
A Model of Pulsation for Evolutive Formalizing Incomplete Intelligent Systems

Marta Franova, Yves Kodratoff
LRI, UMR8623 du CNRS & INRIA Saclay

 Bât. 660, Orsay, France
e-mail: mf@lri.fr, yvkod@gmail.com

Abstract— The notion of pulsation concerns a possibility of a

particular kind of intelligent controlled and secured evolution

in dynamic real-world systems. It is related to fundamentals in

intelligent systems and applications as well as to the topic of

intelligence by design. In this paper we present a model of

pulsation based on Ackermann’s function. This brings more

clarity to understanding Symbiotic Recursive Pulsative

Systems that are important, for instance, for designing and

implementing intelligent security systems or for automating

robots’ programming in incomplete domains and unknown

environments. One particular application for these systems is

our Constructive Matching Methodology for automating

program synthesis from formal specifications in incomplete

domains.

Keywords-pulsation; Symbiotic Recursive Pulsative Systems;

intelligent systems; intelligence by design; Ackermann's

function; control; security; progress; practical completeness.

I. INTRODUCTION

For more than three decades now, we worked on
automation of programs synthesis in incomplete domains via
inductive theorem proving [2] [8]. Our approach differs from
standard computer science approaches based on modularity
of developed parts. This standard is called Newtonian
Science in contrast to Cartesian Intuitionism [6] that provides
a basis for Symbiotic Recursive Pulsative Systems (SRPS)
roughly described in [6].

The notion of SRPS is very rich and complex. In our
latest work [4] [5], we are trying to progressively disentangle
this symbiotic complexity by presenting notions individually
(as much as possible for symbiotic parts of a whole). Such a
disentangling is important for perceiving the usefulness of
working on particular SRPS for real-world applications
where Newtonian Science has shown its limitations.

In this paper we focus on a model for the notion of
pulsation. Such a systemic approach influences the overall
perception, the guidelines for research and development and
elaboration of details of SRPS. We will show in this paper
that meta and fundamental levels in SPRS are symbiotic. In
other words, their separation leads to a non-sense or an
irrecoverable mutilation. This is important for understanding
our work on Constructive Matching Methodology (CMM)
for automating program synthesis from formal specifications
in incomplete domains via inductive theorem proving.

The paper is organized as follows. In Section II, we recall
the definition of symbiosis we work with and we present an
example illustrating symbiosis of information that is present
in recursive representations. In Section III, we present a way
to construct Ackermann's function and to replace, for given
two numbers a and b, its non-primitive recursive
computation by a computation via an on-purpose generated
sequence of primitive recursive functions that has to be used
for a and b. In Section IV, we show that prevention and
control can be modeled by Ackermann's function. Section V
shows that even pulsative systems can be modeled by
Ackermann's function. In Section VI, we speak about
pulsative development of our Constructive Matching
Methodology. Section VII presents an example of a
technological vision for which the work presented in this
paper is important.

II. SYMBIOSIS OF INFORMATION IN RECURSION

As specified in [6], by symbiosis we understand a
particular composition of two or several parts that make an
indivisible whole. In other words, a separation of one sole
part is a reason for extinction or for irrecoverable mutilation
of the all other parts as well as the whole.

Let us point out that we speak here of symbiotic
information and not of symbiotic computation.

Let us consider the following simple problem. On a
sufficiently big table consider a stack of blocs a, b, c, d and e
as shown in Figure 1.

e

d

c

b

a

Figure 1. The stack of blocks before the intended action is taken

We say that a bloc m is clear if there is no other bloc on

m. (In Figure 1, the bloc e is clear.) There can be at most one
bloc on the top of the other. If n is on the top of m we say
that n is top of m written as: n = top(m). Let us consider the
primitive recursive procedure “put on table” as being
hardware defined in the robot that will execute the following
informal primitive recursive program makeclear:

1Copyright (c) IARIA, 2017. ISBN: 978-1-61208-576-0

INTELLI 2017 : The Sixth International Conference on Intelligent Systems and Applications (includes InManEnt)

makeclear(x) =

 if x is clear then procedure ends

 else

 if top(x) is clear

 then put(top(x)) on table

 else first makeclear(top(x)) and

 then put(top(x)) on table

It can easily be checked that makeclear(b) results not
only in clearing bloc b but also in the situation where blocs c,
d and e are on the table. This means that the procedure
makeclear contains in its description not only its direct
effects (such as: the bloc b is cleared) but also the full
description of all the secondary effects of any action
performed. In Figure 2, these secondary effects are that the
blocks c, d and e are on the table.

edc

b

a

Figure 2. The stack of blocks after the action ‘makeclear’ is taken

For some other primitive recursive procedures the

secondary effects do not modify the environment, but this
should not be a barrier for general perception of primitive
recursive procedures to be seen as invisible procedural
‘seeds’ containing symbiotically related the effects (i.e., the
results of the computations) and the secondary effects (i.e.,
the consequences of the computation of a particular value).
Therefore, implementing recursive procedures is interesting
in all the environments where the control over the secondary
effects is important.

