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Abstract— This paper introduces and illustrates a fundamerdl
notion, namely informal specification, for creating tools
developed as symbiotic recursive pulsating systenfSRPS), in
the framework of Inductive Theorem Proving and Intdligent
Systems. It illustrates the use of this fundamentahotion in
scientific systemic creativity relative to theoremproving. We
deal simultaneously with the meta-level design of system that
proves theorems automatically.
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l. INTRODUCTION

Often, a direct way to achieve a proof requiring tise
of the induction principle is not obvious. It migaven be
impossible to prove a formula within a given franoek
while an appropriate detour or a switch in intetgien and

in the method of thinking may lead to a successis T

problem of changing the framework is also relevianthe
design of an intelligent inductive theorem provaygtem.
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them. Hopefully, the rich potential of these sysem
illustrated in this paper might suggest to adoptnare
positive attitude towards these systems.

The problem lies in the fact that SRPS do not oglya
linearly ordered sequence of notions that couldalght in
isolated or progressive manner. In a sense, theybea
understood only by already using them, which obsfipu
sounds contradictory. In order to dissolve thistaiction,
we need accepting to work with loosely specifiedlgp
followed by a patient work of successive try-faidarecover
steps. This has to take place until the whole m®d®lds
together and leads to the desired solution. Whisrptiocess
is completed, the former loosely defined speciiet are
transformed into exact ones. We cajlmbiotic recursive
pulsating thinking(srp-thinking) this way of thinking.

We have previously introduced the term Cartesian
thinking for srp-thinking and Newtonian thinking rfahe

h other, more usual, one [14]. Both are useful bezabsy
apply to solving different problems. Newtonian #inyg
allows, by words of Newton himself, “standing uptre

There is a largely adopted management approactd basghoulders of giants”. Newtonian thinking is cergira

on so-called “SMART goals,” where ‘'S’ in SMART stin
for ‘specific’ and it implicitly means that thers a kind of

formal framework and a reproducible or nearly olrgio

available know-how to reach such a goal. ‘T’ stafois
time-bounded and it means that there is a limie dafore
which the result is expected. ‘M’ stands for meabie, ‘A’
stands for achievable, ‘R’ stands for realistic.

We shall however see that a systematic use of SMAR
goals should not always be the way by which inwenti

comes to life. Symbiotic recursive pulsating sysS€®BRPS)
and their corresponding Cartesian paradigm [14Y defs
SMART approach, though it is established and toaaye
or less required in Science. Handling or even o1ge8RPS
requires a detour from purely formal thinking exeecby
exact sciences, a switch from linear synergic pregations

advocated by analysis and synthesis, a switch frorfi

observations of ‘pure’ facts tereative interpretationsa
switch from use of established know-how dreating on-
purpose know-how. Handling or even creating SRR8ire
their own method of thinking that
reproducible as the usual trend of sciences woedglire.
From an immediate-gratification perspective thigmilead
to the option that the best way to handle thenoigyhore
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SMART approach suitable for solving problems than be
tackled on a modular basis, by analysis and syigthes
Because of the presence of recursion, what weCzatesian
thinking is based on self-justification and selference. In
terms of deductive systems we can say that Newtonia
thinking is a derivation of a knowledge containeglicitly
in the given axioms (i.e., these giants’ shouldessile
fartesian thinking focuses ameating a relevant axiomatic
system for solving a particular problem. In termé o
technological development, Newtonian thinking is@grned
with innovation building the intended products relying on
already existing knowledge;handling ‘truth’) while
Cartesian thinking is applied to the cases whernrttended
product seems utopian or even impossible with &gpethe
existing available knowledge. It consists in depéeig new
ustom-made technologies that were not presentaso f
Cartesian thinking represents an attemptreatea (orre-
creatg ‘truth’ and a ‘desired truth’.

