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Abstract—Radar is one of essential and popular devices in
weather prediction process because of its wide array of ad-
vantages. Unfortunately, the observation results contains lots of
unwanted radar signals and they disrupt forecasting process. The
representative non-precipitation echoes are permanent, spurious,
and anomalous propagation echoes. Among them, the anomalous
propagation echo can be a source of severely negative influences
in a quantitative precipitation estimation. Therefore, a reliable
automatic systems for identifying the anomalous propagation
echo is needed. In this paper, we suggest a novel k-nearest
neighbors algorithm, by combining the Hamamoto’s bootstrap
II method and the extended nearest neighbors for improving
performance of the classifier. Using the actual appearance cases
of the anomalous propagation echo, it is confirmed that the
suggested method is better than the k-nearest neighbors and the
extended nearest neighbors.

Keywords–Extended nearest neighbors; Hamamoto’s bootstrap
II; Anomalous propagation echo; Weather prediction; Classifica-
tion.

I. INTRODUCTION

Weather radar is an essential device in weather forecasting
process because of its wide array of advantages. For example,
the weather radar is capable of near-real time observation with
high resolution monitoring over a wide area. Also, the radar
can observe development, movement of precipitation areas,
and calculate rainfall intensity [1]. By virtue of its advantages,
the weather radars are installed in many places of the world
and actively involved in various kinds of weather-related
fields such as estimating precipitation, disaster management,
and so on. Unfortunately, the weather radar has no function
to make meteorological observation selectively. Namely, the
observation results contains lots of unwanted radar signals
inevitably, which disrupt weather prediction process and make
low prediction accuracy. Therefore, a quality control process is
an indispensable part to remove these unwanted radar signals,
so-called non-precipitation echoes [2].

The representative non-precipitation echoes are permanent,
spurious, and anomalous propagation echoes. The permanent
echoes are caused by mountains, skyscrapers, or other kinds
of surface obstacles blocking the radar beam inside the ob-
servation area [3]. The spurious echoes are caused by various
reasons such as chaff in use of military exercises, jamming by
other radars, and so on [4] [5]. And the anomalous propagation
echoes are caused by refracted radar beam. It appears in certain

conditions of non-standard refraction in the atmosphere when
the radar beam passes through air of varying density. The
resultant echo represents reflection of the ground or not a
meteorological target, and it can be misinterpreted as a heavy
precipitation [6].

Considering that the anomalous propagation echo can be
a source of significantly negative influences in a quantitative
precipitation estimation, a reliable automatic systems for iden-
tifying the anomalous propagation echo is needed. Unless,
there is a chance to make erroneous calculations of quantitative
precipitation estimation or other types of mislead forecasting
results.

To classify the anomalous propagation echo in the radar
data automatically, several researches using data mining tech-
niques have been studied: fuzzy logic [7] [8]; Bayesian ap-
proaches [9] [10]; artificial neural networks [11] [12]; sup-
port vector machine [13]; and so on. According to these
researches, two important things can be derived. First, the pre-
vious researches consider selecting the most efficient classifier
for implementing the automated anomalous propagation echo
identification system with serious consideration. Second, these
researches are focused on a single classification methods.

There are various types of classification methods in ma-
chine learning, and used to solve a variety of practical prob-
lems. Among them, the k-nearest neighbors [14] algorithm has
been a successful choice under many circumstances because
of its advantages, such as easy implementation and a good
performance without requiring knowledge of a probability
distribution function. This decision rule provides a simple
nonparametric procedure for the assignment of a class label
to the input pattern based on the class labels represented by
the k-closest neighbors of the vector [15].

However, the k-nearest neighbors algorithm has some
drawbacks. One of representative drawbacks is that k-nearest
neighbors algorithm is sensitive to the scale or variance of
the distributions of the pre-defined class data. In other words,
the nearest neighbors of an unknown sample will tend to be
dominated by the class with the highest density [16] [17].
Fortunately, the novel kind of k-nearest neighbors algorithm is
suggested, called as the extended nearest neighbors that uses
the generalized class-wise statistics [18].

Furthermore, we consider a bagging method in order to
improve performance of the extended nearest neighbors. By
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generating an artificial training samples from the original
training samples and obtaining classification results from
majority vote, it is possible to improve performance of the
extended nearest neighbors algorithm. However, taking into
account that small changes in the training sample generated
by sampling with replacement do not lead to significantly
different classification results of k-nearest neighbors algorithm
due to its stable characteristics [19], we consider Hamamoto II
bootstrap method [20], which generates a new training sample
by resampling and locally transforming.