The above procedure makeclear is an example of
primitive recursion. A recursion that is not primitive goes
even further in representing symbiotically information that
concerns control, rigor and reproducibility. Ackermann’s
function is a suitable representative for explaining how non-
primitive recursion modelizes a particular kind of pulsation
in SRPS.

In the following sections, we shall give a formalized
presentation of the pulsation starting by a presentation of a
construction procedure that results in Ackermann’s function.
It will become clear how this construction and the notion of
pulsation are linked together. Then, we shall present a
practical application of this notion.

III. ACKERMANN’S FUNCTION

The idea to model pulsation by Ackermann’s function
comes from the understanding how this function can be
constructed. The practical use of this function becomes then
exploitable by a particular ‘simplifying’ the computation of
its values.

A. A Construction

Let ack be Ackermann’s function defined by its standard
definition, i.e.,

ack(0,n) = n+1

ack(m+1,0) = ack(m,1)

ack(m+1,n+1) = ack(m,ack(m+1,n)).

We shall show here how this function can be constructed.
By definition, each primitive recursive function f is a

composition of a finite number of primitive recursive
functions and of f itself.

Since ack is a non-primitive recursive function (see a
proof in [12]), by definition of non-primitive recursion, it is a
particular composition of an infinite sequence of primitive
recursive functions. We shall build a function ack’ as a
particular composition of an infinite sequence of primitive
recursive functions built so that the definitions for ack and
for ack’ (defined below) are identical.

Let us construct such an infinite sequence of primitive
recursive functions f0, f1, f2, …, fn, fn+1, …. respecting the
following relationships

f0(n) = n+1

fi+1(n+1) = fi(fi+1(n))

for each i from 0, 1, 2 …. We are thus able to define a
new function ack’ as follows:

ack’(0,n) = f0(n) and

ack’(m+1,n+1) = fm+1(n+1).

This definition is still incomplete since the value for
ack’(m+1,0) is not yet known.

Since we want ack’ to be a non-primitive recursive
function, we need to guarantee that it cannot be reduced to
any of fi. In order to do so, we shall simply perform a
progressive diagonalization on this infinite sequence of
functions by defining the value of fi+1(0) as being the value
of fi in 0+1, i.e.,

fi+1(0) = fi(1).

In other words, we define

ack’(m+1,0) = fm(1).

By this construction we see that fi+1 is more complex than
fi for each i. It is obvious that

ack’(m,n) = ack(m, n) = fm(n).

This construction is at the same time a guarantee that ack
is not primitive recursive, since it is indeed a composition of
an infinite sequence of primitive recursive functions each of

2Copyright (c) IARIA, 2017. ISBN: 978-1-61208-576-0

INTELLI 2017 : The Sixth International Conference on Intelligent Systems and Applications (includes InManEnt)

them more complex than those before it and ack cannot be
reduced to any one of them. As a by-product, we have thus
simplified also the standard presentation of the non-primitive
character of ack, which is usually done by a proof by a
projection of Ackermann’s function ack into a sequence of
primitive recursive functions am(n) = ack(m,n) and showing
that ack grows more rapidly than any of these primitive
recursive function (see [12]). The difference thus lies in our
use of an indirect construction (instead of a projection) and
relying on a particular diagonalization.

To our best knowledge, this construction with a use of
progressive diagonalization was not presented so far. Note
that the notion of pulsation that refers to this construction of
Ackermann’s function has no relation to measures of the
computation complexity of a function, such as Ritchie’s
hierarchy [11].

B. A ‘Simplification’ of the Computation

The above construction of the Ackermann’s function
shows immediately that the computation of its values for
given m and n using non-primitive recursive definition can
be ‘simplified’ - or, rather, replaced - by a definition of m
primitive recursive functions obtained by a suitable macro-
procedure.

