
Cartesian Handling Informal Specifications
in Incomplete Frameworks

Marta Franova
LRI, UMR8623 du CNRS & INRIA Saclay

Bât. 660, Orsay, France
email: mf@lri.fr

Yves Kodratoff
LRI, UMR8623 du CNRS & INRIA Saclay

Bât. 660, Orsay, France
email: yvkod@gmail.com

Abstract— This paper introduces and illustrates a fundamental
notion, namely informal specification, for creating tools
developed as symbiotic recursive pulsating systems (SRPS), in
the framework of Inductive Theorem Proving and Intelligent
Systems. It illustrates the use of this fundamental notion in
scientific systemic creativity relative to theorem proving. We
deal simultaneously with the meta-level design of a system that
proves theorems automatically.

Keywords-informal specification; intelligence by design;
inductive theorem proving; Cartesian Intuitionism; symbiotic
recursive systems; Constructive Matching Methodology.

I. INTRODUCTION

Often, a direct way to achieve a proof requiring the use
of the induction principle is not obvious. It might even be
impossible to prove a formula within a given framework
while an appropriate detour or a switch in interpretation and
in the method of thinking may lead to a success. This
problem of changing the framework is also relevant to the
design of an intelligent inductive theorem proving system.

There is a largely adopted management approach based
on so-called “SMART goals,” where ‘S’ in SMART stands
for ‘specific’ and it implicitly means that there is a kind of
formal framework and a reproducible or nearly obvious
available know-how to reach such a goal. ‘T’ stands for
time-bounded and it means that there is a limit date before
which the result is expected. ‘M’ stands for measurable, ‘A’
stands for achievable, ‘R’ stands for realistic.

We shall however see that a systematic use of SMART
goals should not always be the way by which invention
comes to life. Symbiotic recursive pulsating systems (SRPS)
and their corresponding Cartesian paradigm [14] defy this
SMART approach, though it is established and today more
or less required in Science. Handling or even creating SRPS
requires a detour from purely formal thinking expected by
exact sciences, a switch from linear synergic interpretations
advocated by analysis and synthesis, a switch from
observations of ‘pure’ facts to creative interpretations, a
switch from use of established know-how to creating on-
purpose know-how. Handling or even creating SRPS require
their own method of thinking that is not as much
reproducible as the usual trend of sciences would require.
From an immediate-gratification perspective this might lead
to the option that the best way to handle them is to ignore

them. Hopefully, the rich potential of these systems
illustrated in this paper might suggest to adopt a more
positive attitude towards these systems.

The problem lies in the fact that SRPS do not rely on a
linearly ordered sequence of notions that could be taught in
isolated or progressive manner. In a sense, they can be
understood only by already using them, which obviously
sounds contradictory. In order to dissolve this contradiction,
we need accepting to work with loosely specified tools,
followed by a patient work of successive try-fail and recover
steps. This has to take place until the whole process holds
together and leads to the desired solution. When this process
is completed, the former loosely defined specifications are
transformed into exact ones. We call symbiotic recursive
pulsating thinking (srp-thinking) this way of thinking.

We have previously introduced the term Cartesian
thinking for srp-thinking and Newtonian thinking for the
other, more usual, one [14]. Both are useful because they
apply to solving different problems. Newtonian thinking
allows, by words of Newton himself, “standing upon the
shoulders of giants”. Newtonian thinking is certainly a
SMART approach suitable for solving problems that can be
tackled on a modular basis, by analysis and synthesis.
Because of the presence of recursion, what we call Cartesian
thinking is based on self-justification and self-reference. In
terms of deductive systems we can say that Newtonian
thinking is a derivation of a knowledge contained implicitly
in the given axioms (i.e., these giants’ shoulders) while
Cartesian thinking focuses on creating a relevant axiomatic
system for solving a particular problem. In terms of
technological development, Newtonian thinking is concerned
with innovation (building the intended products relying on
already existing knowledge; handling ‘truth’) while
Cartesian thinking is applied to the cases when the intended
product seems utopian or even impossible with respect to the
existing available knowledge. It consists in developing new
custom-made technologies that were not present so far.
Cartesian thinking represents an attempt to create a (or re-
create) ‘truth’ and a ‘desired truth’.

The goal of this paper is to bring introductory insights
(via an illustration) concerning one fundamental notion of
the SRPS context, namely informal specification. This task is
not simple in face of prevailing Newtonian paradigm and its
particular criteria that are used while evaluating either the
process of a scientific research (i.e., how the research should

