentation, denial or multi-
party interactions where a significant part of face is occluded 
for a longer period. 

In real-life scenarios, the face continuously moves during 
a conversation [9], [30], [31] based upon 1) conversational 
gestures, such as argumentation, interrogation and denial [9]; 
2) intensity of emotion [15]; 3) multi-party interactions; 
changing ambient lighting conditions and shadows with head-
movements during conversational gestures.  Head rotations 
stochastically occlude feature-points causing information loss 
hindering accurate facial-expression classification. 

Experiments with CNN-based model [13], as described in 
section 5, show that facial expression prediction drops by 10-

36Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-882-2

INTELLI 2021 : The Tenth International Conference on Intelligent Systems and Applications



20% for partial occlusion (less than 45° rotation) and by 30-
50% beyond 45° rotation. 

Recent augmentation of CNN-based modeling with Long 
Short Term Memory (LSTM) and transfer learning improves 
temporal context and maps real-time movement to the nearest 
alignment of static CNN model to improve the prediction [31] 
during head-movement.  However, they do not handle 
extreme information loss beyond partial occlusion and do not 
exploit facial symmetry. 

CNN-based models need to be augmented with temporal 
contexts and restore occluded discriminatory feature-points 
for beyond the partial occlusion in conversational head-
gestures, such as emotional disagreement, interrogation, 
argumentation or denial; multi-party interaction that involves 
significant occlusion of one part of the face.  Luckily, even 
during extreme head-rotation, only one side of the face is 
occluded, and facial symmetry can be used to reconstruct the 
occluded discriminatory feature-points knowing the 
coordinates of their counterparts on the nonoccluded side. 

This research improves facial-expression analysis for face 
under motion by utilizing facial symmetry [32] along the 
vertical major axis.  Facial symmetry has been used to 
estimate the coordinates of missing discriminatory feature-
points using their nonoccluded counterparts [33], [34].  
Prediction is based upon 1) inherent symmetry of the face 
around the vertical axis of the face; 2) noted differences 
between the symmetrical points and the actual geometric 
feature-points from the previous frames. 

The proposed hybrid model augments the CNN-based 
model [13] with a symmetry-based geometric model proposed 
in this paper.  The hybrid model uses CNN-based prediction 
for the nonoccluded or partially occluded space and the 
symmetry-based geometric model beyond partially occluded 
space.  The proposed geometric model provides motion 
continuity and temporal context to the CNN model for 
selecting the nearest static alignment. 

The major contributions in this research are: 
1. Development of a symmetry-based geometric model 

corresponding to Facial Action Units (FAUs) to 
recover discriminative feature-points during 
conversational head-rotations in real-time scenarios; 

2. Augmentation of the CNN-based model with the 
proposed symmetry-based geometric model to 
improve the temporal context and the facial 
expression prediction beyond the partial occlusion. 

The overall roadmap of this paper is: Section 2 describes 
the related work.  Section 3 describes background concepts 
about facial features.  Section 4 describes the proposed 
symmetry-based geometric model.  Section 5 describes the 
implementation and experimental results.  Section 6 
concludes the paper. 

II. RELATED WORK 
Related work can be classified as: 1) handling occlusion 

for improper lighting conditions, hand-gestures and external 
objects [24]-[32]; 2) analyzing emotions in the wild [6]; 3) a 

