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Abstract— Humans read references to gain a better 

understanding of a topic. In this paper, we propose a system that 

tries to mimic the human reading process for a given prose. The 

system can accommodate a deep prose comprehension by 

discovering the relevant parts from a reference related to the 

given prose that connect and illuminate a set of learnable 

concepts from the prose by adding direct meaningful knowledge 

paths among them. We present an evaluation model to measure 

the acquired knowledge and the learning process obtained by 

the system. The analysis of the results verifies that the system 

succeeded in deepening the prose comprehension. 

Keywords— Prose comprehension; Graph mining; 

Illuminated Semantic Graph; Knowledge paths; Sub Set 

Spanning. 

I. INTRODUCTION 

Prose comprehension is an intriguing cognitive process 
[1]. Sophisticated prose is often rich with specialized 
concepts and terminologies that are sensitive and difficult for 
inexperienced readers to comprehend. This is observed in 
readings in many domains such as science and technology. 
Additionally, it is believed that the process of prose 
comprehension involves the integration of concepts with 
significant external knowledge, which is often called prior 
knowledge [2][3]. However, readers have different levels of 
prior knowledge, or sometimes they might not even have 
prior knowledge about a specific topic. Therefore, they need 
help through knowledge of full resources that allows them to 
compensate for the lack of prior knowledge [4]. However, the 
extensive number of references might have been a problem 
in itself. Readers might struggle to keep up with the type and 
the large amount of references, which can easily be 
disturbing. Additionally, searching for the relevant needed 
parts in the references is too extensive and time-consuming.  

There is a great deal of work that tried to deepen 
understanding from prose by explicating the relationship 
among the text concepts [2][3][5], while there is another 
group of studies that employs external references to achieve  
deep comprehension [6][7][1]. The goal of this study is to 
present a method to develop our previous work [6]. In this 
paper, we present a method that reads the relevant parts from 
an external reference related to the given prose and discovers 
the direct knowledge paths connecting a set of learnable prose 
concepts. The main contributions of the paper are the 
following: First, we introduce an algorithm that reads the 
most appropriate parts from an external reference, such as 
Wikipedia, Encyclopedia, and textbooks and connects a set 
of learnable prose concepts by discovering the direct meanin- 

 
 

gful knowledge paths among them. Second, we present an 
evaluation model to be used by the system to measure the 
quantitative insight of the obtained knowledge and the 
learning process.  Finally, we conduct three experiments on 
three texts of prose to assess and validate the effectiveness of 
the system.  

The rest of the paper is structured as follows. Section II 
provides an overview of the related work. The main 
definitions and the overview of the system are presented in 
Section III.  Section IV presents details of the used evaluation 
model. In Section V, we present the experiment and the 
evaluation results. The conclusion and the future work are 
presented in Section VI.  

II. REALATED WORK 

There has been several interesting studies on text 
comprehension. Some that focuses on knowledge-dense texts 
has highlighted deepening the understanding from the text 
itself, while others have focused on deepening the 
understanding using external consultation. Some of the most 
influential works on deepening text comprehension were 
introduced by Hardas and Khan. In [5], they posed the 
problem as a computational learning model in reading 
comprehension of natural texts that can mimic the growth of 
knowledge network as a step-by-step process of classification 
between recognized and unrecognized concepts during 
sentence-by-sentence reading. Later, using the computational 
model, they explored the impact of the concepts sequence on 
comprehension during reading [2]. Recently, Al Madi and 
Khan [3] developed the computational model to 
accommodate both text and multimedia comprehension. In 
the area of deepening the comprehension using external 
consultation, Babour and her associates addressed the 
problem of deepening text comprehension by bringing 
knowledge from more than one reference [7]. They proposed 
an automated method that iteratively selects a relevant 
reference to a given text that illuminates the text concepts by 
adding new knowledge paths using the selected relevant 
reference and ontology engine [6][7]. Later, they introduce a 
novel method that mines the appropriate parts from the 
relevant reference, which is valuable in deepening the 
comprehension by discovering the highest familiarity 
knowledge paths that connect a set of text concepts [1]. 

