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Abstract— This paper introduces and illustrates a fundamental 
notion, namely informal specification, for creating tools 
developed as symbiotic recursive pulsating systems (SRPS), in 
the framework of Inductive Theorem Proving and Intelligent 
Systems. It illustrates the use of this fundamental notion in 
scientific systemic creativity relative to theorem proving. We 
deal simultaneously with the meta-level design of a system that 
proves theorems automatically.  
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I.  INTRODUCTION 

Often, a direct way to achieve a proof requiring the use 
of the induction principle is not obvious. It might even be 
impossible to prove a formula within a given framework 
while an appropriate detour or a switch in interpretation and 
in the method of thinking may lead to a success. This 
problem of changing the framework is also relevant to the 
design of an intelligent inductive theorem proving system.  

There is a largely adopted management approach based 
on so-called “SMART goals,” where ‘S’ in SMART stands 
for ‘specific’ and it implicitly means that there is a kind of 
formal framework and a reproducible or nearly obvious 
available know-how to reach such a goal. ‘T’ stands for 
time-bounded and it means that there is a limit date before 
which the result is expected. ‘M’ stands for measurable, ‘A’ 
stands for achievable, ‘R’ stands for realistic. 

We shall however see that a systematic use of SMART 
goals should not always be the way by which invention 
comes to life. Symbiotic recursive pulsating systems (SRPS) 
and their corresponding Cartesian paradigm [14] defy this 
SMART approach, though it is established and today more 
or less required in Science. Handling or even creating SRPS 
requires a detour from purely formal thinking expected by 
exact sciences, a switch from linear synergic interpretations 
advocated by analysis and synthesis, a switch from 
observations of ‘pure’ facts to creative interpretations, a 
switch from use of established know-how to creating on-
purpose know-how. Handling or even creating SRPS require 
their own method of thinking that is not as much 
reproducible as the usual trend of sciences would require. 
From an immediate-gratification perspective this might lead 
to the option that the best way to handle them is to ignore 

them. Hopefully, the rich potential of these systems 
illustrated in this paper might suggest to adopt a more 
positive attitude towards these systems.  

The problem lies in the fact that SRPS do not rely on a 
linearly ordered sequence of notions that could be taught in 
isolated or progressive manner. In a sense, they can be 
understood only by already using them, which obviously 
sounds contradictory. In order to dissolve this contradiction, 
we need accepting to work with loosely specified tools, 
followed by a patient work of successive try-fail and recover 
steps. This has to take place until the whole process holds 
together and leads to the desired solution. When this process 
is completed, the former loosely defined specifications are 
transformed into exact ones. We call symbiotic recursive 
pulsating thinking (srp-thinking) this way of thinking. 

We have previously introduced the term Cartesian 
thinking for srp-thinking and Newtonian thinking for the 
other, more usual, one [14]. Both are useful because they 
apply to solving different problems. Newtonian thinking 
allows, by words of Newton himself, “standing upon the 
shoulders of giants”. Newtonian thinking is certainly a 
SMART approach suitable for solving problems that can be 
tackled on a modular basis, by analysis and synthesis. 
Because of the presence of recursion, what we call Cartesian 
thinking is based on self-justification and self-reference. In 
terms of deductive systems we can say that Newtonian 
thinking is a derivation of a knowledge contained implicitly 
in the given axioms (i.e., these giants’ shoulders) while 
Cartesian thinking focuses on creating a relevant axiomatic 
system for solving a particular problem. In terms of 
technological development, Newtonian thinking is concerned 
with innovation (building the intended products relying on 
already existing knowledge; handling ‘truth’) while 
Cartesian thinking is applied to the cases when the intended 
product seems utopian or even impossible with respect to the 
existing available knowledge. It consists in developing new 
custom-made technologies that were not present so far. 
Cartesian thinking represents an attempt to create a (or re-
create) ‘truth’ and a ‘desired truth’. 