combination of CNN, LSTM and transfer learning to map 
continuous motion to the corresponding CNN [31]. 
 To handle the occlusion caused by external objects, 
researchers have used fixed pose alignments [16], hybrid 
models training on occluded and nonoccluded samples and 
using nonoccluded features-space as a guidance to predict 
texture of occluded patches [24], combination of sparse 
representation and maximum likelihood estimation [25], a 
combination of Gabor filter and local binary pattern to derive 
the texture of occluded patch [26], deep structure recognition 
[27], a combination of feature histogram, dimension 
reduction and support vector machine [28], Gabor filter and 
co-occurrence matrices [29], combination of global and local 
textures with CNN and attention [30], use of LSTM auto-
encoders [31], and Bayesian networks [32]. 
 The above schemes combine information from previous 
images or texture-pattern from nonoccluded space, and 
dynamic weighting of texture-patterns to reconstruct 
occluded patches using well curated datasets [17]-[20].  
These schemes do not analyze occluded facial expressions in 
the wild during conversational head-motion. 
 Zong et al. use a combination of transduction transfer 
learning and linear discriminant analysis to map the trained 
data using curated dataset to the data in the wild [13].  
However, the scheme does not: 1) handle conversational head 
movements and the resulting occlusion; 2) does not use 
symmetry to recover occluded feature-points. 
 T-H. S. Li et al. integrate CNN with LSTM to provide 
the temporal context [23] required for analyzing facial 
expression during head rotation.  They use transfer learning 
to map a position to the corresponding static alignment of 
CNN for improved accuracy.  The scheme is limited by the 
number of fixed domains for transfer learning and does not 
exploit symmetry.  Besides, LSTM cannot estimate the 
coordinates of the occluded feature-points explicitly. 
 Compared to other schemes, the proposed geometric 
model significantly exploits facial symmetry [33] - [35] to 
recover occluded feature-points during extreme head 
rotations.  The correspondence of the line-segments joining 
discriminatory feature-points to Facial Action Units (FAUs) 
relates the proposed hybrid model with Facial Action Coding 
System (FACS) based analysis and CNN-based analysis.  In 
addition, the changes in line-segment ratios with head-
movements provide temporal context even under extreme 
head-rotations.  In our scheme, the availability of 
discriminative feature-points supports multimodal analysis of 
head-gestures and provides explanation capability. 

III. BACKGROUND 
A face has two types of feature-points: fixed points and 

active points.  Fixed points act as a reference, and active-
points move during facial-expressions, altering x and z-
coordinates of feature-points [10].  Figure 1 illustrates various 
feature points. 

A face has six major fixed points: two ends of the left and 
right eyes; bottom of a nose; middle point between two eye-
brows above the nose-tip.  There are 14 major active points: 
1) three points on each brow; 2) two middle points of lips; 3) 
two endpoints of the mouth; 4) two middle points in each eye. 
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Figure 1. Facial feature points with symmetry 

Feature-points’ denotations use ‘e’ for eye; ‘br’ for brow; 
‘m’ for mouth.  A superscript denotation uses ‘L’ for left-side; 
‘R’ for right-side; ‘T’ for top; ‘B’ for the bottom.  A subscript 
enumerates feature-points for the same organ. 

A. Notations 
Line-segments are denoted by two end feature-points or 

their intuitive description.  For example, eye-width is denoted 
as EW or L L

1 4
e e .  Lip-width is denoted by LW or mTmB.  Given 

a line-segment LS, magnitudes of the x-axis, y-axis and z-axis 
component are denoted respectively by |LS|X, |LS|Y, and |LS|Z. 
In this paper, parameterization is illustrated using left-side of 
a face.  The technique applies also to the right-side of the face. 

B. Facial Symmetry 
Facial features have an anatomical symmetry at the muscle 

level around the vertical axis.  This symmetry causes similar 
changes on both sides of a face for most facial-expressions. 

C. Occlusion and Head Movement 
In a real-world situation, the head rotations are observed 

every 5 - 7 degrees [35].  In our experiment, internal states 
change every 15° to reduce computational overhead.  This 
choice slightly degrades (by 1-3%) the prediction accuracy for 
a tradeoff of reducing computational overhead.  The angle of 
rotation maps to one of the internal states based upon an 
identifiable resolution in the feature-points.  Distances 
between the symmetry-axis and the feature-points on the 
nonoccluded side are used to estimate the coordinates of 
occluded feature-points using facial-symmetry. 