It would be relevant to discuss additional studies from 
graph mining perspective, which are relevant to the technique 
we have developed. Jin and his associates [8] proposed a 
graph-based retrieval model to detect a coherent chain 
between two given concepts across text documents.  In [9], 
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Faloutsos and his associates developed a method that extracts 
a connected subgraph connecting two given nodes using 
electrical flow; whereas, Sozio and Gionis [10] proposed a 
method that extracts a compact subgraph of densely 
connected nodes by maximizing the minimum degree.  

The work in this paper is about the same problem 
discussed in [1], but the difference is that our method is based 
on extracting the direct/shortest knowledge paths connecting 
a set of concepts instead of extracting the highest familiarity 
knowledge paths connecting them. 

III.  PROSE COMPREHENSION SYSTEM 

The purpose of the system is to mimic the human reading 
process by creating an automated prose comprehension that 
discovers the hidden relations among each pair of concepts ci 

and cj in a learnable prose LTX and adds knowledge paths K 
among them using the learnable prose itself and a set of 
related references in an Illuminated-Semantic-Graph G.  

We define the Illuminated-Semantic-Graph G as a graph 
G=(C, E) that provides a capture of the current state of the 
learning progress showing the learnable prose concepts CL 
and the relationships between them found by reading the 
learnable prose LTX, the relevant parts from a related 
reference RTX, and the ontology engine OE, where C is a set 
of concepts (c1, c2, ….,cn) and E is a set of edges. The concept 
is either in LTX, RTX, or OE while the edge between any two 
concepts represents the relation between them. Each concept 

ci can have one or more senses (si,1,si,2,..si,x), where i is the 

concept number and x is the sense number. Each edge 
connects two concepts by a specific sense of each concept 
and has a label selected from Ľ representing the type of 
relation between the two concepts, where Ľ is a set of 
ontology engine and verb relations [1]. 

We define the knowledge path K as a path illuminating 
the relationship between two concepts, which can be 
represented as a sequence of edges that connects a concept ci 
with a concept cj in a preserved sense, where ci and cj are 
concepts from LTX. The in-between concepts in the path can 
be external to CL. The type of the edge between any two 
concepts in the path is one of the following: Synonym, 
Hyponym, Hypernym, Meronym, Holonym, Instance or 
Verbed. The first six types are from the OE, and the last type 
is defined as the verb linked two concepts in the same 
sentence, where the two concepts are the subject and the 
object in the sentence [1].  

Sometimes reading LTX only is not enough to understand, 
connect and illuminate the relation among the learnable 
concepts. Thus, there is a need to read a reference or set of 
references RTXi to substitute the lack in the understanding. 
For example, given a specified LTX about ‘Ethane’ for 
comprehension and a list of five learnable concepts CL= 
{ethane, hydrocarbon, hydrogen, gas, petroleum} in LTX as 
shown in Fig. 1 (A). The process of connecting CL using 
different recources is shown in Fig. 1 (B). 

 

 
Figure 1. (A) An example of LTX. 

 
Figure 1. (B). The process of connecting CL concepts using different 

resources. (a) Knowledge path K from LTX. (b) Knowledge path K using 

RTX1. (c) Knowledge path K using Ontology Engine OE.  (d) Knowledge 

path K using RTX2. 

Table I lists the symbols and definitions used, sorted by 
their overall appearance in the paper. 

The overall system is applied on two core phases. The 
input of the first phase is the learnable prose LTX and CL= 
{ci,…..cn} in LTX. The system performs the Verbed-
knowledge-paths KPv( ) algorithm to generate an initial 
graph GLTX ( Gi=0 ) representing the verb relation between 
each pair of concepts in CL, which is considered the output of 
this phase. The input of the second phase is a selected 
reference RTXi related to LTX and CL. The system performs 
the following algorithms in five steps each time it reads a new 
RTXi.  

1) Verbed-knowledge-paths KPv( ) algorithm 

generates a graph GRi representing the verb relation between 

each pair of concepts in CL from a RTXi. 