The goal of this paper is to bring introductoryigms

is not as much(via an illustration) concerning one fundamentatior of

the SRPS context, namehformal specificationThis task is
not simple in face of prevailing Newtonian paradignd its
particular criteria that are used while evaluat@ither the
process of a scientific research (i.e., how theassh should
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be done) or the final product (i.e., how the resiiould
look-like). Indeed, Newtonian approach
research progresses linearly (or modularly) andréseilts
are — in Computer Science — either programs urmhisn
their usual modular sense or proofs about starplanerties
of these programs. SRPS fail to verify these dstsince
they are recursive and symbiotic. Moreover, theltesire
system-procedures made with sub-procedures (weleath
“constructors”) that are symbiotic in the same n@aras it is
the case for Natural Numbers (NAT). NAT are detewi
(and computed) via the symbiotic constructors @csssor

(sug and NAT themselves. Newtonian thinking often

ignores this symbiotic and recursive character AffN\since
their representation is possible in seemingly madédrm.
The same can be said about SRPS. They can bearfmes
in an apparently modular form, but the process rairt
creation is purely symbiotic and recursive. In NAfe
constructors are created via a process that cateseribed
by the informal specifications: Creation(0)
Creation(0sucNAT), Creationgug = Creation(GGUGNAT)
and Creation(NAT) Creation@cNAT). This is a
symbiotic creation which is analogous to the weibwn
egg-hen problem: what is created first? Obviougis t
problem has no known solution. However,
solution for this problem is expressed as the danelous

presence of both hen and egg from the start of thé-

implementation. Let us now describe a visual probighich

does have an obvious symbiotic solution. Consider t proving
following well-known picture:

R R =y
§ B
o )
i

On internet this picture is known as
‘young lady and old woman illusion’.

It represents, at the same time, a young lady andidcx
woman. For some people this is hard to see at andeghus
we shall use the following two pictures that halperceive
both women in the above picture:

young old
%y woman woman
gw (yw) (ow)

a symbiotic

We can complete now what has been said above. This

requires t thapaper concerns the introduction of the notionirdbrmal

specification and brings introductory insights on the
preprocessing stagén Cartesian design of a particular
SRPS. Therefore, it is necessary to be preparea mon
linear symbiotic presentation and to simultaneouaslysider
« design and meta-design
e action and meta-action
* inseparability of
0 concrete proof
0 abstract overall design.

The paper is organized in the following manner.ti8ac
Il presents the notion of informal specificationdaan
example of the use of this notion in the domaitnaiuctive
Theorem Proving. Section 1ll presents our fundawdent
procedure (aesign constructgrused to reach this goal at
the design level. Section IV illustrates this pmhae by

= applying it to the specification of a theorem thali show

itself to be, in a particular way, incomplete arftug
informal. Section V presents our future researchegts.

Il.  INFORMAL SPECIFICATIONS ININCOMPLETE
FRAMEWORKS

Informal Specification as a Way of Expressing alGoa

Due to incompleteness results of Godel [17], t@uate
theorems by induction (ITP)ITP-goal is
unachievable in the context of contemporary mathiema
However, the fact that many apparently unsolvabdblems
are actually solved when their context or repregent are
changed has become public knowledge several deeanes
when Smullyan [30] started to make game of such
transformations. With respect to practical use O Ifor
Program Synthesis (via deductive approach pioneésed
Manna and Waldinger [23]) and for search of missing
axioms in incomplete theories [16], a reasonable
implementation of ITP is highly desirable goal (or
technological vision). Therefore, in early eightiésiilding

on our previous experience with creating deductiystems
and conceptual switches in history of mathematieshave
moved this goal from purely Gédel's mathematicahteat