The goal of this paper is to bring introductory insights 
(via an illustration) concerning one fundamental notion of 
the SRPS context, namely informal specification. This task is 
not simple in face of prevailing Newtonian paradigm and its 
particular criteria that are used while evaluating either the 
process of a scientific research (i.e., how the research should 
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be done) or the final product (i.e., how the result should 
look-like). Indeed, Newtonian approach requires that 
research progresses linearly (or modularly) and the results 
are – in Computer Science – either programs understood in 
their usual modular sense or proofs about standard properties 
of these programs. SRPS fail to verify these criteria since 
they are recursive and symbiotic. Moreover, the results are 
system-procedures made with sub-procedures (we call them 
“constructors”) that are symbiotic in the same manner as it is 
the case for Natural Numbers (NAT). NAT are determined 
(and computed) via the symbiotic constructors 0, successor 
(suc) and NAT themselves. Newtonian thinking often 
ignores this symbiotic and recursive character of NAT since 
their representation is possible in seemingly modular form. 
The same can be said about SRPS. They can be represented 
in an apparently modular form, but the process of their 
creation is purely symbiotic and recursive. In NAT the 
constructors are created via a process that can be described 
by the informal specifications: Creation(0) = 
Creation(0,suc,NAT), Creation(suc) = Creation(0,suc,NAT) 
and Creation(NAT) = Creation(0,suc,NAT). This is a 
symbiotic creation which is analogous to the well-known 
egg-hen problem: what is created first? Obviously this 
problem has no known solution. However, a symbiotic 
solution for this problem is expressed as the simultaneous 
presence of both hen and egg from the start of the 
implementation. Let us now describe a visual problem which 
does have an obvious symbiotic solution. Consider the 
following well-known picture: 

 

 
On internet this picture is known as 
‘young lady and old woman illusion’. 

It represents, at the same time, a young lady and an old 
woman. For some people this is hard to see at once and thus 
we shall use the following two pictures that help to perceive 
both women in the above picture: 

 

young 
woman 
(yw) 

 

old 
woman 
(ow) 

The creation of such a picture can be described as a 
symbiotic creation by which the author before drawing has 
foreseen the final picture. In other words, the author started 
with an informal specification “I wish to draw an ambiguous 
figure and I am almost sure that this will be possible.” This is 
the first step of the creation process. The second step is a 
creative preprocessing by which he foresees the final picture 
expressed by a formalized specification: Creation(yw) = 
Creation(yw,ow) and Creation(ow) = Creation(yw,ow). The 
drawing (implementation) process is the third and last stage 
of creation. The creative preprocessing contains thus 
research work coming from the informal idea of a symbiotic 
picture to the presence of the effective tools to give a 
concrete implementable form to this idea.  

We can complete now what has been said above. This 
paper concerns the introduction of the notion of informal 
specification and brings introductory insights on the 
preprocessing stage in Cartesian design of a particular 
SRPS. Therefore, it is necessary to be prepared to a non 
linear symbiotic presentation and to simultaneously consider 

• design and meta-design 
• action and meta-action 
• inseparability of  

o concrete proof  
o abstract overall design.  

 
The paper is organized in the following manner. Section 

II presents the notion of informal specification and an 
example of the use of this notion in the domain of Inductive 
Theorem Proving. Section III presents our fundamental 
procedure (a design constructor) used to reach this goal at 
the design level. Section IV illustrates this procedure by 
applying it to the specification of a theorem that will show 
itself to be, in a particular way, incomplete and thus 
informal. Section V presents our future research projects. 