2) Sub-Set-Spanning algorithm SS( ) extracts the M-

sub-sets spanning paths from GRi  that connect concepts from 

CL with the direct meaningful knowledge paths. The extracted 

M-sub-sets are represented in GUi graph. 

3) Merge algorithm Gmerge( ) in the third step, 

generates Gtemp that merges Gi and GUi graphs. 

4) OE-knowledge-paths KPOE( ) algorithm generates 

GWi graph representing the OE relation between each pair of 

concepts in Gtemp . 

5) Merge algorithm Gmerge( ) in the fifth step, 

generates Gi+1  that merges Gtemp and GWi. 
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TABLE I. SYMBOLS AND DEFINITIONS 

Symbol Definition 

LTX The learnable prose. 

G=(C, E) Illuminated-Semantic-Graph.  

CL= {ci,…..cn} A set of learnable noun concepts in the 
prose. 

RTX={RTX1,RTX2,…RTXn} A set of reference texts.  

OE Ontology Engine. 

C A set of concepts.  

E = {e1, e2, ..,eq} A set of edges. 

si,x Is the xth sense for concept ci. 

L’ a set of ontology engine and verb 
relations. 

K A sequence of edges constructing a 
Knowledge Path. 

KPv( ) Verbed-knowledge-paths algorithm. 

GLTX/ G0 The graph of the learnable prose. 

GRi A graph for a reference text. 

SS( ) Sub-set-spanning algorithm. 

GUi The name of the graph extracted by 
SS( ). 

Gmerg( ) Merge algorithm. 

Gtemp Temporary graph. 

KPOE( ) OE-knowledge-paths algorithm. 

GWi The name of the graph created by 
KPOE( ) 

Gfinal The final graph generated after 
reading LTX and all RTX. 

vi,j A verb connecting two concepts ci and 
cj in a sentence. 

ϒ The maximum allowed distance 
between the concept and the verb in 
the verb relation in a sentence. 

α The maximum allowed length for K 
created by KPOE( ). 

β Cluster Coefficient. 

NICi The neighbors interconnections 
coefficient of concept ci. 

degi Degree of a concept ci. 

δ Graph Entropy. 

pi Probability of the concept ci degree 
distribution. 

hi(Θ)  Is the illuminated value for concept ci 
at a particular phase. 

Θi Phase transition. 

fi The frequency of concept ci or the 
relation type extracted from 
Gutenberg corpus[14]. 

H = {hi, hj,…..} Vector of Concepts Illumination 
Values {a quality between 0 and 1}. 

|H| Is the summation of hi for each ci in CL. 

ai,j An element denoting the association 
strength between concept ci and cj. 

A A matrix with ai,j elements. 

Ñ The number of connected concepts. 

 

After reading the whole set of RTXi, the system generates 
the Gfinal that includes a set of K, where both ends of each K 
are from the CL.   

Fig. 2  explains the phases of the system in detail. The 
bold line in phase 2 shows the iterative process of applying 
the proposed algorithm with each reading of a new RTXi for 
finding the direct meaningful knowledge path among CL. 
Both LTX and RTX go through preprocessing. During 
preprocessing, all stopwords, except negation words, are 
removed and the remaining words are stemmed using Porter 
Stemmer [11]. The next section describes each algorithm in 
detail. 

 

 
Figure 2. Overview of the system. 

A. Verbed-Knowledge-Paths algorithm KPv( ) 

Given a LTX or RTXi and a CL, for each sentence in LTX 
or RTXi, the algorithm searches for any pair of concepts (ci, 
cj) from CL to see if there is a verb vi,j between them, where 
the distance between ci and vi,j and the distance between vi,j  
and cj is less than or equal a threshold ϒ. If so, it saves them 
in the form of [ci, vi,j, cj] as an edge in the graph representing 
a verb relation between a pair of concepts ci and cj. If vi,j is 
preceded or followed by a negative word, the negative word 
is attached to the verb forming one word. The output of the 
algorithm is a graph that represents the verbed relation 
between any pair of concepts from CL.  