100Copyright (c) IARIA, 2016. ISBN: 978-1-61208-518-0

INTELLI 2016 : The Fifth International Conference on Intelligent Systems and Applications (includes InManEnt 2016)

be done) or the final product (i.e., how the result should
look-like). Indeed, Newtonian approach requires that
research progresses linearly (or modularly) and the results
are – in Computer Science – either programs understood in
their usual modular sense or proofs about standard properties
of these programs. SRPS fail to verify these criteria since
they are recursive and symbiotic. Moreover, the results are
system-procedures made with sub-procedures (we call them
“constructors”) that are symbiotic in the same manner as it is
the case for Natural Numbers (NAT). NAT are determined
(and computed) via the symbiotic constructors 0, successor
(suc) and NAT themselves. Newtonian thinking often
ignores this symbiotic and recursive character of NAT since
their representation is possible in seemingly modular form.
The same can be said about SRPS. They can be represented
in an apparently modular form, but the process of their
creation is purely symbiotic and recursive. In NAT the
constructors are created via a process that can be described
by the informal specifications: Creation(0) =
Creation(0,suc,NAT), Creation(suc) = Creation(0,suc,NAT)
and Creation(NAT) = Creation(0,suc,NAT). This is a
symbiotic creation which is analogous to the well-known
egg-hen problem: what is created first? Obviously this
problem has no known solution. However, a symbiotic
solution for this problem is expressed as the simultaneous
presence of both hen and egg from the start of the
implementation. Let us now describe a visual problem which
does have an obvious symbiotic solution. Consider the
following well-known picture:

On internet this picture is known as
‘young lady and old woman illusion’.

It represents, at the same time, a young lady and an old
woman. For some people this is hard to see at once and thus
we shall use the following two pictures that help to perceive
both women in the above picture:

young
woman
(yw)

old
woman
(ow)

The creation of such a picture can be described as a
symbiotic creation by which the author before drawing has
foreseen the final picture. In other words, the author started
with an informal specification “I wish to draw an ambiguous
figure and I am almost sure that this will be possible.” This is
the first step of the creation process. The second step is a
creative preprocessing by which he foresees the final picture
expressed by a formalized specification: Creation(yw) =
Creation(yw,ow) and Creation(ow) = Creation(yw,ow). The
drawing (implementation) process is the third and last stage
of creation. The creative preprocessing contains thus
research work coming from the informal idea of a symbiotic
picture to the presence of the effective tools to give a
concrete implementable form to this idea.

We can complete now what has been said above. This
paper concerns the introduction of the notion of informal
specification and brings introductory insights on the
preprocessing stage in Cartesian design of a particular
SRPS. Therefore, it is necessary to be prepared to a non
linear symbiotic presentation and to simultaneously consider

• design and meta-design
• action and meta-action
• inseparability of

o concrete proof
o abstract overall design.

The paper is organized in the following manner. Section

II presents the notion of informal specification and an
example of the use of this notion in the domain of Inductive
Theorem Proving. Section III presents our fundamental
procedure (a design constructor) used to reach this goal at
the design level. Section IV illustrates this procedure by
applying it to the specification of a theorem that will show
itself to be, in a particular way, incomplete and thus
informal. Section V presents our future research projects.

II. INFORMAL SPECIFICATIONS IN INCOMPLETE

FRAMEWORKS

A. Informal Specification as a Way of Expressing a Goal

Due to incompleteness results of Gödel [17], to automate
proving theorems by induction (ITP), ITP-goal, is
unachievable in the context of contemporary mathematics.
However, the fact that many apparently unsolvable problems
are actually solved when their context or representation are
changed has become public knowledge several decades ago
when Smullyan [30] started to make game of such
transformations. With respect to practical use of ITP for
Program Synthesis (via deductive approach pioneered by
Manna and Waldinger [23]) and for search of missing
axioms in incomplete theories [16], a reasonable
implementation of ITP is highly desirable goal (or
technological vision). Therefore, in early eighties, building
on our previous experience with creating deductive systems
and conceptual switches in history of mathematics, we have
moved this goal from purely Gödel’s mathematical context
into ‘technological’ context by reformulating the above ITP-
goal into the following ITP-system goal: “Automate ITP as
much as possible.” The former goal takes into account the
underlying Gödel’s formal context. Our ITP-system goal
leaves some freedom for interpreting and addressing in a
non-standard manner not only the problem “How this should
be done?” but also the problem “How the solution should
look like?” We call informal specification a description of
any reasonable goal that has this particular property of
allowing non-standard criteria for the above two problems
(or a description that is in a sense incomplete). We call these
problems pragmatic bias in contrast to academic bias that
expresses, even though implicitly, the necessity for the use of
standard criteria for solving these problems.

101Copyright (c) IARIA, 2016. ISBN: 978-1-61208-518-0

INTELLI 2016 : The Fifth International Conference on Intelligent Systems and Applications (includes InManEnt 2016)

It must be noted that there can be no ‘Impossible!’ for an
informally specified reasonable goal. The only negative
statement can be pronounced and that is “I do not know.” It
depends only on us if we add “But I will,” or not. With
respect to the intended applications of our resulting system
(Program Synthesis (PS) and completing incomplete
theories), we expressed our intention to add this answer
when we realized that the best way to tackle the ITP-system
goal is to not search for a some clever decision procedure
which will in principle face Gödel’s incompleteness, but a
procedure or system that, in failure cases, will provide
sufficient conditions for recovery, i.e., increasing the
possibility of proving the intended formula. Our approach is
thus very different from academic (or Newtonian)
approaches to ITP that consider strictly the framework
limited by Gödel’s results, such as the system ACL2 [3], the
system RRL [22], the system NuPRL [6], the Oyster-Clam
system [4], the extensions of ISABELLE [27], the system
COQ [26] and Matita Proof Assistant [1].