II. INFORMAL SPECIFICATIONS IN INCOMPLETE 

FRAMEWORKS 

A. Informal Specification as a Way of Expressing a Goal 

Due to incompleteness results of Gödel [17], to automate 
proving theorems by induction (ITP), ITP-goal, is 
unachievable in the context of contemporary mathematics. 
However, the fact that many apparently unsolvable problems 
are actually solved when their context or representation are 
changed has become public knowledge several decades ago 
when Smullyan [30] started to make game of such 
transformations. With respect to practical use of ITP for 
Program Synthesis (via deductive approach pioneered by 
Manna and Waldinger [23]) and for search of missing 
axioms in incomplete theories [16], a reasonable 
implementation of ITP is highly desirable goal (or 
technological vision). Therefore, in early eighties, building 
on our previous experience with creating deductive systems 
and conceptual switches in history of mathematics, we have 
moved this goal from purely Gödel’s mathematical context 
into ‘technological’ context by reformulating the above ITP-
goal into the following ITP-system goal: “Automate ITP as 
much as possible.” The former goal takes into account the 
underlying Gödel’s formal context. Our ITP-system goal 
leaves some freedom for interpreting and addressing in a 
non-standard manner not only the problem “How this should 
be done?” but also the problem “How the solution should 
look like?” We call informal specification a description of 
any reasonable goal that has this particular property of 
allowing non-standard criteria for the above two problems 
(or a description that is in a sense incomplete). We call these 
problems pragmatic bias in contrast to academic bias that 
expresses, even though implicitly, the necessity for the use of 
standard criteria for solving these problems. 
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It must be noted that there can be no ‘Impossible!’ for an 
informally specified reasonable goal. The only negative 
statement can be pronounced and that is “I do not know.” It 
depends only on us if we add “But I will,” or not. With 
respect to the intended applications of our resulting system 
(Program Synthesis (PS) and completing incomplete 
theories), we expressed our intention to add this answer 
when we realized that the best way to tackle the ITP-system 
goal is to not search for a some clever decision procedure 
which will in principle face Gödel’s incompleteness, but a 
procedure or system that, in failure cases, will provide 
sufficient conditions for recovery, i.e., increasing the 
possibility of proving the intended formula. Our approach is 
thus very different from academic (or Newtonian) 
approaches to ITP that consider strictly the framework 
limited by Gödel’s results, such as the system ACL2 [3], the 
system RRL [22], the system NuPRL [6], the Oyster-Clam 
system [4], the extensions of ISABELLE [27], the system 
COQ [26] and Matita Proof Assistant [1]. 

B. Systemic Background and Guiding Principles for ITP-
system goal 

We have found that Descartes’ method is perfectly 
suitable for our task. A short systemic description of 
Descartes’ method is given in [14]. More precisions are 
given in [12]. 

This systemic Cartesian background allows us to 
summarize the action-guiding principles used in order to 
conceive an ITP-system: 
(GP1)  We welcome incompleteness for practical reasons 

since it guarantees progress and evolution. 
Moreover, each missing axiom discovered hints at a 
more relevant interpretation. Therefore, a unified 
method of discovery of missing axioms is an asset. 

(GP2)  We conceive a procedure-system finding sufficient 
conditions in case of failure and not a decision 
procedure (see Section III). 

(GP3)  We conceive an ITP-system as a symbiotic 
recursive pulsative system (see [14]). 

(GP4)  Due to the symbiotic character of tools, we develop 
first a methodology for ITP, which, when its 
‘practical completeness’ will be achieved, a first 
version of ITP-system will be implemented (this 
refers to the implemented experimental version 0.3 
we presented in [10]).  

(GP5)  The same methodology is conceived for ITP and PS 
which implies that we adopt no efficiency criteria 
for synthesized programs. 

(GP6)  Consequence of the previous principles: We create 
a database of solutions to non-trivial examples 
obtained with our methodology. These examples 
often provide informal specifications of tools that 
must become part of our methodology. The price to 
pay is that, in contrast to Newtonian approaches, the 
real implementation may start only when a plateau 
is reached in building this database. Such a plateau 

happens when no new informal specifications of 
missing tools are discovered (see more in Section 
VI).  

Considering the task formulated in (GP2), and using 
Beth’s method of deductive tableaux [2] we understood that 
the first problem to be dealt with is specified informally as 
finding a method to prove atomic formulas in such a way 
that it provides, in case of failure, sufficient conditions for 
provability of this formula. Our solution to this particular 
tool-specification is our CM-formula construction (recalled 
in the next Section), where CM stands for Constructive 
Matching. Since CM-formula construction is the basis (or 
basic symbiotic constructor) of our methodology (see 
(GP5)), we call it Constructive Matching methodology 
(CMM). CMM is thus our intended solution for the ITP-
system goal. 

In the next Section, we recall CM-formula construction 
so that, in Section IV, we can illustrate its use for solving 
another example (see (GP6)). This example is interesting 
since it concerns the proof of the so-called Unwinding 
Theorem met in the domain of information flow security and 
developed in [29]. In [15] we present the methodological 
aspects of this problem. In the present paper we want to 
illustrate how CMM, via CM-formula construction, handles 
informal specification of the given Rushby’s theorem. 
Indeed, as it will become clear, the initial formulation of 
Rushby’s Unwinding Theorem is, in some sense, incomplete. 

III.  CM-FORMULA CONSTRUCTION IN ITP 

In this Section we are going to present the basic 
mechanism for the CM-formula construction originally 
introduced in [7].  