B. Sub-Set-Spanning algorithm SS( ) 

The algorithm in Fig. 3 represents the Sub-Set-Spanning 
algorithm as follows: The input of the algorithm is GRi and 
CL, where the output is GUi, which is a subgraph from GRi that 
presents the direct paths among CL. We use the same 
algorithm used in our previous work [1], but we replace the 
highest familiarity knowledge paths among the concepts with 
the direct ones.  

The search for a direct knowledge path has been 
implemented as a breadth-first-search (BFS). For each 
component comp in G, the algorithm uses a queue data 
structure Queue to temporarily hold each visited concept in 
the graph with its neighbors. It picks any concept from CL as 
the source s for initializing the Queue. Then, it initializes the 
distance dist between s and each concept c in the comp to 
INFINITY and initializes the previous concept prev of each c 
to -1. In the loop iteration, it de-queues the first concept c in 
the queue, marks it as visited, and checks if c ε CL. If so, it 
updates its dist to 0, adds it to M where M holds the found CL 
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concepts and removes it from CL. Then, it en-queues all the 
neighbors ci’s of concept c if they are marked as non-visited, 
assigns prev and calculates dist for each of them. If the 
current dist of ci is less than its previous dist, that means a 
shorter knowledge path to ci is found. The ci’s prev and dist 
are updated to the new less values and the process is repeated 
till the queue becomes empty. If all comp are checked, 
getPaths constructs the M sub-sets spanning from M and 
prev. The returned M-sub-sets spanning are represented in 
GUi. 

Fig. 4 shows an example of the M sub-sets spanning 
returned by SS( ) algorithm, where CL ={‘ethane’, ’carbon’, 
’petroleum’}. The returned M sub-set spanning is {[‘ethane’, 
’chemical’, ’carbon’, ’constituent’, ’petroleum’]}.  

 

Def Sub-Set-Spanning ( ): 

Input: GRi, , CL 
Output: M-sub-sets spanning.  
1.  // initialization 
2.  for each comp in G:         
3.    Queue=ɸ 
4.    s= pick any member from CL  
5.    enqueue(Queue,s)    
6.  if CL ≠ ɸ : 
7.        for each concept c in comp  
8.          prev[c]=-1 
9.          dist[c]=INFINITY 
10.          Visited[c]=False 
11.    While Queue ≠ ɸ: 
12.       c= dequeue(Queue)    
13.        Visited[c]=True 
14.        if c in CL:  
15.           dist[c]= 0  
16.            add c to M 
17.            remove c from CL  
18.        for each neighbor  ci of c: 
19.           if ci not in Queue and Visited[ci]==False:  
20.             enqueue(Queue,ci)     
21.           alt= dist[c]+ 1        

22.           if alt < dist[ci] 
23.             prev[ci]=c     
24.             // a shorter knowledge path to ci has been found 
25.             dist[ci]=alt          
26.  M-sub-sets = getPaths(M[ ], prev[ ])   
27.  return M-sub-sets 

Figure 3. Sub-Set-Spanning algorithm. 

 

Figure 4. M Sub-Set-Spanning example. 

C. Merge algorithm Gmerge( ) 

The algorithm merges two graphs into a single one.       

D. OE-knowledge-paths algorithm KPOE( )  

The algorithm searches for knowledge paths K of a length 
less than or equal to threshold α connecting each pair of 
concepts that appear in Gtemp if found using an ontology 
engine. The algorithm is presented in detail in our previous 
work [6].  

IV.  SYSTEM EVALUATION MODEL 

In this section, we present a set of measurements, which 
are employed to assess the quantitative knowledge gained 
from G, including information content, graph organization, 
richness of information, concept illumination value, and 
knowledge paths.  