The creation of such a p|cture can be describe@ as into ‘technological’ context by reformulating thbave ITP-

symbiotic creation by which the author before drayvhas
foreseen the final picture. In other words, thehaustarted
with an informal specification “I wish to draw amhiguous
figure and | am almost sure that this will be pblkes? This is
the first step of the creation process. The seied is a

goal into the followingITP-system goal‘Automate ITP as
much as possible.” The former goal takes into actoloe
underlying Gddel's formal context. Our ITP-systeroab
leaves some freedom for interpreting and addressing
non-standard manner not only the problem “How shiguld

creative preprocessingy which he foresees the final picture be done?” but also the problem “How the solutioouith

expressed by a formalized specification: Creatia(y

Creation(yw,ow) and Creation(ow) = Creation(yw,oWhe

drawing (implementation) process is the third aast ktage
of creation. The creative preprocessingcontains thus
research work coming from the informal idea of enbiotic

picture to the presence of the effective tools teega

concrete implementable form to this idea.
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look like?” We callinformal specificationa description of
any reasonable goal that has this particular ptppef
allowing non-standard criteria for the above twolpems
(or a description that is in a sense incompletey.dall these
problemspragmatic biasin contrast to academic bias that
expresses, even though implicitly, the necessitytfe use of
standard criteria for solving these problems.
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It must be noted that there can be no ‘Impossilite!an
informally specified reasonable goal. The only rizga
statement can be pronounced and that is “I do nowK' It
depends only on us if we add “But | will,” or ndiith
respect to the intended applications of our rasmlgystem
(Program Synthesis (PS) and completing
theories), we expressed our intention to add thiswar
when we realized that the best way to tackle thHe-d4ystem
goal is to not search for a some clever decisiamtquure
which will in principle face Gédel's incompletenedsit a
procedure or system that, in failure cases, wilbvjate
sufficient conditions for recovery, i.e., increasirthe
possibility of proving the intended formula. Oumpapach is
thus very different from academic (or
approaches to ITP that consider strictly the fraombw
limited by Godel's results, such as the system A(3]2the
system RRL [22], the system NuPRL [6], the Oyst&rC
system [4], the extensions of ISABELLE [27], thestgm
COQ [26] and Matita Proof Assistant [1].

B. Systemic Background and Guiding Principles for ITP-
system goal

happens when no new informal specifications of
missing tools are discovered (see more in Section
V).
Considering the task formulated in (GP2), and using
Beth’s method of deductive tableaux [2] we undadtthat

incomplet¢he first problem to be dealt with is specifiedoimhally as

finding a method to prove atomic formulas in suckvay
that it provides, in case of failure, sufficientnditions for
provability of this formula. Our solution to thisagicular
tool-specification is oulCM-formula construction (recalled
in the next Section), wher€M stands forConstructive
Matching Since CM-formula construction is the basis (or
basic symbiotic constructor) of our methodology e(se

Newtonian) (GP5)), we call it Constructive Matching methodology

(CMM). CMM is thus our intended solution for the ITP-
system goal.

In the next Section, we recalM-formula construction
so that, in Section IV, we can illustrate its use $olving
another example (see (GP6)). This example is istieg
since it concerns the proof of the so-called Unwigd
Theorem met in the domain of information flow setyuand
developed in [29]. In [15] we present the methodual

We have found that Descartes’ method is perfectl)éspects of this prob'em. In the present paper wet i@

suitable for our task. A short systemic descriptiof
Descartes’ method is given in [14]. More precisicare
given in [12].

This systemic Cartesian background allows us
summarize the action-guiding principles used ineortb
conceive an ITP-system:

illustrate howCMM, via CM-formula construction, handles

informal specification of the given Rushby’'s theare

Indeed, as it will become clear, the initial foretibn of
tQRushby’s Unwinding Theorem is, in some sense, indeta.

lll.  CM-FORMULA CONSTRUCTION INITP

(GPD) We welcome incompleteness for practical reasons |n this Section we are going to present the basic

since it guarantees progress and evolutioNmechanism for theCM-formula construction originally
Moreover, each missing axiom discovered hints at gytroduced in [7].