In our statistical reporting of data, five occlusion states are 
used: 1) frontal face with no occlusion (|θ| < ϵ); 2) partial left-
side or right-side occlusion (ϵ < rotation < 45°); 3) full left-
side or right-side occlusion (> 45°).  Internal states map to one 
of the five states based upon interval inclusion. 

IV. PROPOSED GEOMETRIC MODEL 
Facial expression analysis requires: 1) removal of the 

distortions caused by camera zooming; 2) removal of the 
distortions in the line-segments caused by head-rotations, and 
3) correspondences of parameters to the changes in FAUs. 

The identification of parameters invariant to head-
rotations requires the use of fixed feature-points that act as a 
reference to measure the changes in orientation and lengths of 
the line-segments with varying facial expressions. 

The motions of active-points that contribute to the facial 
expressions are: 1) vertical and horizontal motion of t

2 2
L L L
1b , b , b  on an eyebrow; 2) vertical motions of { 2 3

L Le , e } 
in the center of an eyelid, 3) vertical and horizontal motions 
of mL  (lip-endpoints), and 4) vertical motions of mT, mB  and 

{ 1 2
L Lm , m } (lip-midpoints).  Figure 2 shows left side of the 

face with the required feature-points and line-segments used 
in  the facial expression classification. 

The line-segments for the facial expression analysis are: 

2 3 3
L L L L L
1 1

B B Bn b , n b , n b , b b , EH ( 2 3
L Le e : eye-height), LH 

(mTmB : lip-height), LW ( 1
L Lm m : lip width), EL ( L L

cm e : lip 
segment to the eye ( L

ce  is the left center of eye given by 
2 3

2

l le e+  ).  The line-segments 2 3 3
L L L L L
1 1

B B Bn b , n b , n b , b b

and EL have x-magnitudes and z-magnitudes. 
The line-segments LH and EH have z-magnitudes; the 

line-segment LW has x-magnitude.  With no rotation and 
zooming, changes in the x-magnitudes and z-magnitudes of 
these line-segments correspond to different facial expressions.  
In an actual scenario, these line-segments vary with head-
rotations and image scaling due to the camera-zooming.  
These line-segments are mapped to parameters invariant to 
head-rotations and camera zooming, such that the resulting 
parameters vary with facial expressions only.  Four line-
segments, joining fixed-points, nBnT, 1 4

L Le e , 1
T Ln e , and 4

T Ln e
have been used to derive parameters invariant with respect to 
head rotation.  The effect of zooming is removed by dividing 
the z-magnitudes by the magnitude of the line-segment nBnT. 

To minimize the effect of variation of x-coordinates 
during a head-rotation, the most aligned fixed segments are 
chosen that are affected similarly by the head-rotation 
compared to line-segments involving active points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Facial feature-vectors 
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A division of line-segments by the x-magnitude of the 
line-segments involving the nearest fixed-points parallel to the 
same axis minimizes the effect of rotation and preserves the 
changes due to facial expressions. 

The division by the segment 1 4
L Le e provides invariance for 

the eye-brow area.  The division by x-magnitude | 1
T Ln e |X 

cancels the effect of head-rotation on the magnitude | L
1

Bn b |X.  
The division by the x-magnitude | 4

T Ln e |X cancels the effect of 
the head-rotation on the magnitude |LW |x. 

A. Frontal Pose Estimation 
 The fixed feature-points nose-bottom nB, left inner-eye 

1
Le and right inner-eye 1eR  are used to establish frontal pose 

(see Figure 2).  The ratio | 1
T Ln e | / | 1

T Rn e | = 1 for the frontal-
pose, only altering during head-rotation.  The overall estimate 
for the frontal pose is given by (1) where ϵ is an 
experimentally derived value slightly greater than zero to 
take care of involuntary and random head-movements. 

1 – ϵ ≤ | nB 𝑒𝑒1
𝐿𝐿| / | nB 𝑒𝑒1

𝑅𝑅| ≤ 1 + ϵ (1) 

Estimation of rotation angles is based on missing 
landmarks on the rotated side of the face.  The landmarks nt 

and nb become invisible in the complete occlusion and are 
visible between partial and complete occlusion.  For rotation 
to the left or right, the ratio changes beyond 1 ∓ ϵ. 