For simplicity, let us suppose that the formula to be 
proven has two arguments, that is to say that we need to 
prove that F(t1,t2) is true, where F is a predicate and t1, t2 are 
terms of the axiomatic theory in use. We introduce a new 
type of arguments in the atomic formula that has to be 
proven true. We call them pivotal arguments, since 
focusing on them enables to reduce what is usually called the 
search space of the proof, and to decompose complex 
problems (such as strategic aspects of a proof) on 
conceptually simpler problems (such as a transformation of a 
term into another, possibly finding a sufficient conditions 
etc.). These pivotal arguments are denoted by ξ (or ξ’ etc.) in 
the following.  

In the first step, the pivotal argument replaces, in a purely 
syntactical way, one of the arguments of the given formula. 
The first problem is thus to choose which of the arguments 
will be replaced by a pivotal argument ξ. A complete 
algorithmic solution to this problem is not yet proposed, 
since it will be part of a complete implementation of CMM 
[8]. Nevertheless, a simple informal algorithm is easily 
obtained in performing a rough analysis of the terms: the 
most complex one should become the pivot – precisely 
defining complexity is still left to a human person. Its 
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automation will be tackled with in the final phasis of our 
research. 

In this presentation, let us suppose that we have chosen to 
work with F(t1,ξ), the second argument being chosen as the 
pivotal one. In an artificial, but custom-made manner, we 
state C = {ξ │ F(t1,ξ) is true}. Except the syntactical 
similarity with the formula to be proven, there is no semantic 
consideration in saying that F(t1,ξ) is true. It simply 
represents a ‘quite-precise’ purpose of trying to go from 
F(t1,ξ) to F(t1,t2) while preserving the truth of F(t1,ξ). We 
thus propose a detour that will enable us to prove also the 
theorems that cannot be directly proven by the so-called 
simplification Newtonian methods, i.e., without this detour.  

In the second step, via the definition of F and those 
involved in the formulation of the term t1, we look for the 
features shown by all the ξ such that F(t1,ξ) is true. Given the 
axioms defining F and the functions occurring in t1, we are 
able to obtain a set C1 expressing the conditions on the set 
{ ξ } for which F(t1,ξ) is true. In other words, calling ‘cond’ 
these conditions and C1 the set of the ξ such that cond(ξ) is 
true, we define C1 by C1 = {ξ │ cond(ξ)}. We can also say 
that, with the help of the given axioms, we build a ‘cond’ 
such that the formula: ∀ξ ∈ C1, F(t1,ξ) is true. 

In the third step, using the characteristics of C1 obtained 
in the second step, the induction hypothesis is applied. Thus, 
we build a form of ξ such that F(t1,ξ) is related to F(t1,t2) by 
using the induction hypothesis. For the sake of clarity, let us 
call ξC the result of applying the induction hypothesis to C1 
resulting in its subset C2 = { ξC │ cond2(ξC)}. C2 is thus such 
that F(t1,ξC) is true. We are still left with a work to do: prove 
that t2 belongs to C2. In the case that t2 does not contain 
existential quantifiers, this is done by verifying cond2(t2). In 
the that case t2 contains existentially quantified variables, this 
is done by a new detour. In the first step, we try to solve the 
problem cond2(ξC) ⇒ ∃σ (ξC = σt2), where σ has to provide a 
suitable instantiation for the existentially quantified variables 
in t2. With such an obtained σ we have then to prove 
F(t1,σt2). In other words, we have to prove that ξC and t2 can 
be made identical (modulo substitution) when cond2(ξC) 
holds.  

In the case of the success, this completes the proof. In the 
case of a failure, a new lemma cond2(ξC) ⇒ ∃σ (ξC = σt2) 
with an appropriate quantification of the involved variables 
is generated. In some cases, an infinite sequence of ‘failure 
formulas’, i.e., lemmas or missing axioms, may be 
generated. CMM is conceived in such a way that the obtained 
sequence is well-behaving (see [7]) so that a human person 
or an automated tool (in the future) be driven in the choice of 
a suitable generalization. This formula logically covers the 
infinite sequence of lemmas or missing axioms and it thus 
fills the gap that cannot be overcome by a purely deductive 
formal approach to theorem proving. In the case of 
generation of missing axioms, the process of completion the 
initial theory is performed by ‘pulsation’, i.e., by adding then 
applying the new axioms to the domain theory. The resulting 
system is logically coherent by construction. In the future, all 

the relevant and necessary tools will be designed (with the 
help of Machine Learning, Big Data and other relevant 
domains) to eliminate human interaction with the decision of 
the appropriateness of suggested missing axioms. This is 
useful for applications where human interaction is 
impossible. Consider, for instance, space explorations and 
constructions by robots. 