A. Information content 

The size of the graph is measured by the whole number of 
concepts C and the associations E among them, where the 
concepts belong to three different sources LTX, RTX, and OE.  
High size is a good indicator to a wealth of information and 
therefore deep comprehension. The process of prose 
comprehension is completed by reading the last RTXi in 
which the graph transforms from (G0, G1,…...,Gfinal). 
Therefore, the size of G is increased and the information is 
grown respectively. 

B. Graph organization quality 

The graph organization plays an important role in 
predicting the performance of the learning progress. A good 
graph organization gives a clarification about the context of 
each concept and how each concept is related to other 
concepts by representing groups of strongly connected 
concepts each works as constrains on the possible meaning of 
its concepts, therefore the meaning of the concepts can be 
greatly clarified. It can be measured by clustering coefficient 
β, which offers a way to measure how the concepts in the 
graph tend to form groups of strongly connected concepts. 
According to [12], we suggest calculating β using (1); the 
closer to 1 value indicates the higher clustered graph. 

                     𝛽 = ∑
2𝑁𝐼𝐶𝑖

𝑑𝑒𝑔𝑖(𝑑𝑒𝑔𝑖−1)

𝑛

𝑖=0
                        (1) 

C. Richness of Information 
Information richness is a measure of how much 

information a graph contains. High information richness 
usually indicates a graph rich with information and deep 
comprehension. It can be measured by entropy δ, which 
measures the amount of information within the graph. 
According to [13], we calculate δ using (2): 

                         𝛿 = −∑ 𝑝𝑖𝑙𝑜𝑔 (𝑝𝑖

𝑛

𝑖=0
)                       (2) 
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Where pi is determined by (3): 

                                   𝑝𝑖 = 
𝑑𝑒𝑔𝑖

2|𝐸|
                                     (3) 

D. Calculating the concepts illumination values H 
The concept illumination value hi is a way to interpret the 

level of understanding the concept. It presents the importance 
of the concepts at each particular phase. The higher the 
concept illumination value, the more understanding there is 
in the prose. The initial illumination value of a concept can 
by calculated using (4).  This initial value represents the prior 
knowledge or the familiarity of the concept, where h(0) 
represents the initial value of concept i. The high frequency 
means the high familiarity of the concept. 

                  ℎ𝑖(0) = −1/ 𝑙𝑜𝑔 (
𝑓𝑖

109)                           (4) 

Tracking the growth evolution of the concept illumination 
value during the learning progress is an interesting approach 
to measure the deepening of prose comprehension. We 
calculate the illumination value of each concept at each 
phase. We consider the phase Θi as reading a set of sentences. 
Then, we estimate how the illumination value varies over the 
learning process through a set of phases. After a set of phases, 
the concept illumination value reaches a stable value which 
is considered its final illuminated value. The learning 
progress at each phase is assessed by the value of |H| which 
is the summation of hi for each ci in CL. The higher the |H|, 
the deeper the learning. To calculate hi for each concept in 
the graph at each phase, we utilize (5).  

         𝐻(𝛩 + 1)  =  𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(𝐴)  ∗  𝐻(𝛩)                 (5) 
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We will consider the association strength ai,j as the 
illumination value of the relation type between a pair of 
concepts (ci, cj). The value of ai,j is calculated by (4), fi here 
represents the frequency of the relation type extracted from 
Gutenberg corpus [14], where high frequency means high 
familiarity of the relation type.  The relation between f and h 

is a direct relation. This means the higher the frequency, the 
higher its illumination value. Table II shows different types 
of relations, which are common between any pair of concepts. 

 
 
 

TABLE II.  RELATION STRUCTURE BETWEEN ANY PAIR OF 

CONCEPTS 

Relation type Relation structure 
 

ai,j value 

verb relation Case#1: single verb: 
ci  – : si,* – v1 – sj,* : – cj 

hv1(Θ) 

 Case#2: dual verb: 
ci  – : si,* – v1 v2 – sj,* : – cj 

hv1(Θ) * hv2(Θ) 

 Case#3: dual paths: 
ci  – : si,* – v1 v2 – sj,* : – cj 

ci  – : si,* – v3 v4 – sj,* : – cj 

hv1(Θ) * hv2(Θ)  
+ 
hv3(Θ) * hv4(Θ) 