Variations in the line-segment LH reflect tightening or 
opening of lips and mouth, and jaw-drop.  It is associated with 
FAU 8 (lips towards each-other), FAU 10 (upper lip-raiser), 
FAU 16 (lower lip-depressor), FAU 17 (chin-raiser), FAU 23 
(lip-tightener), FAU 26 (jaw-drop) and FAU 27 (mouth-
stretcher).  Variations in the line-segment LW reflect 
compression and stretching of a mouth.  It corresponds to 
FAUs 6, 12, 14, 20, 23 and 27.  These FAUs are involved in 
happiness (lip-corner and cheek-stretching obliquely up), and 
sadness (lip-corner stretching oblique downwards).  
Variations in the z-component |EL|Z (eye-to-lip vertical 
component) measure compression and stretching of cheek 
muscles.  The decrease in |EL|Z corresponds to FAU 6 (cheek-
raiser) associated with happiness.  The increase in |EL|Z 
corresponds to FAU 15 (lip-corner depression) associated 
with negative emotions fear, disgust and sadness.  The change 
in the magnitude of the line-segments EW (eye-width) and 
EH (eye-height) correspond to FAU 7 associated with anger.  
The magnitude |EH| increases during anger due to the raising 
of the upper eyelid and middle eye-brow point.  Variations in 
eye-brow length | 1

Lb 3
Lb | (brow compression and stretching) 

correspond to FAU 1  (inner brow raiser), FAU 2 (upper brow 
raiser) or 4 (brow lowerer).  However, only the x-component 
| 1

Lb 3
Lb |x is used because vertical variations in eye-brow are 

processed by |nB
1
Lb |z, |nB

2
Lb |z and | nB

3
Lb | z.  The increase in |

1
Lb 3

Lb  |x corresponds to FAU 4 (brow-lowerer) associated 
with negative emotions: fear, disgust, anger, and sadness.  
The z-component |nB

1
Lb  |z corresponds to inner-eyebrow 

raising or lowering.  The increase in magnitude |nB
1
Lb  |z 

corresponds to FAU 1 associated with surprise.  The decrease 
in |nB (1 3)

L
i ib ≤ ≤ |z corresponds to FAUs 4 and 9 associated with 

negative emotions: fear, disgust, sadness, and anger.  The 
increase in the magnitude |nB 3

Lb  |z corresponds to FAU 2 
associated with fear.  Overall, these line-segments cover 
FAUs 1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 20, 23, 26 
and 27 involved in six basic facial expressions.  The overall 
correspondence is summarized in Table I. 

TABLE I.  LINE-SEGMENTS 

B. Normalized Ratios 
In the beginning, the frontal pose is recorded to derive the 

original coordinates of feature-points and the original length 
and orientation of line-segments.  The zooming distortion and 
head-rotation distortions in the x-direction are removed from 
the feature-points and the corresponding line-segments. 

Vertical segments |nB 1
Lb |z ,|nB 2

Lb  |z |nB 3
Lb |z, EH and |EL|Z 

are divided by |nBnT| to derive the corresponding normalized 
ratios.  Horizontal line-segment |LW|X and | 1

Lb 3
Lb  |X are 

divided by |nT 1
Le  | and EW, respectively.  The normalized 

ratios are summarized in Table II. 