more relevant interpretation. Therefore, a unified g simplicity, let us suppose that the formula b®
method of _discovery of missing axio_ms_is an ass_et. proven has two arguments, that is to say that vesl rie
We conceive a procedure-system finding sufficien yrgve that Feit,) is true, where F is a predicate apdstare
conditions in case of failure and not a decisionierms of the axiomatic theory in use. We introdaceew
procedure (see Section III). ~ type of arguments in the atomic formula that hasbéo
We conceive an ITP-system as a symbioticorgven true. We call thenpivotal arguments since
recursive pulsative system (see [14]). focusing on them enables to reduce what is usuallgd the
Due to the symbiotic character of tools, we deye gearch space of the proof, and to decompose complex
first a methodology for ITP, which, when its proplems (such as strategic aspects of a proof) on
‘practical completeness’ will be achieved, a first conceptually simpler problems (such as a transfoomaf a
version of ITP-system will be implemented (this term into another, possibly finding a sufficientnddions
refers to the implemented experimental version 0-33tc.). These pivotal arguments are denoted oy & etc.) in

(GPJ

(GP3

(GP4

we presented in [10]).
(GPY

The same methodology is conceived for ITP and PS

the following.
In the first step, the pivotal argument replaces purely

which implies that we adopt no efficiency criteria syntactical way, one of the arguments of the gifeemula.

for synthesized programs.

(GP6) Consequence of the previous principles: Véate

The first problem is thus to choose which of thguanents
will be replaced by a pivotal argumeidt A complete

a database of solutions to non-trivial examplesygorithmic solution to this problem is not yet posed,
obtained with our methodology. These examplessince it will be part of a complete implementati@nCMM
often provide informal specifications of tools that [g]. Nevertheless, a simple informal algorithm iasidy
must become part of our methodology. The price tgptained in performing a rough analysis of the terthe
pay is that, in contrast to Newtonian approaches, t most complex one should become the pivot — precisel

real implementation may start only when a platealyefining complexity is still left to a human persofts
is reached in building this database. Such a platea
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automation will be tackled with in the final phasif our
research.
In this presentation, let us suppose that we hbwsen to

the relevant and necessary tools will be desigméth the
help of Machine Learning, Big Data and other refgva
domains) to eliminate human interaction with theisien of

work with F(4,€), the second argument being chosen as ththe appropriateness of suggested missing axiomis i€h

pivotal one. In an artificial, but custom-made mamnve
state C=§ | F(t,€) is true}. Except the syntactical
similarity with the formula to be proven, therenis semantic
consideration in saying that L& is true. It simply
represents a ‘quite-precise’ purpose of trying to fgom
F(t,&) to F(k,t) while preserving the truth of K(f). We
thus propose a detour that will enable us to praige the
theorems that cannot be directly proven by the alled
simplification Newtonian methods, i.e., withoutstidetour.

In the second step, via the definition of F ands¢ho
involved in the formulation of the term, twe look for the
features shown by all thesuch that F€) is true. Given the
axioms defining F and the functions occurring jnvie are

useful for applications where human interaction is
impossible. Consider, for instance, space explmmatiand
constructions by robots.

IV. EXAMPLE : PROOF FOR ANUNWINDING THEOREM

A. State-based Information Flow Control — Basic
Knowledge

In this Section we present the formal framework tfoe
so-called unwinding theorem presented in [29]. Therhe
next Section, we present the proof of Rushby's nding
theorem as performed I§M-formula construction.

The proof presented is interesting from the manhimec

able to obtain a Setl@xpressing the conditions on the Setinteraction point of view since it illustrates haavhuman

{ &} for which F(t,€) is true. In other words, calling ‘cond’
these conditions and;Ghe set of the& such that condj is
true, we define Cby C ={¢& | cond€)}. We can also say
that, with the help of the given axioms, we buildcand’
such that the formuldlg O C,, F(4,&) is true.

In the third step, using the characteristics gfo6Gtained
in the second step, the induction hypothesis isieghpThus,
we build a form of such that F(t&) is related to F(it,) by
using the induction hypothesis. For the sake daftgldet us
call &c the result of applying the induction hypothesisCio
resulting in its subset G { & | cond(&c)}- C, is thus such
that F(1,&c) is true. We are still left with a work to do: pe
that t belongs to @ In the case that tdoes not contain
existential quantifiers, this is done by verifyingnds(t,). In

expert of the domain theory is prompted to findui#table

generalization of a potentially infinite sequence terms

without being asked to know the mechanisnCM-formula

construction. It is known that, in non-trivial cas@cademic
approaches require from the user to be aware optbef

assistant mechanisms in order to guide it towandsess. In
our completed system, the generalizations will eéqumed

automatically.