Wordnet 
relation 

Case#1: Class/sub-class: 
ci – : si,* – Hypernym – sj,* : – cj 

or 

ci – : si,* – Hyponym – sj,* : – cj 

hclass(Θ) 

 Case#2: Part/sub-part: 
ci – : si,* – Holonym – sj,* : – cj 

or 

ci – : si,* – Meronym – sj,* : – cj 

hpart(Θ) 

 Case#3: synonym: 
ci – : si,* – Synonym – sj,* : – cj 

hsynonym(Θ) =1 

 

E. Types of Knowledge Paths 
The illumination-semantic-graph is a complex graph of 

concepts and associations. The graph has many 
interconnected concepts, ultimately leading to a congested 
graph. Hence, the information becomes hard to read; for 
example, it is hard to trace a particular sequence of edges 
connecting two concepts because the edges overlap. This can 
be clarified by extracting knowledge paths. A knowledge 
path is a way to reveal underlying information in the graph 
tidily. For more clarification, we classified the knowledge 
paths into seven types described in Table III.  

TABLE III.  KNOWLEDGE PATHS TYPES 

 K types Description 

1.  Genesis-Set Where each label in the sequence of edges of K 
has either a hyponym or a hypernym relation. 

2.  Synonym-Set Where each label in the sequence of edges of K 
has a synonym relation. 

3.  Part-of-Set Where each label in the sequence of edges of K 
has either a meronym or a holonym relation. 

4.  Conceptual-
Neighbor-Set 

Where the labels in K have a combination of 
hyponym and hypernym relations. 

5.  Structural- 
Neighbor-Set 

Where the labels in K have a combination of 
meronym and holonym relations. 

6.  Complex- 
Neighbor-Set 

Where the labels in K have a combination of 
hyponym or hypernym and meronym and 
holonym relations. 

7.  Verbed-Set Where each label in the sequence of edges of K 
has a verb relation. 

V.  EXPERIMENT AND EVALUATION 

In this section, we evaluate the proposed system based on 
the statistical characteristics of the obtained graphs of three 
experiments, which indicate the quantitative insight of the 
amount of comprehension that can be gained by the readers. 
In the future work, we are going to perform the experiments 
with actual readers. The selected proses LTXi used in the 
experiments, as well as the CL for each are shown in Table 
IV.  

 
 

*   

ci                                                 cn

   

A 

 hi 

H 

112Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-518-0

INTELLI 2016 : The Fifth International Conference on Intelligent Systems and Applications (includes InManEnt 2016)



TABLE IV. LIST OF THE PROSES USDED IN THE EXPEIEMENTS 

 LTX CL 

Experiment1  LTX1:  
‘Ethane chemical 
compound’ [15] 

[‘Ethane’, ‘hydrocarbon’, 
‘hydrogen’, ‘carbon’, ‘carbon-
carbon’, ‘petroleum’, 
‘carbonization’, ‘coal’] 

Experiment2 LTX2:  
‘New Test for Zika 
OKed’ [16] 

[‘zika’, ‘infection’, ‘dengue’, 
‘hikungunya’, ‘virus’, ‘aedes’, 
‘mosquito’, ‘antibody’] 

Experiment3 LTX3: 
‘Anesthesia gases 
are warming the 
planet’ [17] 

[‘Anesthetic’, ‘carbon’, 
‘climate’, ‘oxide’, 
‘desflurane’, ‘isoflurane’, 
‘sevoflurane’, ‘halothane’] 

 
The used OE is Wordnet [18] version 1.7 and the used 

RTX is Wikipedia. For each experiment, RTX is a set of 
articles selected from Wikipedia about each concept in CL. 
We applied the automated method used in [7] for the 
selection of the Wikipedia articles. For each experiment, the 
system goes through eight RTXi and creates nine G, G0 
represents the relation among CL in LTX and eight Gi each 
represents the relation among the CL after adding reading a 
new RTXi.  