Our recursive macro-procedure will simply compute, step
by step, each of the values fi+1(0) (for i < m) in advance and
will define the whole fi+1 with this already computed value.
This may not lead to a fast computation but we are not
concerned now with computational efficiency of this way of
proceeding, only by its practical feasibility and
reproductiveness. In no way is our presentation an attempt to
optimize Ackermann’s function. On the other hand,
computing in advance some values is a known technique, we
have just adapted it here for our macro.

Note that there exists efficient algorithms that go further
with the computation of the values of Ackermann’s function
than our macro-procedure, but these known algorithms are
based on a relation of Ackermann’s function with a kind of
usual exponentiation function. Our way of proceeding is thus
useful for practical applications that will be based on use of
SRPS. Indeed, not many practical applications (such as
security information system or robots programming
themselves in unknown environments, for instance) can be
modeled by exponential functions. Therefore, our macro,
even though less efficient, aims at general use of different
systemic non-primitive recursive functions in the framework
of SRPS.

We define a macro-procedure, ack_macro, that uses a
standard program of LISP which adds a text at the end of the
file that will contain the programs generated by ack_macro.
We thus create an auxiliary file F that stores the functions fi
generated by ack_macro. Our ack_macro uses thus the LISP
procedures add_to_file and load_file. The procedure
add_to_file(text,F) adds the text at the end of the file F. The
procedure load_file(F) loads the file F in order to make
computable the functions written in the file. Our macro-
procedure ack_macro(m,n) uses the infinite sequence of
functions defined above as being representative of
Ackermann’s function.

Step 1:

 text:= { f
0
(n) = n+1 }

Step 2:

 Create the file F (empty at start) and

 add_to_file(text,F)

 load_file(F)

Step 3:

 i:=0

 aux:= compute the value of f
i
(1)

Step 4:

 text := { f
i+1
(0)= aux and

 f
i+1
(n+1)= f

i
(f

i+1
(n))}

 add_to_file(text,F)

 load_file(F)

 aux := compute the value of f
i+1
(1)

 i:= i+1

 if i < m

 then Go to step 4

 else stop

Figure 3. A macro-procedure for computing particular values of ack

ack_macro(m,n) is now completed and file F collects the

definitions of m primitive recursive functions. We are now
able to compute ack(m,n) = fm(n).

In the next section, we shall explain how prevention and
control are modeled by Ackermann's function.

IV. PREVENTION AND CONTROL IN RECURSION

We have seen above in the example of the program
makeclear that primitive recursion captures the effects
(computation) and the secondary effects (consequences of
the computation). We have also seen that the non-primitive
recursive Ackermann’s function is obtained using a
diagonalization procedure. This diagonalization brings
forward complementary information about the process of this
symbiotic information in the recursion. Since diagonalization
is a meta-level procedure, we understand this complementary
information as a kind of meta-level prevention. In particular,
we interpret it as a prevention factor simply because
diagonalization prevents ack to be reduced to computation
and consequences of computations of functions from which
it is constructed.

It is interesting to note that some scientists may
intuitively ‘feel’ that Ackermann’s function provides a
model of human thinking of ‘everything’ for a particular
situation. The makeclear program mentioned shows that this
intuition can be presented in terms of symbiosis of the
information included in a particular situation. Note that the
above macro-procedure (Figure 3) simplifies only the
computation of thinking of ‘everything’. In order to illustrate
this particular ‘simplification’ of the computation we may
mention that, as it can be checked, the trace of the
computation of the value for ack(3,2) using the standard
definition shows (see [3]) that the value ack(1,1) is computed
twenty-two times for obtaining the result of ack(3,2). This is

3Copyright (c) IARIA, 2017. ISBN: 978-1-61208-576-0

INTELLI 2017 : The Sixth International Conference on Intelligent Systems and Applications (includes InManEnt)

not the case for the computation of simplified f3(2).
However, it is necessary to understand that the overall
complexity of this situation remains the same since, in order
to be able to ‘simplify’ (i.e., to define the above macro-
procedure), we already need to have available Ackermann’s
function equivalent to the constructed sequence of fi. In other
words, the principle and effectiveness of ‘thinking of
everything’ remain on the global level. The simplification
concerns only focusing on one particular local level defined
by the two values a and b instantiating Ackerman’s
variables. Of course, the macro-procedure is general, but for
a and b given, it generates only the finite sequence of
primitive functions f0, f1, …, fa.