TABLE II.  LINE-SEGMENTS AND FAU CORRESPONDENCE 

C. FAU Correspondence 
Table III describes conditions by combining the 

normalized ratios across the same or different video-frames 

Line-ratio Norm. ratio Description 

RLH |LH | / |nBnT| lip height ratio 
RLW |LW |X / |EW| lip-width ratio 
REL |EL|Z / |nBnT| eye-to-lip ratio 
RBW | 1

Lb 3
Lb |X / EW brow-width ratio 

RIBH | nB
1
Lb |Z / |nBnT| inner brow-height ratio 

RMBH | nB
2
Lb |Z / |nBnT| mid-brow height ratio 

ROBH | nB
3
Lb |Z / |nBnT| outer-brow height ratio 

REH |EH| / |nBnT| eye-height ratio 

Line-seg. FAUs Basic emotions 
LH 8, 10, 16, 17, 

23, 26, 27 
anger, disgust, fear, sadness, surprise 

LW 6, 12, 15, 16, 
20, 23 

happiness and sadness 

EL 6, 15 disgust, fear, happiness, sadness 
EH 5, 7 anger 

| 1
Lb 3

Lb |x 
4 anger, disgust, fear, sadness 

|nB
1
Lb |z 

1, 4, 9 anger, disgust, fear, sadness, surprise 

|nB
2
Lb |z 

4, 5 fear and surprise 

|nB
3
Lb |z 2 fear 

nBnT Used for vertical normalizations 
EW, |nTnB|

L  
Invariant with head-rotation 
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that are sampled periodically because facial expressions alter 
after few seconds.  All the FAUs involved in basic facial 
expressions are derived using these conditions. 

TABLE III.  FAUS AND NORMALIZED RATIO CONDITIONS 

 
The increase in the ratio RLH corresponds to FAU 10 

(upper lip raiser), FAU 26 (jaw-drop), and FAU 27 (mouth-
stretch).  The decrease in the ratio RLH corresponds to FAU 8 
(lips towards each other), FAU  16 (lower lip-depressor), 
FAU 17 (chin-raiser), and FAU 23 (lip-tightener). 

The increase in the ratio RLW corresponds to FAU 6 
(cheek-raiser), FAU 12 (lip-corner puller), FAU 15 (lip-
corner depressor), FAU 16 (lower lip-depressor), and FAU 20 
(lip-stretcher).  The decrease in the ratio RLW corresponds to 
FAU 23 (lip-tightener).  The increase in the ratio REL 
corresponds to FAU  15 (lip-corner depressor); the decrease 
in the ratio REL corresponds to FAU 6 (cheek-raiser). 

The increase in the ratio REH corresponds to FAU 5 (upper 
lid raiser); the decrease in the ratio REH corresponds to the 
FAU 7 (lid tightener) or FAU 41 (lip-stoop).  The increase in 
the ratio RBW corresponds to FAU 4 (brow-lowerer).  The 
increase in the ratio RIBR corresponds to FAU 1 (inner eye-
brow raiser); the decrease in the ratio RIBR corresponds to 
FAU 4 (brow-lowerer).  The increase in the ratio ROBR 
corresponds to FAU 2 (outer eye-brow raiser); the decrease 
in ROBR corresponds to FAU 4 (eye-brow lowerer). 

A simultaneous decrease in the ratio RLH and an increase 
in the ratio REL correspond to the activation of FAU 16 
(lower-lip depressor).  Simultaneous decreases in the ratios 
RLH and REL correspond to the activations of FAU 12 (lip-
corner puller) and FAU 6 (cheek-raiser).  Simultaneous 
increases in the ratios REL and REW correspond to FAU 15 (lip-
corner depression).  Simultaneous decreases in the ratios RIBR, 
RMBR and ROBR and, increase in the ratio RBW correspond to the 
activation of FAU 4 (eye-brow lowerer). 

V. IMPLEMENTATION AND EXPERIMENTATION 
RaFD database [20] was used for training and comparison 

of results between geometric modeling and CNN-based 

model.  For the online video capturing, three frames per 
second were used for the facial expression analysis.  Epochs 
of 200 frames were used because the experimental data show 
that the accuracy of the facial expression recognition 
stabilizes around 200 frames. 