A. Graph Analysis 

In this section, we present our analysis of the information 
gained from G. The breakdown of the total number of 
concepts C and the number of edges E in G0 and Gfinal are 
shown in Table V, where the concepts are from LTX, RTX, 
and/or OE. It is observed that there is a variance in the number 
of concepts and edges between G0 and the Gfinal, which is a 
good indicator to the plentiful information in the Gfinal, hence 
the depth of prose comprehension. 

TABLE V. BREAK DOWN OF THE TOTAL NUMBER OF EDGES 
AND CONCEPTS IN THE FINAL G 

 

 Experiment1 Experiment2 Experiment3 

 G0 Gfinal G0 Gfinal G0 Gfinal 

E 3 100 1 76 0 29 

Number 

of LTX 

concepts 

8 8 8 8 8 8 

Number 

of RTX 

concepts 

0 7 0 8 0 4 

Number 

of OE 

concepts 

0 36 0 22 0 9 

 
Furthermore, Fig. 5 shows the number of connected 

learnable prose concepts CL in Gi, where (x-axis) refers to the 
Gi after adding each RTXi and (y-axis) is the number of 
connected concepts per Gi. For each experiment, we can 
observe that the number of connected concepts Ñ is increased 
when the system reads RTXi. The concepts become fully 
connected after reading the 8th RTX, 2nd RTX, and 1st RTX for 
LTX1, LTX2, and LTX3 consecutively, which verifies the 
effectiveness of the system for connecting CL.   

Fig. 6 shows the clustering coefficient β observed in each 
Gi, where (x-axis) is the Gi and (y-axis) is the clustering 

coefficient β. It is obvious that some of the graphs especially 
for the first experiment are highly clustered, which signifies 
that their concepts are highly clustered together.  

B. Knowledge Analysis 

In this section, we present our analysis of the learning 
progress on LTX comprehension from G in the three 
experiments. Fig. 7 represents the entropy δ per each Gi, 
where (x-axis) is the Gi and (y-axis) is the entropy δ. It is 
observed that the δ in the three experiments starts with a low 
value, then it increases gradually after reading a new RTXi, 
which indicates that the graph concepts become more 
influential each time the system reads a RTXi.   

Moreover, Fig. 8 plots the variance in the concepts 
illumination values |H| (y-axis) of CL with the phases of 
learning progress Θi (x-axis) in the Gfinal. We examined 50 
phases. We can clearly see from the plot that |H| increases 
gradually over the phases especially in the first experiment, 
which indicates the deeper comprehension of the CL and the 
LTX after each phase Θi.  

C. Knowledge Paths Classification 

The breakdown of K types that are found in Gfinal are 
shown in Table VI. 

TABLE VI. BREAKDOWN OF KNOWLEDGE PATHS TYPES 
 

 
Experiment

1 

Experiment

2 

Experiment

3 

Genesis-Set 2 0 2 

Synonym-Set 0 0 0 

Part-of-Set 0 0 0 

Conceptual-

Neighbor-Set 

6 0 2 

Structural-Neighbor-

Set 

0 0 0 

Complex-Neighbor-

Set 

0 0 0 

Verbed-Set 17 26 8 

VI.   CONCLUSION AND FUTURE WORK 

 In this paper, we presented a computerized human prose 
comprehension system that discovers relevant parts from a 
reference that connect and illuminate the learnable concepts 
by direct meaningful knowledge paths among them. The 
system is an improved version of our previous work [6]. The 
statistical results obtained from the graph(s) show that the 
system succeeds in connecting the learnable concepts by 
discovering the direct meaningful knowledge paths among 
them and in achieving a deep prose comprehension. For future 
work, we are going to compare the results of the used method 
with the one discussed in [1]. We are also going to test the 
impact of the system results on the comprehension of actual 
readers.  
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Figure 5. Learnable Prose Concepts connectivity per graphs Gi. 

Figure 7. Entropy per graphs Gi. 

 

Figure 6. Cluster Coefficient per graphs Gi.  

Figure 8. Prose illustration values per phases. 
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