This makes explicit that ‘thinking of everything’ keeps
its theoretical order of complexity after presented
simplification. It is only the computational complexity that is
simplified. Systems requiring a simultaneous handling the
prevention and control factors such as information flow
security systems [7] [10] are practical examples of a problem
requesting to think of ‘everything’.

V. PULSATIVE SYSTEMS

The above sections will help us explaining how
Ackermann’s function enables us to formally specify the
notion of the pulsation. This is interesting not only from the
point of view of building particular formal theories for
unknown domains, but also for understanding the difference
between revolution, innovation and evolutive improvement
in this building process.

In the context of program synthesis, we have defined the
notion of oscillation in [5] and [6]. Since the notion of
oscillation provides an informal background for the notion of
pulsation, we shall recall this notion here.

In scientific fields, the obvious basic paradigm is, for a
given problem, to find an idea leading to a solution. For
instance, in program synthesis, for a given problem one tries
to find a heuristic that solves the problem. This can, in
general, be expressed by the formula

∀ Problem ∃ Idea Leads_to_a_solution(Idea,Problem).

We shall call this formulation: “first paradigm.”
However, another and rather unusual (except in Physics)

paradigm is to find an idea that provides a solution for all
problems. We shall show how Ackermann’s function
provides a model for this last paradigm. First, however, let us
express this second paradigm by the formula

∃ Idea ∀ Problem Leads_to_a_solution(Idea,Problem).

We shall call this formulation: “second paradigm.”
The difference between these two formulas lies in the

fact that in this second case the ‘Idea’ obtained is unique,
while in the first formula each problem can use its own Idea.

We have explained in [6] that the goal of CMM is to
build a program synthesis system (Idea) that solves the
problem of program construction in incomplete theories
(e.g., unknown environments in space). We thus globally

work with the second paradigm. However, in our everyday
research (which means to acquire fruitful experiences
enabling to build relevant knowledge), we work locally with
the first paradigm while keeping in mind the second
paradigm. This means that we mentally oscillate between
two paradigms. The second paradigm presents a global
vision and the direction of the solution we seek and, to make
this goal achievable, we perform our everyday work in the
framework of the first paradigm following nevertheless the
direction imposed by the second paradigm. We call
oscillation this approach of symbiotic switching between the
two above paradigms. We speak here about symbiotic
switching, since both paradigms are in reality considered
simultaneously and cannot be separated.

Let us consider now a potentially infinitely incomplete
theory. In unknown environments that may be seen as a
framework for potentially infinitely incomplete theories,
building a formal theory becomes then a process of suitable
completions of a particular initial theory T0. We shall say
that this theory T0 is practically complete when it
formalizes solutions for the problems met so far. Since the
theory is potentially incomplete, sooner or later we shall
meet a problem that cannot be solved in the framework of T0.
In the vocabulary of scientific discoveries we may say that
we need a conceptual switch (a new axiom or a set of
axioms) that completes T0. Note that we speak here about
completion and

• not about a revolution - which would mean in a
sense rejecting T0

• not about a innovation - which would simply mean a
particular reformulating T0.

Thus, in fact this completion T1 contains T0 and it is
coherent with T0. However, since a new conceptual switch
guarantees that T1 is more powerful than T0, we consider this
particular kind of completion as a suitable model for one step
of improvement, or pulsation, in our search for suitable
completions. Since we consider here a potentially infinitely
incomplete theory, we can then see the pulsation (particular
improvement) as an infinite sequence of theories T0, T1, …,
Tn, … . In this sequence, Ti+1 completes and thus is coherent
with Ti for all i = 0, 1, 2, …

We have seen that, in the infinite sequence from which
Ackermann’s function is built, the function f1 relies on (is
coherent with) f0, and fi+1 relies on fi for each i. It means that
Ackermann’s function really provides a model for evolutive
improvement (or progress in Bacon’s sense [1]). We
understand it different from revolution and innovation.

Let us now come back to our notion of pulsation. We
have seen that, in the informally specified notion of
oscillation, we switch coherently between two paradigms. In
our interpretation, the second paradigm, i.e.,

∃ Idea ∀ Problem Leads_to_a_solution(Idea,Problem)

represents the idea of Ackermann’s function and the first
paradigm, i.e.,

∀ Problem ∃ Idea Leads_to_a_solution(Idea,Problem).