B. Systemic Background and Guiding Principles for ITP-
system goal

We have found that Descartes’ method is perfectly
suitable for our task. A short systemic description of
Descartes’ method is given in [14]. More precisions are
given in [12].

This systemic Cartesian background allows us to
summarize the action-guiding principles used in order to
conceive an ITP-system:
(GP1) We welcome incompleteness for practical reasons

since it guarantees progress and evolution.
Moreover, each missing axiom discovered hints at a
more relevant interpretation. Therefore, a unified
method of discovery of missing axioms is an asset.

(GP2) We conceive a procedure-system finding sufficient
conditions in case of failure and not a decision
procedure (see Section III).

(GP3) We conceive an ITP-system as a symbiotic
recursive pulsative system (see [14]).

(GP4) Due to the symbiotic character of tools, we develop
first a methodology for ITP, which, when its
‘practical completeness’ will be achieved, a first
version of ITP-system will be implemented (this
refers to the implemented experimental version 0.3
we presented in [10]).

(GP5) The same methodology is conceived for ITP and PS
which implies that we adopt no efficiency criteria
for synthesized programs.

(GP6) Consequence of the previous principles: We create
a database of solutions to non-trivial examples
obtained with our methodology. These examples
often provide informal specifications of tools that
must become part of our methodology. The price to
pay is that, in contrast to Newtonian approaches, the
real implementation may start only when a plateau
is reached in building this database. Such a plateau

happens when no new informal specifications of
missing tools are discovered (see more in Section
VI).

Considering the task formulated in (GP2), and using
Beth’s method of deductive tableaux [2] we understood that
the first problem to be dealt with is specified informally as
finding a method to prove atomic formulas in such a way
that it provides, in case of failure, sufficient conditions for
provability of this formula. Our solution to this particular
tool-specification is our CM-formula construction (recalled
in the next Section), where CM stands for Constructive
Matching. Since CM-formula construction is the basis (or
basic symbiotic constructor) of our methodology (see
(GP5)), we call it Constructive Matching methodology
(CMM). CMM is thus our intended solution for the ITP-
system goal.

In the next Section, we recall CM-formula construction
so that, in Section IV, we can illustrate its use for solving
another example (see (GP6)). This example is interesting
since it concerns the proof of the so-called Unwinding
Theorem met in the domain of information flow security and
developed in [29]. In [15] we present the methodological
aspects of this problem. In the present paper we want to
illustrate how CMM, via CM-formula construction, handles
informal specification of the given Rushby’s theorem.
Indeed, as it will become clear, the initial formulation of
Rushby’s Unwinding Theorem is, in some sense, incomplete.

III. CM-FORMULA CONSTRUCTION IN ITP

In this Section we are going to present the basic
mechanism for the CM-formula construction originally
introduced in [7].

For simplicity, let us suppose that the formula to be
proven has two arguments, that is to say that we need to
prove that F(t1,t2) is true, where F is a predicate and t1, t2 are
terms of the axiomatic theory in use. We introduce a new
type of arguments in the atomic formula that has to be
proven true. We call them pivotal arguments, since
focusing on them enables to reduce what is usually called the
search space of the proof, and to decompose complex
problems (such as strategic aspects of a proof) on
conceptually simpler problems (such as a transformation of a
term into another, possibly finding a sufficient conditions
etc.). These pivotal arguments are denoted by ξ (or ξ’ etc.) in
the following.

In the first step, the pivotal argument replaces, in a purely
syntactical way, one of the arguments of the given formula.
The first problem is thus to choose which of the arguments
will be replaced by a pivotal argument ξ. A complete
algorithmic solution to this problem is not yet proposed,
since it will be part of a complete implementation of CMM
[8]. Nevertheless, a simple informal algorithm is easily
obtained in performing a rough analysis of the terms: the
most complex one should become the pivot – precisely
defining complexity is still left to a human person. Its

102Copyright (c) IARIA, 2016. ISBN: 978-1-61208-518-0

INTELLI 2016 : The Fifth International Conference on Intelligent Systems and Applications (includes InManEnt 2016)

automation will be tackled with in the final phasis of our
research.

In this presentation, let us suppose that we have chosen to
work with F(t1,ξ), the second argument being chosen as the
pivotal one. In an artificial, but custom-made manner, we
state C = {ξ │ F(t1,ξ) is true}. Except the syntactical
similarity with the formula to be proven, there is no semantic
consideration in saying that F(t1,ξ) is true. It simply
represents a ‘quite-precise’ purpose of trying to go from
F(t1,ξ) to F(t1,t2) while preserving the truth of F(t1,ξ). We
thus propose a detour that will enable us to prove also the
theorems that cannot be directly proven by the so-called
simplification Newtonian methods, i.e., without this detour.

In the second step, via the definition of F and those
involved in the formulation of the term t1, we look for the
features shown by all the ξ such that F(t1,ξ) is true. Given the
axioms defining F and the functions occurring in t1, we are
able to obtain a set C1 expressing the conditions on the set
{ ξ } for which F(t1,ξ) is true. In other words, calling ‘cond’
these conditions and C1 the set of the ξ such that cond(ξ) is
true, we define C1 by C1 = {ξ │ cond(ξ)}. We can also say
that, with the help of the given axioms, we build a ‘cond’
such that the formula: ∀ξ ∈ C1, F(t1,ξ) is true.