IV.  EXAMPLE : PROOF FOR AN UNWINDING THEOREM 

A. State-based Information Flow Control – Basic 
Knowledge 

In this Section we present the formal framework for the 
so-called unwinding theorem presented in [29]. Then, in the 
next Section, we present the proof of Rushby's unwinding 
theorem as performed by CM-formula construction.  

The proof presented is interesting from the man-machine 
interaction point of view since it illustrates how a human 
expert of the domain theory is prompted to find a suitable 
generalization of a potentially infinite sequence of terms 
without being asked to know the mechanism of CM-formula 
construction. It is known that, in non-trivial cases, academic 
approaches require from the user to be aware of the proof 
assistant mechanisms in order to guide it towards success. In 
our completed system, the generalizations will be performed 
automatically. 

A system M is composed of a set S of states, with an 
initial state s0 ∈ S, a set A of actions, and a set O of outputs, 
together with the functions step and output: step: S × A → S, 
output: S × A → O. We shall use the letters ... s, t, ... to 
denote states, letters a, b, ... from the front of the alphabet to 
denote actions, and Greek letters α, β, ... to denote sequences 
of actions. Actions can be thought of as “inputs” or 
“instructions” to be performed by the system; step(s,a) 
denotes the state of the system resulting by performing 
action a in state s, and output(s,a) denotes the result returned 
by the action. In the following, λ denotes an empty sequence 
and ° denotes a concatenation. We shall consider an 
extension of the function step to sequence of actions in the 
form of a function run: S × A* → S, defined by 

 (ax1)  run(s,λ)  =  s 
  (ax2) run(s,a °α)  =  run(step(s,a),α) 
The agents or subjects interacting with the system and 

observing the results obtained will be grouped into “security 
domains”. Security domains represent clearances in terms of 
persons and classifications in terms of data. We thus assume 
a set d of security domains, and a function dom: A → d that 
associates a security domain with each action. We shall use 
letters … u, v, w … to denote domains. 

Information is said to flow from a domain u to a domain 
v when some actions submitted by domain u cause the 
information about the behavior of the system perceived by 
domain v to be different from that perceived when those 
actions are not present. We shall consider the flow of 
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information as a reflexive relation -� on d (i.e., u -� u for 
each domain u.)  

A security policy will be specified by this relation on d. 
We use -/� to denote the complement relation i.e., a closed 
negation of -� on d × d, that is -/� = (d × d) \ -� , where \ 
denotes set difference. We speak of -� and -/� as the 
interference and noninterference relations, respectively. A 
policy is said to be transitive if its interference is transitive.  

We say that domain u interferes with domain v if u -� v. 
We say that an action interferes with domain v if there is 
dom(a) such that dom(a) interferes with v, i.e., dom(a) -� v. 

An action a is said to be required noninterfering with 
domain v if dom(a) -/� v for all action sequences that 
contain a. The function purge: A* × d → A* is defined as 
follows 

(ax3) purge(λ,v) = λ  
(ax4) purge(a °α,v) = a ° purge(α,v), if dom(a) -� v 
(ax5) purge(a °α,v) = purge(α,v), if dom(a) -/� v. 

The machine is secure if a given domain v is unable to 
distinguish between the state of the machine after it has 
processed a given action sequence, and the state after 
processing the same sequence purged of actions required to 
be noninterfering with v.  

Formally, the security is identified with the requirement 
that output(run(s0,α),a) = output(run(s0,purge(α,dom(a))),a). 

For convenience, we introduce the functions do: A* → S 
and test: A* × A → O to abbreviate the expressions in the 
last requirement: do(α) = run(s0,α), and test(α,a) = 
output(do(α),a). Then we say that system M is secure for the 
policy -� if 

   test(α,a) = test(purge(α,dom(a)),a)  (1) 

for all actions sequences α and actions a.  
The non-interference definition of security is expressed 

“globally” in (1) in terms of sequences of actions and state 
transitions. In order to obtain sufficient “local” conditions for 
verifying the security of systems, Rushby introduces a set of 
conditions on individual state transitions.  