A system M is composed of a set S of states, with a
initial state § [0 S, a set A of actions, and a set O of outputs,
together with the functions step and outtiép S x A - S,
output S x A - O. We shall use the letters ... s, t, ... to
denote states, letters a, b, ... from the frorthefalphabet to
denote actions, and Greek lettar$, ... to denote sequences

the that case tontains existentially quantified variables, this of actions. Actions can be thought of as “inputs” or

is done by a new detour. In the first step, wetdrgolve the
problem congéc) = o (& = oty), whereo has to provide a
suitable instantiation for the existentially quéiatl variables
in t,. With such an obtaineds we have then to prove
F(t;,0ty). In other words, we have to prove tlatand §can
be made identical (modulo substitution) when il
holds.

In the case of the success, this completes thd.prothe
case of a failure, a new lemma celdd) = (o (&c = oty)
with an appropriate quantification of the involvedriables
is generated. In some cases, an infinite sequeindailare
formulas’, i.e., lemmas or missing axioms,

“instructions” to be performed by the systemstep(s,a
denotes the state of the system resulting by panfoy
actiona in states, andoutpu{sa) denotes the result returned
by the action. In the followingy denotes an empty sequence
and - denotes a concatenation. We shall consider an
extension of the functiostepto sequence of actions in the
form of a functiorrun: S x A — S, defined by

(ax1) run(sA) = s

(ax2)run(sa-a) = run(stefsa),a)

The agents or subjects interacting with the sysamah
observing the results obtained will be grouped fistecurity

may bedomains”. Security domains represent clearancésrins of

generatedCMM is conceived in such a way that the obtainedpersons and classifications in terms of data. Wie #ssume

sequence is well-behaving (see [7]) so that a hupgason
or an automated tool (in the future) be driverhia thoice of
a suitable generalization. This formula logicallyvers the
infinite sequence of lemmas or missing axioms dntthus
fills the gap that cannot be overcome by a purelguttive
formal approach to theorem proving. In the case
generation of missing axioms, the process of cotigpleéhe
initial theory is performed by ‘pulsation’, i.e.y ladding then
applying the new axioms to the domain theory. Tésulting
system is logically coherent by construction. la thture, all
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a setd of security domains, and a functidom A - d that
associates a security domain with each action. k'é# ase
letters ... u, v, w ... to denote domains.

Information is said to flow from a domain u to antiin
v when some actions submitted by domain u cause the

ofnformation about the behavior of the system peexkiby

domain v to be different from that perceived whéose
actions are not present. We shall consider the fldfw
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information as a reflexive relationr-ond (i.e., u > u for
each domain u.)
A security policywill be specified by this relation odh

We use -F to denote the complement relation i.e., a closed

negation of » ond x d, that is -» =(d xd)\->» , where \
denotes set difference. We speak &f and - as the
interferenceand noninterferencerelations, respectively. A
policy is said to béransitiveif its interference is transitive.

We say that domain interfereswith domain v if u > v.
We say that an actiomterfereswith domain v if there is
donm(a) such thatlom(a) interferes with v, i.egdom(a) -> v.

An action a is said to be requiremninterfering with
domain v if dom@) -/> v for all action sequences that
contain a. The functiopurge A" x d — A" is defined as
follows

(ax3)purggA,v) =A
(ax4)purgga-a,v) =a. purgga,v), if doma) -» v
(ax5)purgga-a,v) = purgga,v), if dom@) -/> v.

The machine isecureif a given domain v is unable to

distinguish between the state of the machine aftdras

processed a given action sequence, and the stte af

processing the same sequence purged of actionsegda
be noninterfering with v.
Formally, the security is identified with the remgment
thatoutpufrun(sy,0),a) = outpu{run(s,,purgga,dom@))),a).
For convenience, we introduce the functidesA™ - S

andtest A" x A _. O to abbreviate the expressions in the

last requirement: do(a) run(s,,0), and testf,a)

outpuf{do(a),a). Then we say that system M is secure for the

policy -» if

test(,a) = test(purgeg,dom(a)),a) (2)

for all actions sequencesand actions a.