In the third step, using the characteristics of C1 obtained
in the second step, the induction hypothesis is applied. Thus,
we build a form of ξ such that F(t1,ξ) is related to F(t1,t2) by
using the induction hypothesis. For the sake of clarity, let us
call ξC the result of applying the induction hypothesis to C1
resulting in its subset C2 = { ξC │ cond2(ξC)}. C2 is thus such
that F(t1,ξC) is true. We are still left with a work to do: prove
that t2 belongs to C2. In the case that t2 does not contain
existential quantifiers, this is done by verifying cond2(t2). In
the that case t2 contains existentially quantified variables, this
is done by a new detour. In the first step, we try to solve the
problem cond2(ξC) ⇒ ∃σ (ξC = σt2), where σ has to provide a
suitable instantiation for the existentially quantified variables
in t2. With such an obtained σ we have then to prove
F(t1,σt2). In other words, we have to prove that ξC and t2 can
be made identical (modulo substitution) when cond2(ξC)
holds.

In the case of the success, this completes the proof. In the
case of a failure, a new lemma cond2(ξC) ⇒ ∃σ (ξC = σt2)
with an appropriate quantification of the involved variables
is generated. In some cases, an infinite sequence of ‘failure
formulas’, i.e., lemmas or missing axioms, may be
generated. CMM is conceived in such a way that the obtained
sequence is well-behaving (see [7]) so that a human person
or an automated tool (in the future) be driven in the choice of
a suitable generalization. This formula logically covers the
infinite sequence of lemmas or missing axioms and it thus
fills the gap that cannot be overcome by a purely deductive
formal approach to theorem proving. In the case of
generation of missing axioms, the process of completion the
initial theory is performed by ‘pulsation’, i.e., by adding then
applying the new axioms to the domain theory. The resulting
system is logically coherent by construction. In the future, all

the relevant and necessary tools will be designed (with the
help of Machine Learning, Big Data and other relevant
domains) to eliminate human interaction with the decision of
the appropriateness of suggested missing axioms. This is
useful for applications where human interaction is
impossible. Consider, for instance, space explorations and
constructions by robots.

IV. EXAMPLE : PROOF FOR AN UNWINDING THEOREM

A. State-based Information Flow Control – Basic
Knowledge

In this Section we present the formal framework for the
so-called unwinding theorem presented in [29]. Then, in the
next Section, we present the proof of Rushby's unwinding
theorem as performed by CM-formula construction.

The proof presented is interesting from the man-machine
interaction point of view since it illustrates how a human
expert of the domain theory is prompted to find a suitable
generalization of a potentially infinite sequence of terms
without being asked to know the mechanism of CM-formula
construction. It is known that, in non-trivial cases, academic
approaches require from the user to be aware of the proof
assistant mechanisms in order to guide it towards success. In
our completed system, the generalizations will be performed
automatically.

A system M is composed of a set S of states, with an
initial state s0 ∈ S, a set A of actions, and a set O of outputs,
together with the functions step and output: step: S × A → S,
output: S × A → O. We shall use the letters ... s, t, ... to
denote states, letters a, b, ... from the front of the alphabet to
denote actions, and Greek letters α, β, ... to denote sequences
of actions. Actions can be thought of as “inputs” or
“instructions” to be performed by the system; step(s,a)
denotes the state of the system resulting by performing
action a in state s, and output(s,a) denotes the result returned
by the action. In the following, λ denotes an empty sequence
and ° denotes a concatenation. We shall consider an
extension of the function step to sequence of actions in the
form of a function run: S × A* → S, defined by

 (ax1) run(s,λ) = s
 (ax2) run(s,a °α) = run(step(s,a),α)
The agents or subjects interacting with the system and

observing the results obtained will be grouped into “security
domains”. Security domains represent clearances in terms of
persons and classifications in terms of data. We thus assume
a set d of security domains, and a function dom: A → d that
associates a security domain with each action. We shall use
letters … u, v, w … to denote domains.

Information is said to flow from a domain u to a domain
v when some actions submitted by domain u cause the
information about the behavior of the system perceived by
domain v to be different from that perceived when those
actions are not present. We shall consider the flow of

103Copyright (c) IARIA, 2016. ISBN: 978-1-61208-518-0

INTELLI 2016 : The Fifth International Conference on Intelligent Systems and Applications (includes InManEnt 2016)

information as a reflexive relation -� on d (i.e., u -� u for
each domain u.)

A security policy will be specified by this relation on d.
We use -/� to denote the complement relation i.e., a closed
negation of -� on d × d, that is -/� = (d × d) \ -� , where \
denotes set difference. We speak of -� and -/� as the
interference and noninterference relations, respectively. A
policy is said to be transitive if its interference is transitive.

We say that domain u interferes with domain v if u -� v.
We say that an action interferes with domain v if there is
dom(a) such that dom(a) interferes with v, i.e., dom(a) -� v.