A system M is view-partitioned if, for each domain u 

from d, there is an equivalence relation ~u   on S. These 
equivalence relations are said to be output consistent if  

  s   ~dom(a)
 t   ⇒ output(s,a) = output(t,a).   (2) 

The following result allows relating the output 
consistency to security of the system. 

Lemma 1: 
Let -� be a policy and M a view partitioned, output 

consistent system such that  

   do(α) ~u   do(purge(α,u).   (3) 

Then M is secure for -�.  
Proof: see [29]. 
 

Let M be a view-partitioned system and -� a policy. We 
say that M locally respects -� if  

   dom(a) -/� u  ⇒ s ~u  step(s,a)   (4) 

and that M is step consistent if 

   s ~u   t  ⇒  step(s,a) ~u  step(t,a).   (5) 

The following theorem shows that the local conditions 
formulated are sufficient to guarantee security. 

 
Theorem 1: (Unwinding Theorem)  
Let -� be a policy and M a view-partitioned system that 

is output consistent, step consistent, and locally respects -�. 
Then M is secure for -�. 

We have thus recalled the basic knowledge formalizing 
the information needed by an automated theorem prover.  

B. CMM Suggests a Generalization Necessary to Prove 
the Unwinding Theorem 

As we said above, we shall suppose that system M is 
output consistent, step consistent, and locally respects -�. To 
prove this theorem it is sufficient to prove that (3) holds. 

Using our above CM-formula construction algorithm, we 
shall study what operations have to be performed in order to 
prove formula (3) introduced above: 

   do(α)     ~dom(b)
 do(purge(α,dom(b))),   (3) 

for arbitrary domain dom(b) and state α.  
By definition of do, do(α) is run(s0,α) and similarly for 

do(purge(α,dom(b))). We thus obtain that the goal is to 
prove the formula (original theorem) 

   run(s0,α)     ~dom(b)
 run(s0,purge(α,dom(b))).  (UTh) 

Let us consider a proof by induction on α. This means to 
consider the base step for α = λ and the induction step for α 

= a ° α’, where a is an arbitrary action and α’ is a sequence 
of actions. As the proof for the base step is easy, we focus on 
the proof of the induction step. 

In the induction step, α is a ° α’. The induction 
hypothesis is  

   run(s0,α’)     ~dom(b)
 run(s0,purge(α’,dom(b))).   (6) 

The goal is to prove  

       run(s0,a ° α’)     ~dom(b)
 run(s0,purge(a ° α’,dom(b))).   (7) 

using the induction hypothesis and the properties of M.  
The CM-formula construction requires that we replace 

one of arguments of (7) by pivotal argument. Since the term 
at the right side is more complex than the term on the left 
side, we chose to replace this complex term by the pivotal 
argument ξ. This gives 
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   run(s0,a ° α’)   ~dom(b)
 ξ.   (8) 

By definition, 

run(s0,a ° α’) = run(step(s0,a), α’) 

This gives 

   run(step(s0,a), α’)     ~dom(b)
 ξ.   (9) 

We would like now to apply the induction hypothesis (6). 
This means to compare run(s0,α’) in (8) and run(step(s0,a), 
α’) in the last formula (9). This fails. Therefore, CM-formula 
construction generates a new lemma expressed in terms of 
the failure formula 

run(step(s0,a), α’)     ~dom(b)
  run(s0,purge(a ° α’,dom(b))) . 

For simplicity of our presentation here we do not 
evaluate the term purge(a ° α’,dom(b)). 

In the last formula, all the variables are universally 
quantified. The proof is by induction and the variable α’ 
becomes the induction variable. In the base step, α’  = λ and 

the induction step for α’ = c ° γ, where c is an arbitrary action 

and γ is a sequence of actions. 
The base step for this new goal would lead to discovery 

of a missing precondition. In this paper we would like to 
insist more on the discovery of a need for a generalization. 
Therefore, we shall skip the base step and we shall go 
directly to the induction step. 

In the induction step, since α’ = c ° γ, the induction 
hypothesis is the formula 

  run(step(s0,a), γ)    ~dom(b)
 run(s0,purge(a ° γ,dom(b))).   (10) 

and the goal to prove is the formula 

run(step(s0,a), c ° γ)   ~dom(b)
run(s0,purge(a ° c ° γ,dom(b))). 