4Copyright (c) IARIA, 2017. ISBN: 978-1-61208-576-0

INTELLI 2017 : The Sixth International Conference on Intelligent Systems and Applications (includes InManEnt)

represents particular primitive recursive functions from
which Ackermann’s function is constructed. In the definition
of Ackermann’s function we have seen that

fi+1(0) = fi(1).

Analogously, we shall state that the sequence of
completing theories can be written as:

Ti+1 = Ti + Ai+1,

where Ai+1 is an axiom (or a set of axioms) representing
the conceptual switch that enables solving the problem
unsolvable in Ti. Let us stress the fact that by pulsation we
understand an infinite sequence of theories T0, T1, …, Tn,
Tn+1, … with the just mentioned property and not only one
particular step in this sequence. This means that pulsative
systems are systems that are formalized progressively and
potentially indefinitely.

We have seen above that Ackermann’s function is also a
model for symbiotic consideration of prevention and control.
We could see that f0 must be defined in a way that guarantees
the non-primitive recursion of the constructed infinite
sequence. We could see that, with respect to our requirement,
f0 must be defined in a way that guarantees the non-primitive
recursion of the constructed infinite sequence. Indeed, if f0
were a constant, for instance 3 (which would mean that f
f0(n) = 3 for all n), the resulting infinite composition would
also be the constant 3. This means that, even though f0 is the
first function of this infinite construction, since it must be
defined as a symbiotic part of the final composition, the
prevention and control factors must be taken into account in
this function.

So, we can see that Ackermann’s function provides in
fact a model for the improvement that guarantees symbiotic
handling prevention and control already from the start.

VI. ON PULSATIVE DEVELOPMENT OF CMM

Roughly speaking, CMM is developed as a methodology
for automation of program synthesis in incomplete domains
via inductive theorem proving (ITP). It represents an
experimental work that illustrates this paper. For
understanding this section it is not necessary to present a
formalization of this particular application (it can be found in
[5]). However, it is useful that we describe what we
understand by a methodology.

Given a non-trivial goal, its methodology is a full
formalized description of all the problems that arise in
achieving this goal and, of course, of the complete solutions
for these problems. In other words, a methodology is a full
‘know-how’ of a successful achieving the given goal.

Automating program synthesis in incomplete domains
via ITP is far from a simple problem. This is because a
unified know-how is not available even for by-hand
construction of inductive proofs that are necessary for
program synthesis. This means that a unified know-how
must first be found. This is the goal of our CMM.

It is important to note that we are still at the level 0 of
pulsative development of CMM. In other words, we work on
defining a powerful primitive recursive f0 with respect to the
overall goal of resulting non-primitive recursive SRPS for
CMM. This means that already level 0 has required several
decades of research and many useful results not known in
automation of ITP were obtained so far. A full bibliography
of these results can be found in [9]. We have described above
the process of building f0 by oscillating between two above
mentioned paradigms. However, we still need to work on
transmission of the technical details of this oscillation. We
have explained in [6] that Cartesian Intuitionism, and thus
CMM as well, cannot use tools developed by Newtonian
approaches.

Understanding the process of oscillation between the two
paradigms described above is very important for the
development of SRPS (namely the systems on level 0) in
various domains. However, a detailed illustration in the
framework of program synthesis would be too much
complex for readers that are not expert in this particular
topic. We intend to present a compact but detailed
illustration on an example that concerns a ‘safe’ transmission
of relevant scientific knowledge. This problem was already
pointed out by Francis Bacon. By a ‘safe’ transmission of
knowledge we understand a transmission that guarantees that
no mutilation is possible during such a transmission and that
all the creative potential of the knowledge and know-how to
be transferred is preserved. Our book [3] is an example of
such a safe transmission. We shall tackle this topic also in
one of our future papers.

VII. A PULSATIVE TECHNOLOGICAL VISION

It is interesting to be focused on the topic of SRPS in
general and of CMM in particular because, in long term
consideration, this seems to be the only way how robots will
be able to

• formalize recursively unknown domains (e.g., in
space research) handling perfectly control, rigor and
evolutive improvement;

• perform experiments necessary for finding such
suitable formalizations;

• program themselves autonomously with the help of
the formalizations found.

By formalizing an unknown domain we mean its

progressive exploration and acquiring experiences – through
experiments – that lead to facts enabling a progressive
formalization of this domain.

Of course, a successful achievement of this technological
vision will require not only CMM but also the tools
developed in Machine Learning, Big Data, Computational
Creativity and some other maybe not yet known scientific
fields that will become known as soon as scientific
community overcomes artificial human factors that are a
barrier for seriously investigating this technological vision.