An action a is said to be required noninterfering with
domain v if dom(a) -/� v for all action sequences that
contain a. The function purge: A* × d → A* is defined as
follows

(ax3) purge(λ,v) = λ
(ax4) purge(a °α,v) = a ° purge(α,v), if dom(a) -� v
(ax5) purge(a °α,v) = purge(α,v), if dom(a) -/� v.

The machine is secure if a given domain v is unable to
distinguish between the state of the machine after it has
processed a given action sequence, and the state after
processing the same sequence purged of actions required to
be noninterfering with v.

Formally, the security is identified with the requirement
that output(run(s0,α),a) = output(run(s0,purge(α,dom(a))),a).

For convenience, we introduce the functions do: A* → S
and test: A* × A → O to abbreviate the expressions in the
last requirement: do(α) = run(s0,α), and test(α,a) =
output(do(α),a). Then we say that system M is secure for the
policy -� if

 test(α,a) = test(purge(α,dom(a)),a) (1)

for all actions sequences α and actions a.
The non-interference definition of security is expressed

“globally” in (1) in terms of sequences of actions and state
transitions. In order to obtain sufficient “local” conditions for
verifying the security of systems, Rushby introduces a set of
conditions on individual state transitions.

A system M is view-partitioned if, for each domain u

from d, there is an equivalence relation ~u on S. These
equivalence relations are said to be output consistent if

 s ~dom(a)
 t ⇒ output(s,a) = output(t,a). (2)

The following result allows relating the output
consistency to security of the system.

Lemma 1:
Let -� be a policy and M a view partitioned, output

consistent system such that

 do(α) ~u do(purge(α,u). (3)

Then M is secure for -�.
Proof: see [29].

Let M be a view-partitioned system and -� a policy. We
say that M locally respects -� if

 dom(a) -/� u ⇒ s ~u step(s,a) (4)

and that M is step consistent if

 s ~u t ⇒ step(s,a) ~u step(t,a). (5)

The following theorem shows that the local conditions
formulated are sufficient to guarantee security.

Theorem 1: (Unwinding Theorem)
Let -� be a policy and M a view-partitioned system that

is output consistent, step consistent, and locally respects -�.
Then M is secure for -�.

We have thus recalled the basic knowledge formalizing
the information needed by an automated theorem prover.

B. CMM Suggests a Generalization Necessary to Prove
the Unwinding Theorem

As we said above, we shall suppose that system M is
output consistent, step consistent, and locally respects -�. To
prove this theorem it is sufficient to prove that (3) holds.

Using our above CM-formula construction algorithm, we
shall study what operations have to be performed in order to
prove formula (3) introduced above:

 do(α) ~dom(b)
 do(purge(α,dom(b))), (3)

for arbitrary domain dom(b) and state α.
By definition of do, do(α) is run(s0,α) and similarly for

do(purge(α,dom(b))). We thus obtain that the goal is to
prove the formula (original theorem)

 run(s0,α) ~dom(b)
 run(s0,purge(α,dom(b))). (UTh)

Let us consider a proof by induction on α. This means to
consider the base step for α = λ and the induction step for α

= a ° α’, where a is an arbitrary action and α’ is a sequence
of actions. As the proof for the base step is easy, we focus on
the proof of the induction step.

In the induction step, α is a ° α’. The induction
hypothesis is

 run(s0,α’) ~dom(b)
 run(s0,purge(α’,dom(b))). (6)

The goal is to prove

 run(s0,a ° α’) ~dom(b)
 run(s0,purge(a ° α’,dom(b))). (7)

using the induction hypothesis and the properties of M.
The CM-formula construction requires that we replace

one of arguments of (7) by pivotal argument. Since the term
at the right side is more complex than the term on the left
side, we chose to replace this complex term by the pivotal
argument ξ. This gives

104Copyright (c) IARIA, 2016. ISBN: 978-1-61208-518-0

INTELLI 2016 : The Fifth International Conference on Intelligent Systems and Applications (includes InManEnt 2016)

 run(s0,a ° α’) ~dom(b)
 ξ. (8)

By definition,

run(s0,a ° α’) = run(step(s0,a), α’)

This gives

 run(step(s0,a), α’) ~dom(b)
 ξ. (9)

We would like now to apply the induction hypothesis (6).
This means to compare run(s0,α’) in (8) and run(step(s0,a),
α’) in the last formula (9). This fails. Therefore, CM-formula
construction generates a new lemma expressed in terms of
the failure formula

run(step(s0,a), α’) ~dom(b)
 run(s0,purge(a ° α’,dom(b))) .

For simplicity of our presentation here we do not
evaluate the term purge(a ° α’,dom(b)).

In the last formula, all the variables are universally
quantified. The proof is by induction and the variable α’
becomes the induction variable. In the base step, α’ = λ and

the induction step for α’ = c ° γ, where c is an arbitrary action

and γ is a sequence of actions.
The base step for this new goal would lead to discovery

of a missing precondition. In this paper we would like to
insist more on the discovery of a need for a generalization.
Therefore, we shall skip the base step and we shall go
directly to the induction step.