The non-interference definition of security is eegsed
“globally” in (1) in terms of sequences of acticasd state
transitions. In order to obtain sufficient “localdnditions for
verifying the security of systems, Rushby introdueeset of
conditions on individual state transitions.

A system M isview-partitionedif, for each domain u

from d, there is an equivalence relatih en S. These
equivalence relations are said todagput consistent

don(a)
S

t = outpu(sa) = outpu(t,a). (2)

The following result allows the output
consistency to security of the system.

Lemma 1:

relating

Let -» be a policy and M a view partitioned, output

consistent system such that

do(a) = do(purgda,u).

Then M is secure fop~.
Proof: see [29].

®3)
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Let M be a view-partitioned system ane a policy. We
say that Mocally respects> if

u
doma) -/>» u = s~ stefdsa) (4)
and that M isstep consisterit
u u
sT t = stefs@) ~steft,a). (5)

The following theorem shows that the local condisio
formulated are sufficient to guarantee security.

Theorem 1: (Unwinding Theorem)

Let -» be a policy and M a view-partitioned system that
is output consistent, step consistent, and locatpects >.
Then M is secure fop-.

We have thus recalled the basic knowledge fornmagizi
the information needed by an automated theoremeprov

B. CMM Suggests a Generalization Necessary to Prove
the Unwinding Theorem

As we said above, we shall suppose that system M is
output consistent, step consistent, and locallgeets ». To
prove this theorem it is sufficient to prove tha folds.

Using our above&eM-formula construction algorithm, we
shall study what operations have to be performeatdier to
prove formula (3) introduced above:

dony(b)
do(a) " do(purgea,domm(b))),

for arbitrary domairdom(b) and stater.

By definition ofdo, do(a) is run(s,a) and similarly for
do(purgga,dom(b))). We thus obtain that the goal is to
prove the formula (original theorem)

®3)

~

2 run(so,purgga,domb))). (UTh)

Let us consider a proof by induction anThis means to
consider the base step for= A and the induction step for

d
run(so,0)

=a.a’, whereais an arbitrary action ana’ is a sequence
of actions. As the proof for the base step is easyfocus on
the proof of the induction step.

In the induction stepa is a -
hypothesis is

o’. The induction

)

run(so,a’) d ) run(s,purgga’,domb))).

(6)
The goal is to prove

2 (b) run(sp,purgga - a’,domb))). (7)
using the induction hypothesis and the propertiég.o
The CM-formula construction requires that we replace
one of arguments of (7) by pivotal argument. Siteeterm
at the right side is more complex than the ternthan left
side, we chose to replace this complex term bypikietal
argumeng. This gives

run(sg,a- a’)
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dorr(b)

run(sp,a-a’) — & (8)
By definition,
run(sp,a-a’) = run(stefso,a), a’)
This gives
dom(b)
run(stegsp,a), a’) ~— & 9)

We would like now to apply the induction hypothg&is
This means to comparen(s,a’) in (8) andrun(stef{s,a),
a’) in the last formula (9). This fails. Therefol@M-formula
construction generates a new lemma expressed rirs tef
the failure formula

~

) run(sp,purgga- a’,domb))) .

For simplicity of our presentation here we do not
evaluate the termpurgga- a’,domb)).

In the last formula, all the variables are univllysa
quantified. The proof is by induction and the vhléad’
becomes the induction variable. In the base step; A and

run(stefso,a), a’) d

the induction step fom’ = c- y, wherec is an arbitrary action

andy is a sequence of actions.

The base step for this new goal would lead to disgo
of a missing precondition. In this paper we woulek Ito
insist more on the discovery of a need for a geatin.
Therefore, we shall skip the base step and we gl
directly to the induction step.