The CM-formula construction replaces the right hand 
term by an abstract argument ξ. This yields 

run(step(s0,a), c ° γ)   ~
dom(b)

  ξ. 
The evaluation of  

run(step(s0,a), c ° γ) 

 is run(step(step(s0,a),c), γ), i.e., we have to consider the 
formula 

run(step(step(s0,a),c), γ)     ~dom(b)
  ξ. 

CM-construction tries to apply the induction hypothesis 
(10), but it fails, since there are no axioms that would put 
into relation the terms step(s0,a) and step(step(s0,a),c). This 
means that a new lemma expressing this relationship is 
necessary in order to complete the proof. The use of 

induction on growing terms will, of course, not solve our 
problem that recurs at each step: 

 

run(s0,α)     ~dom(b)
  run(s0,purge(α,dom(b))) 

run(step(s0,a), α’)     ~dom(b)
  run(s0,purge(a ° α’,dom(b))) 

run(step(s0,a), c ° γ)   ~dom(b)
run(s0,purge(a ° c ° γ,dom(b))) 
… 

 
Nevertheless, this sequence of failures contains an 

infinite sequence of ‘unprovable’ lemmas (in the context of 
the axioms we use). This ‘unprovability’ is expressed by 
means of growing terms. A rather obvious solution is thus to 
suppose that we miss a lemma in which the sequence of 
these growing terms is generalized by a variable ‘s’. This 
new variable s replaces the following sequence of growing 
terms:  

s0 

step(s0,a) 
step(step(s0,a),c)  

… 
Thus the original theorem (UTh) is replaced by the goal 

to prove a formula into which s0 is replaced by s in the 
function ‘run’ in the non-pivotal argument (i.e., s0 → s in 
run(s0,α) of (UTh)). It follows that our task to prove the 
original theorem (UTh) is replaced by the goal to prove 

             run(s,α)     ~dom(b)
 run(s0,purge(α,dom(b))).    (UThG) 

Again the proof is by induction on α. In the base step, α 
is λ. The goal is thus prove 

   run(s,λ)     ~dom(b)
 run(s0,purge(λ,dom(b))).   (11) 

We introduce the pivotal argument here and thus we have 
to consider  

  run(s,λ)     ~dom(b)
 ξ.   (12) 

By definition, run(s,λ) is s. This means that (12) changes 

to s   ~dom(b)
 ξ. We check now whether ξ can be transformed 

into the right side of (11), that is run(s0,purge(λ,dom(b))). 
Because of axioms (ax3) and (ax1), the evaluation of 
run(s0,purge(λ,dom(b))) is s0. A pivotal argument can be 
replaced by s0. This gives that we are left with checking the 
formula 

   s     ~dom(b)
  s0.   (13) 

We have no way to prove this and thus this formula 
becomes a missing precondition to (UThG). In other words, 
we have to prove the formula (Lm1): 

  s   ~dom(b)
 s0    ⇒   run(s,α)   ~dom(b)

run(s0,purge(α,dom(b))).  
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In order to somewhat shorten this example, we can tell 
that, if we try to prove (Lm1) following the steps described 
in Section III, we will again fail and generate yet another 
infinite sequence of lemmas that leads us to the following 
generalization (Lm2) in which s0 is generalized to ‘t’ on both 
sides of the implication. Note that, at the start of our proof, 
this generalization is by no means intuitively obvious and it 
does deserve the effort we put in its discovery (Lm2): 

  s   ~dom(b)
 t    ⇒    run(s,α)   ~dom(b)

 run(t,purge(α,dom(b))).   

In order to prove lemma (Lm2), we again use CM-
formula construction and this will lead to a success as 
detailed in Appendix of [15]. The initial formula (UTh) is a 
particular instance of (Lm2) with s = s0 = t. 

This means that initial Rushby’s Unwinding Theorem, 
i.e., the formula (UTh), is in a sense incomplete from the 
theorem proving point of view. Indeed, the available axioms 
are not sufficient to prove the given theorem in its original 
form. It has to be generalized. Note that Rushby’s goes 
directly to proving a generalized formula (Lm2) without 
explaining the reasons and motivations for this 
generalization. The above presentation shows that, in our 
approach, the motivations for this generalization are 
expressed as a (possibly infinite) sequence of failure 
formulas that contain a sequence of terms and these terms 
increase regularly.  