A. CNN Architecture 
The implemented CNN-based model is a cascade of three 

hidden layers: conv-32, conv-64 and conv-128, followed by 
a Softmax layer.  Each conv-m layer contains m filters to 
extract different orientations.  The conv-128 layer provides a 
sub-classification of textures.  After each convolution layer, 
there is a max-pooling layer for the subsampling of images.  
Each max-pool layer has a 2 × 2 pixel window. 

After applying the Locality-Sensitive Hashing (LSH) [12] 
and Gabor filter [13], the processed images are passed to the 
network of convolution layers through the input layer.  LSH 
is a dimension reduction technique that maps the pixels with 
similar values in the same bucket.  Gabor filter preserves the 
texture directionality.  The hidden layers extract facial 
features and reduce the dimensions.  The fully connected 
layer combines the matrix-derived after the last hidden layer 
into one vector, and the Softmax layer extracts the output 
from the vector. 

Each cropped image is scaled to 56 × 56 pixels.  The data-
size after the conv-32 layer is 56 × 56 × 32 pixels, and the 
output of first max-pooling layer after the conv-32 layer is 28 
× 28 × 32 pixels.  The output of the second max-pooling layer 
is 28 × 28 × 64 pixels.  The output of the last hidden layer is 
14 ×14 ×128.  The output of the following max pooling layer 
is 7 × 7 × 128 pixels.  Extracted features are concatenated by 
adding a fully connected layer at the end. 

B. Database and Video Processing 
RaFD dataset was used for measuring the performance of 

the CNN-based model for various static alignments in 
different poses [20], [36].  Compared to other curated facial 
expression databases u [17]-[19], RaFD gives comprehensive 
facial-expressions for 67 models (for both genders) with 
multiple camera angles and adjustment of lighting conditions. 

CNN model was also executed in wild for the frontal pose 
and compared against the results of RaFD dataset to derive 
the comparative deterioration of the recall as defined in (2). 

Recall =  
    

true positive
true positive false negative+

 (2) 

The hybrid model was executed in the wild.  The results 
are summarized in Tables IV, V, and VI, respectively.  Tables 
IV and VI show the recall values of CNN-model with RaFD 
dataset and the proposed hybrid model in wild, respectively.  
Table V shows the confusion matrix for CNN model for 
frontal pose in the wild. 

C. Performance Evaluation and Discussion 
Table IV illustrates CNN based prediction, even for a 

cured RaFD database, deteriorates quickly due to the 
unavailability of discriminatory feature-points on the 

FAUs Condition (n = m + k and k > 0) 
#1 IBR IBR

n mR R<   

# 2 OBR OBR
n mR R>  

#4 IBR IBR
n mR R< ⋀ MBR MBR

n mR R<  ⋀ OBR OBR
n mR R<    

#5, 27 EH EH
n mR R>  

#6, 12 LH LH
n mR R< ⋀  EL EL

n mR R<  

#7, 41 EH EH
n mR R<  

#8 LH LH
n mR R<  

#10 LH LH

n m
R R>  

#15 EL EL
n mR R> ⋀ EW EW

n mR R>  

#16 LH LH
n mR R< ⋀ EL EL

n mR R>  

#17 EL EL
n mR R<  

#20 LW LW
n mR R<  

#23 LW LW
n mR R>  

#26 EL EL
n mR R>  
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occluded part of the face.  The deterioration varies from 48% 
for sadness to 41% for happiness for complete occlusion. 

TABLE IV.  RECALL IN CNN MODEL WITH RADB DATASET 

 Right 
complete 
occlusion 

Right 
part 
occl. 

Front 
no 
occl. 

Left 
part 
occl. 