In the induction step, since’
hypothesis is the formula

c-V, the induction

dony(b)
run(stefsn,d),y) — run(sg,purgda-y,domb))). (10)
and the goal to prove is the formula

donb)
run(stesn,a),c-y) — ‘run(s,,purgda- c- y,domb))).

The CM-formula construction replaces the right hand
term by an abstract argumentThis yields

donyb)

run(stef{s,a), c- y) g.

The evaluation of
run(stef(s,a), c- y)

is run(stefstefs,a),c), y), i.e., we have to consider the
formula

don(b)
run(stegstefs,a),c),y) — &

CM-construction tries to apply the induction hypexsts
(10), but it fails, since there are no axioms tivatuld put

into relation the termstefs,a) and step(stefs,,a),c). This
means that a new lemma expressing this relationghip

necessary in order to complete the proof. The use o
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tos

induction on growing terms will, of course, not\solour
problem that recurs at each step:

~

o) run(sp,purgeg(a,domb)))

run(so,purgga- a’,domb)))
dom(b)

run(ste{so,@), c-y) ~ ‘run(so,purgea- c- y,don(b)))

d
run(so, @)

run(stefso,a), a’) do(b)

Nevertheless, this sequence of failures contains an
infinite sequence of ‘unprovable’ lemmas (in thentext of
the axioms we use). This ‘unprovability’ is expedsby
means of growing terms. A rather obvious solut®thus to
suppose that we miss a lemma in which the sequefce
these growing terms is generalized by a variableThis
new variable s replaces the following sequencerofviong
terms:

S
stef(so,a)
stefstef{%,a),c)

Thus the original theorem (UTh) is replaced by goal
to prove a formula into whichys$s replaced by s in the
function ‘run’ in the non-pivotal argumeifte., $ —» s in
run(s,,a) of (UTh)). It follows that our task to prove the
original theorem (UTh) is replaced by the goal tove

)

)run(so,purge(a,don(b))). (UThG)

Again the proof is by induction om. In the base step
isA. The goal is thus prove

run(so)

dom(b)
run(spA) 7 run(so,purgegA,domb))).  (11)
We introduce the pivotal argument here and thubave

to consider

run(s) do(b) g. (12)

By definition,run(s)) is s. This means that (12) changes

don(b)

~ " &. We check now whethedy can be transformed
into the right side of (11), that imn(sy,purggh,domb))).
Because of axioms (ax3) and (axl), the evaluatibn o
run(sg,purggA,domb))) is . A pivotal argument can be
replaced by s This gives that we are left with checking the

formula

s dot®) % (13)

We have no way to prove this and thus this formula

becomes a missing precondition to (UThG). In oterds,
we have to prove the formula (Lm1):

don(b)
S

donyb)
S = run(sa) T ‘run(s,purgga,domb))).
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In order to somewhat shorten this example, we elin t
that, if we try to prove (Lm1) following the stedsscribed
in Section Ill, we will again fail and generate yatother
infinite sequence of lemmas that leads us to tleviing
generalization (Lm2) in whichy& generalized to ‘t’ on both
sides of the implication. Note that, at the stdrbar proof,
this generalization is by no means intuitively alud and it
does deserve the effort we put in its discoveryZ):m

sdqm(b)t - run(s,a)dqm(b) run(t,purgga,domb))).

In order to prove lemma (Lm2), we again uSd/-
formula construction and this will lead to a succes
detailed in Appendix of [15]. The initial formul&Th) is a
particular instance of (Lm2) with s s t.

This means that initial Rushby's Unwinding Theorem,
i.e., the formula (UTh), is in a sense incompletarf the
theorem proving point of view. Indeed, the ava#ahkioms
are not sufficient to prove the given theorem gdtiginal
form. It has to be generalized. Note that Rushlgdes
directly to proving a generalized formula (Lm2) hatit
explaining the reasons and motivations for
generalization. The above presentation shows thatgur
approach, the motivations for this generalizatiore a
expressed as a (possibly infinite) sequence ofurtil
formulas that contain a sequence of terms and ttexses
increase regularly.