5Copyright (c) IARIA, 2017. ISBN: 978-1-61208-576-0

INTELLI 2017 : The Sixth International Conference on Intelligent Systems and Applications (includes InManEnt)

Let us recall once again that each unknown environment
is potentially infinitely incomplete and thus the notion of
pulsation really has an enormous importance for Science.

VIII. CONCLUSION

There are technological visions that need to be solved in
the framework of Symbiotic Recursive Pulsative Systems
and thus, they need to be tackled by Cartesian Intuitionism.
This means that all the notions of SRPS and their algorithmic
elaborations should become widely known so that really
symbiotic long-term collaborations become possible. This
need for symbiotic collaborations requires also a replacement
of Newtonian management strategies by the management
strategies that are proper to Cartesian Intuitionism. This
paper extends thus our preliminary work on transmission of
fundamental notions of Cartesian Intuitionism and SRPS by
presenting the origin and the motivation for the model of
pulsation inherent to SRPS. By its practical applications and
already existing use mentioned in the paper this notion
shows its importance for Science already now and not only
for future technological visions. Indeed, this notion allows to
consider progress as different from innovation for which a
control of negative secondary effects appearing in future is
not handled systematically. The Ackermann’s function as a
model for pulsation allows to provide such a control since
the control of the secondary effects is built in SRPS
themselves and already from the start of their design. This
paper shows that Ackermann’s function should not be
considered as a simple abstract mathematical curiosity but as
a legacy with a rich scientific potential.

ACKNOWLEDGMENT

We thank to Michèle Sebag and Yannis Manoussakis for
a moral support. Anonymous referees of the submitted
version provided a very useful feedback.

REFERENCES
[1] F. Bacon, The Advancement of Learning; Rarebooksclub,

2013.
[2] M. Franova, “CM-strategy: A Methodology for Inductive

Theorem Proving or Constructive Well-Generalized Proofs”;
in, A. K. Joshi, (ed), Proc. of the Ninth International Joint
Conference on Artificial Intelligence, pp. 1214-1220, 1985.

[3] M. Franova, Formal Creativity: Method and Use –
Conception of Complex “Informatics” Systems and
Epistemological Patent (Créativité Formelle : Méthode et
Pratique - Conception des systèmes « informatiques »
complexes et Brevet Épistémologique); Publibook, 2008.

[4] M. Franova, “Cartesian Intuitionism for Program Synthesis”;
in. S. Shimizu, T. Bosomaier (eds.) , Cognitive 2013, The
Fifth International Conference on Advanced Cognitive
Technologies and Applications ; pp. 102-107, 2013.

[5] M. Franova, “A Cartesian Methodology for an Autonomous
Program Synthesis System”; in M.Jäntti, G. Weckman (eds).,
proc. of ICONS 2014, The Ninth International Conference on
Systems; ISBN, 978-1-61208-319-3, pp. 22-27, 2014.

[6] M. Franova, “Cartesian versus Newtonian Paradigms for
Recursive Program Synthesis”; International Journal on
Advances in Systems and Measurements, vol. 7, no 3&4, pp.
209-222, 2014.

[7] M. Franova, D. Hutter, and Y. Kodratoff, Algorithmic
Conceptualization of Tools for Proving by Induction
«Unwinding» Theorems – A Case Study; Rap. de Rech. N°
1587, L.R.I., Université de Paris-Sud, France, Mai 2016.

[8] M. Franova and Y. Kodratoff, “Cartesian Handling Informal
Specifications in Incomplete Frameworks”; Proc. INTELLI
2016, The Fifth International Conference on Intelligent
Systems and Applications, pp. 100-107, 2016.

[9] M. Franova, List of publications (retrieved 2017/05/17)
https://sites.google.com/site/martafranovacnrs/publications

[10] H. Mantel, A Uniform Framework for the Formal
Specification and Verification of Information Flow Security;
PhD thesis, Universitty of Saarlandes, 2003.

[11] R. W. Ritchie, “Classes of predictably computable functions”,
Trans. Amer. Math. Soc. 106, pp. 139-173, 1963.

[12] A. Yasuhara, Recursive Function Theory and Logic;
Academic Press, New York, 1971.

6Copyright (c) IARIA, 2017. ISBN: 978-1-61208-576-0

INTELLI 2017 : The Sixth International Conference on Intelligent Systems and Applications (includes InManEnt)