A proof of (Lm2) using CMM as well as its comparison 
with Rushby’s proof can be found in [15]. 

Summarizing, our example here shows that the CM-
formula construction is particularly suited to finding missing 
preconditions (as we found in formula (13)) and suggesting a 
need for useful generalizations leading to (Lm2), as we have 
just shown. In other words, it is particularly effective in 
recovery from failures. Our paper [16] shows that our 
approach is able to suggest even missing axioms. As said 
above, in the future, integration of the suggested axioms will 
also be automatically handled. 

V. FUTURE WORK 

Despite our previous success with solving also non-
standard problems such as n-queens [9], manipulation of 
blocks in robotics [16] and unusual reformulation of 
Ackermann’s function [13], the practical completeness of 
CMM is not yet obtained. We need to extend our 
investigations also to non-atomic formulas, etc. This is why 
we continue in our research in the domain of information 
flow security that is nowadays important and challenging. As 
a complementary work to [21] and [20], we plan to help in 
the search of the necessary extensions of CMM in this field 
by the attempts for mechanized proofs of Unwinding 
Theorems presented in Mantel’s thesis [24] and, among 
others [18] [28] [19] and [25]. To our best knowledge there 
is no other existing work related to the automation of the 
inductive proofs of these theorems. The challenge is here the 

execution of proofs for theorems that contain non-transitive 
relations. Our research question is: Do non-transitive 
relations require specific tools that are not yet present in 
CMM? Are there other problems that we did not meet yet? 

We are quite sure that our future investigations 
concerning also the use of CMM for formalizing deductive 
theories requiring recursion will be very fruitful and will 
suggest new problems to be handled and new tools to be 
developed in the field of Machine Learning and 
Computational Creativity. Mantel’s work [24] is our first 
objective in this direction. Our research question is: Can 
Mantel’s work be enhanced by use of an ITP-system well 
suited also for proving theorems containing existential 
quantifiers? 

VI.  CONCLUSION 

Research shows (see [5]) that even a team of super-gifted 
people is unable to work together if they do not develop, in 
what we call “research’s preliminary phase”, a common 
vocabulary for their already known particular personal tools 
so that they become able – together – to develop a new 
custom-made vocabulary for their intended technological 
vision.  

The main contribution of this paper is the introduction of 
one of fundamental notions for such research preliminary 
phases of any technological vision made accessible in the 
framework of SRPS, namely informal specification. 

On our example of progressive building the fundamentals 
of CMM for ITP we have illustrated that, due to symbiotic 
and recursive character of SRPS, the missing tools of CMM 
are informally specified while by-hand experimenting 
challenging examples. The difficulty of this by-hand 
experimentation lies in the following points: 

• All the experiences are performed strictly following 
CM-formula construction and relying on previously 
informally on-purpose specified tools (in our 
example here: evaluation, generation of induction 
hypotheses, application of induction hypotheses, 
terms transformation and generalization), i.e., these 
experiences are not led by the personal talent of an 
experimenter. 

• Each observation concerns not only specifying 
(informally) missing tools (in our example here: 
handling non-recursive formulas as explained in 
[15]) but also refining informal specifications of 
already introduced tools (in our example here: some 
new features of generalization were found; their 
presentation is out of scope of this paper). This 
explains and justifies our by-hand research instead of 
automated experiences in which subtle patterns may 
be lost. 

• The talent (if any) of experimenter is strictly reduced 
to looking for patterns that either have nothing to do 
with the semantic of the domain in which ITP is 
performed or, if this is not the case, the experimenter 
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must justify their adequate introduction into our 
Theory of Constructible Domains [11] (this is a 
particular theory of representation of definitions of 
recursive functions and predicates suitable for 
CMM); in other words, no domain or problem 
dependent heuristics are allowed in by-hand 
experiments. 

This means that persistent and relatively humble systemic 
creativity and goal awareness are the main features of srp-
thinking. 

This paper explains that there should be no conflict 
between Newtonian and Cartesian srp-thinking. Both apply 
to different problems, they are complementary. The problem 
arises only when the Newtonian criteria are applied to the 
evaluation of the research on SRPS. This manifests namely 
by Newtonians rejecting the necessary long term by-hand 
experimenting and informally specified notion of ‘practical 
completeness’. 
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