A proof of (Lm2) usingCMM as well as its compariso
with Rushby’s proof can be found in [15].

Summarizing, our example here shows that @id-
formula construction is particularly suited to fing missing
preconditions (as we found in formula (13)) andgasging a
need for useful generalizations leading to (Lm2)wa have
just shown. In other words, it is particularly effiee in
recovery from failures. Our paper [16] shows thatr o
approach is able to suggest even missing axiomssalt
above, in the future, integration of the suggestédms will
also be automatically handled.

n

V. FUTURE WORK

Despite our previous success with solving also non-

standard problems such as n-queens [9], manipnolaifo
blocks in robotics [16] and unusual reformulatiori o
Ackermann’s function [13], the practical completeseof

CMM is not yet obtained. We need to extend our

investigations also to non-atomic formulas; This is why
we continue in our research in the domain of infation
flow security that is nowadays important and chagjlag. As
a complementary work to [21] and [20], we plan &phin
the search of the necessary extensionSMM in this field

by the attempts for mechanized proofs of Unwinding

Theorems presented in Mantel's thesis [24] and, rgmo
others [18] [28] [19] and [25]. To our best knowdedthere
is no other existing work related to the automatafrthe
inductive proofs of these theorems. The challesdeeie the
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execution of proofs for theorems that contain mamgitive
relations. Our research question is: Do non-travasit
relations require specific tools that are not yegspnt in
CMM? Are there other problems that we did not meét yet

We are quite sure that our future investigations
concerning also the use 6&MM for formalizing deductive
theories requiring recursion will be very fruitfaind will
suggest new problems to be handled and new tooleto
developed in the field of Machine Learning and
Computational Creativity. Mantel's work [24] is ofirst
objective in this direction. Our research questisn Can
Mantel's work be enhanced by use of an ITP-systeah w
suited also for proving theorems containing exisién
quantifiers?

VI. CONCLUSION

Research shows (see [5]) that even a team of gjifbed-
people is unable to work together if they do notedep, in
what we call “research’s preliminary phase”, a camm
vocabulary for their already known particular peaotools
so that they become able — together — to develogva
custom-made vocabulary for their intended techrioldg
vision.

The main contribution of this paper is the intratitue of
one of fundamental notions for such research phadirg
phases of any technological vision made accessgibkbe
framework of SRPS, namely informal specification.

On our example of progressive building the fundasalen
of CMM for ITP we have illustrated that, due to symbiotic
and recursive character of SRPS, the missing twfoGMM
are informally specified whileby-hand experimenting
challenging examples. The difficulty of this by-ldan
experimentation lies in the following points:

All the experiences are performed strictly follogin
CM-formula construction and relying on previously
informally on-purpose specifiedtools (in our
example here: evaluation, generation of induction
hypotheses, application of induction hypotheses,
terms transformation and generalization), i.e.s¢he
experiences are not led by the personal talennof a
experimenter.

Each observation concerns not only specifying
(informally) missing tools (in our example here:
handling non-recursive formulas as explained in
[15]) but also refining informal specifications of
already introduced tools (in our example here: some
new features of generalization were found; their
presentation is out of scope of this paper). This
explains and justifies our by-hand research instéad
automated experiences in which subtle patterns may
be lost.

The talent (if any) of experimenter is strictly vegd

to looking for patterns that either have nothingito
with the semantic of the domain in which ITP is
performed or, if this is not the case, the expenitae
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must justify their adequate introduction into our
Theory of Constructible Domains [11] (this is a
particular theory of representation of definitioofs

recursive functions and predicates suitable for

CMM); in other words, no domain or problem
dependent
experiments.
This means that persistent and relatively humbdgesyic
creativity and goal awareness are the main featnfresp-
thinking.
This paper explains that there should be no cdnflic
between Newtonian and Cartesian srp-thinking. Baghly
to different problems, they are complementary. prablem
arises only when the Newtonian criteria are apptedhe
evaluation of the research on SRPS. This manifestsely
by Newtonians rejecting the necessary long termhdnyd
experimenting and informally specified notion oféptical
completeness’.
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