In the induction step, since α’ = c ° γ, the induction
hypothesis is the formula

 run(step(s0,a), γ) ~dom(b)
 run(s0,purge(a ° γ,dom(b))). (10)

and the goal to prove is the formula

run(step(s0,a), c ° γ) ~dom(b)
run(s0,purge(a ° c ° γ,dom(b))).

The CM-formula construction replaces the right hand
term by an abstract argument ξ. This yields

run(step(s0,a), c ° γ) ~
dom(b)

 ξ.
The evaluation of

run(step(s0,a), c ° γ)

 is run(step(step(s0,a),c), γ), i.e., we have to consider the
formula

run(step(step(s0,a),c), γ) ~dom(b)
 ξ.

CM-construction tries to apply the induction hypothesis
(10), but it fails, since there are no axioms that would put
into relation the terms step(s0,a) and step(step(s0,a),c). This
means that a new lemma expressing this relationship is
necessary in order to complete the proof. The use of

induction on growing terms will, of course, not solve our
problem that recurs at each step:

run(s0,α) ~dom(b)
 run(s0,purge(α,dom(b)))

run(step(s0,a), α’) ~dom(b)
 run(s0,purge(a ° α’,dom(b)))

run(step(s0,a), c ° γ) ~dom(b)
run(s0,purge(a ° c ° γ,dom(b)))
…

Nevertheless, this sequence of failures contains an

infinite sequence of ‘unprovable’ lemmas (in the context of
the axioms we use). This ‘unprovability’ is expressed by
means of growing terms. A rather obvious solution is thus to
suppose that we miss a lemma in which the sequence of
these growing terms is generalized by a variable ‘s’. This
new variable s replaces the following sequence of growing
terms:

s0

step(s0,a)
step(step(s0,a),c)

…
Thus the original theorem (UTh) is replaced by the goal

to prove a formula into which s0 is replaced by s in the
function ‘run’ in the non-pivotal argument (i.e., s0 → s in
run(s0,α) of (UTh)). It follows that our task to prove the
original theorem (UTh) is replaced by the goal to prove

 run(s,α) ~dom(b)
 run(s0,purge(α,dom(b))). (UThG)

Again the proof is by induction on α. In the base step, α
is λ. The goal is thus prove

 run(s,λ) ~dom(b)
 run(s0,purge(λ,dom(b))). (11)

We introduce the pivotal argument here and thus we have
to consider

 run(s,λ) ~dom(b)
 ξ. (12)

By definition, run(s,λ) is s. This means that (12) changes

to s ~dom(b)
 ξ. We check now whether ξ can be transformed

into the right side of (11), that is run(s0,purge(λ,dom(b))).
Because of axioms (ax3) and (ax1), the evaluation of
run(s0,purge(λ,dom(b))) is s0. A pivotal argument can be
replaced by s0. This gives that we are left with checking the
formula

 s ~dom(b)
 s0. (13)

We have no way to prove this and thus this formula
becomes a missing precondition to (UThG). In other words,
we have to prove the formula (Lm1):

 s ~dom(b)
 s0 ⇒ run(s,α) ~dom(b)

run(s0,purge(α,dom(b))).

105Copyright (c) IARIA, 2016. ISBN: 978-1-61208-518-0

INTELLI 2016 : The Fifth International Conference on Intelligent Systems and Applications (includes InManEnt 2016)

In order to somewhat shorten this example, we can tell
that, if we try to prove (Lm1) following the steps described
in Section III, we will again fail and generate yet another
infinite sequence of lemmas that leads us to the following
generalization (Lm2) in which s0 is generalized to ‘t’ on both
sides of the implication. Note that, at the start of our proof,
this generalization is by no means intuitively obvious and it
does deserve the effort we put in its discovery (Lm2):

 s ~dom(b)
 t ⇒ run(s,α) ~dom(b)

 run(t,purge(α,dom(b))).

In order to prove lemma (Lm2), we again use CM-
formula construction and this will lead to a success as
detailed in Appendix of [15]. The initial formula (UTh) is a
particular instance of (Lm2) with s = s0 = t.

This means that initial Rushby’s Unwinding Theorem,
i.e., the formula (UTh), is in a sense incomplete from the
theorem proving point of view. Indeed, the available axioms
are not sufficient to prove the given theorem in its original
form. It has to be generalized. Note that Rushby’s goes
directly to proving a generalized formula (Lm2) without
explaining the reasons and motivations for this
generalization. The above presentation shows that, in our
approach, the motivations for this generalization are
expressed as a (possibly infinite) sequence of failure
formulas that contain a sequence of terms and these terms
increase regularly.

A proof of (Lm2) using CMM as well as its comparison
with Rushby’s proof can be found in [15].

Summarizing, our example here shows that the CM-
formula construction is particularly suited to finding missing
preconditions (as we found in formula (13)) and suggesting a
need for useful generalizations leading to (Lm2), as we have
just shown. In other words, it is particularly effective in
recovery from failures. Our paper [16] shows that our
approach is able to suggest even missing axioms. As said
above, in the future, integration of the suggested axioms will
also be automatically handled.