Left 
complete 
occlusion 

sadness 49% 83% 97% 79% 48% 
disgust 54% 81% 98% 88% 63% 
anger 53% 81% 96% 87% 64% 
fear 51% 86% 95% 81% 55% 
surprise 57% 84% 98% 90% 53% 
happiness 59% 85% 99% 92% 62% 
neutral 54% 82% 95% 79% 51% 

TABLE V.  CONFUSION MATRIX - CNN  MODEL (FRONTAL POSE) IN WILD 

 sad. 
% 

disg. 
% 

ang. 
% 

fear 
% 

sur. 
% 

happ. 
% 

neu. 
 

sadness 74.5 0.1 8.0 12.3 0.9 0.7 3.5 
disgust 0.7 92.4 1.4 1.1 1.3 1.7 1.4 
anger 6.4 2.3 79.3 2.5 1.6 2.4 5.5 
fear 7.2 0.6 6.1 82.3 1.2 0.8 1.8 
surprise 1.8 0.7 2.6 5.2 86.9 1.7 1.1 
happines
s 

1.4 0.2 2.2 2.5 3.0 87.2 2.5 
neutral 10.2 0.2 4.2 5.7 2.2 3.7 73.8 

TABLE VI.  RECALL IN HYBRID MODEL IN WILD 

 Right 
complete 
occlusion 

Right 
part 
occl. 

Front 
no 

occl. 

Left 
part 
occl. 

Left 
complete 
occlusion 

sadness 57% 68% 75% 69% 59% 
disgust 70% 81% 92% 82% 70% 
anger 73% 75% 79% 77% 76% 
fear 66% 75% 82% 76% 67% 
surprise 71% 74% 87% 76% 75% 
happines
 

75% 79% 87% 81% 77% 
 
Comparison of Table IV and Table V illustrates that the 

accuracy of facial expression classification deteriorates in the 
wild even for the frontal pose: more for sadness (around 22%) 
and the least for disgust (around 6%).  Even neutral face is 
labeled as sad for 10% of the time in the wild.  The reasons 
for this deterioration are: 1) mixing of facial muscles and 
feature-points for negative facial expressions, sadness, fear 
and anger, in real-time expressions; 2) variations in the 
intensity level of the expressed facial expressions in real-
time; 3) continuous random head-motions during real-time 
facial-expressions causing noise; 4) uneven ambient lighting 
conditions with shadows obscuring feature-points; 5) 
randomly picking the video-frame may not correspond to the 
apex image corresponding to a facial-expression [30]. 

The facial expressions for the negative emotions: sadness, 
fear, and anger are often confused due to 1) the presence of 
common facial muscles; 2) the mixing of facial expressions 
in real-time; 3) improper temporal labeling during transition 
of a negative facial expression to another; 4) uncontrolled 
thought patterns affecting involuntary facial expressions in 

real-time.  Another problem is that CNN is trained using fixed 
alignments, and a head-movement is approximated to one of 
the fixed poses. 

Comparison of the occluded parts in Table IV and Table 
VI shows that the hybrid model outperforms CNN-based 
prediction even for the curated RaFD dataset for beyond the 
partial occlusion.  The improvement is 8% for sadness 
(minimum) to 21% for the happiness (maximum).  In a multi-
party interaction, where the change in the line-of-view may 
cause extreme occlusion, the hybrid model provides better 
accuracy and information. 

The current scheme can be further improved by 
smoothening the derived facial-expression sequence and 
predicting the next facial-expression using Dynamic 
Bayesian Network (DBN), the knowledge of average 
duration of facial-expressions during emotional conversation, 
and sampling more video-frames for near-apex facial 
expressions. 

VI.   CONCLUSION AND FUTURE WORK 
Head-motions during conversational gestures and multi-

agent interactions cause extreme occlusion of one side of 
facial features.  Automated feature-extracting and deep 
learning schemes are limited by the facial feature detections.  
Their performance degrades during extreme occlusion due to 
the nonavailability of discriminatory feature-points.  Facial 
symmetry reconstructs the occluded discriminatory feature 
points.  Combining CNN based schemes with the proposed 
geometric modeling  improves the performance in such a 
scenario by 8% – 21% beyond the partially occluded state. 

We are currently investigating the DBN on a sequence of 
facial-expressions to smoothen out the errors due to image 
frames missing the apex image for the corresponding facial 
expressions [30]. 
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