V. FUTURE WORK

Despite our previous success with solving also non-
standard problems such as n-queens [9], manipulation of
blocks in robotics [16] and unusual reformulation of
Ackermann’s function [13], the practical completeness of
CMM is not yet obtained. We need to extend our
investigations also to non-atomic formulas, etc. This is why
we continue in our research in the domain of information
flow security that is nowadays important and challenging. As
a complementary work to [21] and [20], we plan to help in
the search of the necessary extensions of CMM in this field
by the attempts for mechanized proofs of Unwinding
Theorems presented in Mantel’s thesis [24] and, among
others [18] [28] [19] and [25]. To our best knowledge there
is no other existing work related to the automation of the
inductive proofs of these theorems. The challenge is here the

execution of proofs for theorems that contain non-transitive
relations. Our research question is: Do non-transitive
relations require specific tools that are not yet present in
CMM? Are there other problems that we did not meet yet?

We are quite sure that our future investigations
concerning also the use of CMM for formalizing deductive
theories requiring recursion will be very fruitful and will
suggest new problems to be handled and new tools to be
developed in the field of Machine Learning and
Computational Creativity. Mantel’s work [24] is our first
objective in this direction. Our research question is: Can
Mantel’s work be enhanced by use of an ITP-system well
suited also for proving theorems containing existential
quantifiers?

VI. CONCLUSION

Research shows (see [5]) that even a team of super-gifted
people is unable to work together if they do not develop, in
what we call “research’s preliminary phase”, a common
vocabulary for their already known particular personal tools
so that they become able – together – to develop a new
custom-made vocabulary for their intended technological
vision.

The main contribution of this paper is the introduction of
one of fundamental notions for such research preliminary
phases of any technological vision made accessible in the
framework of SRPS, namely informal specification.

On our example of progressive building the fundamentals
of CMM for ITP we have illustrated that, due to symbiotic
and recursive character of SRPS, the missing tools of CMM
are informally specified while by-hand experimenting
challenging examples. The difficulty of this by-hand
experimentation lies in the following points:

• All the experiences are performed strictly following
CM-formula construction and relying on previously
informally on-purpose specified tools (in our
example here: evaluation, generation of induction
hypotheses, application of induction hypotheses,
terms transformation and generalization), i.e., these
experiences are not led by the personal talent of an
experimenter.

• Each observation concerns not only specifying
(informally) missing tools (in our example here:
handling non-recursive formulas as explained in
[15]) but also refining informal specifications of
already introduced tools (in our example here: some
new features of generalization were found; their
presentation is out of scope of this paper). This
explains and justifies our by-hand research instead of
automated experiences in which subtle patterns may
be lost.

• The talent (if any) of experimenter is strictly reduced
to looking for patterns that either have nothing to do
with the semantic of the domain in which ITP is
performed or, if this is not the case, the experimenter

106Copyright (c) IARIA, 2016. ISBN: 978-1-61208-518-0

INTELLI 2016 : The Fifth International Conference on Intelligent Systems and Applications (includes InManEnt 2016)

must justify their adequate introduction into our
Theory of Constructible Domains [11] (this is a
particular theory of representation of definitions of
recursive functions and predicates suitable for
CMM); in other words, no domain or problem
dependent heuristics are allowed in by-hand
experiments.

This means that persistent and relatively humble systemic
creativity and goal awareness are the main features of srp-
thinking.

This paper explains that there should be no conflict
between Newtonian and Cartesian srp-thinking. Both apply
to different problems, they are complementary. The problem
arises only when the Newtonian criteria are applied to the
evaluation of the research on SRPS. This manifests namely
by Newtonians rejecting the necessary long term by-hand
experimenting and informally specified notion of ‘practical
completeness’.

ACKNOWLEDGMENTS

Michèle Sebag and Dieter Hutter contributed ideas to
improve this paper. This conference referees’ feedback is
gratefully acknowledged.

REFERENCES
[1] A. Asperti, C. S. Coen, E. Tassi, S. Zacchiroli, “User

Interaction with the Matita Proof Assistant,” Journal of
Automated Reasoning, Vol. 39, Issue 2, pp. 109-139, 2007.

[2] E. Beth,The Foundations of Mathematics; North-
Holland,1959.

[3] R. S. Boyer, J S. Moore, A Computational Logic Handbook;
Academic Press, Inc., 1988.

[4] A. Bundy, F. Van Harnelen, C. Horn and A. Smaill, “The
Oyster–Clam system,” in Stickel, M.E. (ed.) 10th
International Conference on Automated Deduction, vol. 449
of Lecture Notes in Artificial Intelligence, pp. 647–648.
Springer, 1990.

[5] R. Chauvin, Les Surdoués (Super-gifted); Stock, 1975.
[6] R. L. Constable, Implementing Mathematics with the Nuprl

proof development system; Prentice-Hall, Inc., Englewood
Clifs, New Jersey, 1986.

[7] M. Franova, “CM-strategy : A Methodology for Inductive
Theorem Proving or Constructive Well-Generalized Proofs,”
in A. K. Joshi, (ed), Proceedings of the Ninth International
Joint Conference on Artificial Intelligence; Los Angeles, pp.
1214-1220, 1985.

[8] M. Franova, “Fundamentals for a new methodology for
inductive theorem proving: CM-construction of atomic
formulae,” in Y. Kodratoff (ed.), Proceedings of the 8th
European Conference on Artificial Intelligence; August 1-5,
Pitman, London, United Kingdom, pp. 137-141, 1988.

[9] M. Franova, “An Implementation of Program Synthesis from
Formal Specifications,” in Y. Kodratoff, (ed.), Proceedings of
the 8th European Conference on Artificial Intelligence;
August 1-5, Pitman, London, United Kingdom, pp. 559-564,
1988.

[10] M. Franova, “Precomas 0.3 User Guide,” Rapport de
Recherche No.524, L.R.I., Université de Paris-Sud, Orsay,
France, October, 1989.

[11] M. Franova, “A Theory of Constructible Domains - a
formalization of inductively defined systems of objects for a
user-independent automation of inductive theorem proving,

Part I,” Rapport de Recherche No.970, L.R.I., Université de
Paris-Sud, Orsay, France, Mai, 1995.

[12] M. Franova, Créativité Formelle: méthode et pratique -
Conception des systèmes “informatiques” complexes et
Brevet Épistémologique (Formal Creativity : method and
practice – Design of complex “computational” systems and
Epistemological Patent), Publibook, 2008.

[13] M. Franova, “A construction of a definition recursive with
respect to the second variable for the Ackermann’s function,”
Rapport de Recherche No.1511, L.R.I., Université de Paris-
Sud, Orsay, France, 2009.

[14] M. Franova, “Cartesian versus Newtonian paradigms for
recursive program synthesis,” International Journal on
Advances in Systems and Measurements, vol. 7, no 3&4, pp.
209-222, 2014.

[15] M. Franova, D. Hutter and Y. Kodratoff, “Algorithmic
conceptualization of tools for proving by induction «
Unwinding » Theorems – A Case Study,” Rapport de
Recherche N° 1587, L.R.I., Université de Paris-Sud, Orsay,
France, Mai 2016.

[16] M. Franova and Kooli M., “Recursion Manipulation for
Robotics: why and how?”; in R. Trappl, (ed.), Cybernetics
and Systems ’98; proc. of the Fourteenth Meeting on
Cybernetics and Systems Research, Austrian Society for
Cybernetic Studies, Vienna, Austria, pp. 836-841, 1998.

[17] K. Gödel, “The completeness of the axioms of the functional
calculus of logic”, in: J. van Heijenoort, From Frege to Godel,
A source book in mathematical logic, 1879-1931, Harvard
University Press, pp. 582-592, 1967.

[18] J. Graham-Cumming and J.W. Sanders, “On the refinement of
non-interference,” Proc. of the IEEE Symposium on Security
and Privacy, pp. 11-20, 1982.

[19] J. T. Haigh and W. D. Young, “Extending the noninterference
version of MLS for SAT; IEEE Trans. Software Eng. 13(2),
pp. 141-150, 1987.

[20] D. Hutter, H. Mantel, I. Schaefer and A. Schairer, “Security
of multi-agent systems: A case study on comparison
shopping,” Journal of Applied Logic, Volume 5, Issue 2, pp.
303-332, June 2007.

[21] D. Hutter, “Automating Proofs of cnwinding conditions,” in
S. Autexier, H. Mantel (eds.), Workshop Proceedings
VERIFY06 at the International Joint Conference on
Automated Reasoning, Seattle, 2006.

[22] D. Kapur, “An overview of Rewrite Rule Laboratory (RRL),”
J. Comput. Math. Appl. 29(2), pp. 91–114, 1995.

[23] Z. Manna and R.Waldinger, “A Deductive approach to
Program Synthesis,” in ACM Transactions on Programming
Languages and Systems, Vol. 2., No.1, pp. 90-121, 1980.

[24] H. Mantel, “A uniform framework for the formal specification
and verification of information flow security,” PhD thesis,
Universitty of Saarlandes, 2003.

[25] J. K. Millen, “Unwinding Forward Correctability,” in Proc. of
the 7th IEEE Computer Security Workshop, pp. 35-54, 1994.

[26] C. Paulin-Mohring and B. Werner, Synthesis of ML programs
in the system Coq; Journal of Symbolic Computation;
Volume 15, Issues 5–6, pp. 607–640, 1993.

[27] L. C. Paulson, “The foundation of a generic theorem prover,”
Journal of Automated Reasoning, September, Volume 5, Issue
3, pp. 363-397, 1989.

[28] S. Pinsky, “Absorbing covers and intransitive non-
interference,” in Proceedings of IEEE Symposium on Security
and Privacy, pp. 102 - 113, 1995.

[29] J. Rushby, “Noninterference, transitivity, and channel-control
security policies,” Technical Report CSL-92-02, Computer
Science Laboratory SRI International, December, 1992.

[30] R. M. Smullyan, What is the Name of This Book? - The
Riddle of Dracula and Other Logical Puzzles; Penguin, 1981.

107Copyright (c) IARIA, 2016. ISBN: 978-1-61208-518-0

INTELLI 2016 : The Fifth International Conference on Intelligent Systems and Applications (includes InManEnt 2016)