Consequently, we suggest a novel type of nearest neighbors
algorithm by combining Hamamoto’s bootstrap II method and
extended nearest neighbors in this paper. The rest of the paper
is organized as follow. Section 2 explains the bagged extended
nearest neighbors with its essential components, extended
nearest neighbors and bagging method. And in Section 3, the
anomalous propagation echo is briefly elucidated. After that,
the experimental results with actual radar observation data are
described in Section 4. Finally, the conclusion and future works
are showed in Section 5.

II. METHODS

To illustrate the principles of the bagged extended near-
est neighbors, fundamental algorithms should be described.
This section explains extended nearest neighbors, bagging and
Hamamoto’s bootstrap II, and the suggested bagged extended
nearest neighbors.

A. Extended Nearest Neighbors
k-nearest neighbors algorithm is a popular nonparametric

method used for both classification and regression [21]. The
input consists of the k closest training samples measured by
distance in feature space, and the output indicates a class. An
object is classified by a majority vote of its neighbors, with
the object being assigned to the class most common among its
nearest neighbors.

k-nearest neighbors classifier has remarkable advantages,
such as easy implementation, competitive performance, in-
dependent of the underlying data distribution, and so on.
However, it also has some disadvantages. One of typical
weaknesses is that k-nearest neighbors method is sensitive to
the scale or variance of distributions of the pre-defined classes.
In other words, the nearest neighbors of an unknown object
will tend to be dominated by the class with the highest density.
This has been a long-standing limitation of the classic k-NN
method [16] [17].

In order to solve the problem, a novel nearest neighbors
algorithm is suggested, namely extended nearest neighbors.
The extended nearest neighbors makes a prediction in a
”two-way communication” style using the generalized class-
wise statistics T j

i : it considers not only who are the nearest
neighbors of the test sample, but also who consider the test
sample as their nearest neighbors [18].

The entire process of the extended nearest neighbors is
described in Fig. 1, which considers a two-class problem. The
first step of the extended nearest neighbors is applying k-
nearest neighbors to the training samples. Let’s assume S is
an entire training data set, S = S1 ∪ S2, S1 and S2 indicate
the samples in class 1 and class 2, respectively. Each training
sample saves its k nearest neighbors and distances. The second
step is getting one sample z from testing data Z, z ∈ Z.

Figure 1. Principles of extended nearest neighbors

The third step is a core step. The obtained testing sample
z is considered as class 1 and class 2, simultaneously and
individually. And the fourth step is applying k-nearest neigh-
bors again to union set of the training data set and the testing
sample, S = S1 ∪ S2 ∪ {z}. In the fifth step, the generalized
class-wise statistics is applied to estimate the influences of
given z using (1).

T j
i =

1

n
′
ik

∑
x∈S′

i,j

k∑
r=1

Ir

(
x,S

′
= S1 ∪ S2 ∪ {Z}

)
i, j = 1, 2

(1)

where x denotes one of samples in S1∪S2∪{z}. And k is the
user-defined parameter of the number of the nearest neighbors.
n

′

i is the size of S
′

i,j and S
′

i,j is defined as

S
′

i,j =

{
Si ∪ {Z} , when j = i
Si, when j 6= i

(2)

The indicator function indicates whether both the sample
x and its r-th nearest neighbor belong to the same class as
shown in (3)

Ir(x,S) =

{
1, if x ∈ Si and NNr (x,S) ∈ Si

0, otherwise (3)

where NNr (x,S) denotes the r-th nearest neighbor of x in
S. This equation means for either class, if both the sample x
and its r-th nearest neighbor in the pool of S belong to the
same class, then the outcome of the indicator function Ir(x,S)
equals 1; otherwise, it equals 0.

In sixth step, the generalized class-wise statistics are de-
rived. Given two-class classification problem, we have four
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generalized class-wise statistics: T 1
1 , T 1

2 , T 2
1 and T 2

2 . The
extended nearest neighbors classifier predicts its class mem-
bership according to the following target function

fENN = arg max
j∈1,2

2∑
i=1

T j
i (4)

Using (4), the class of unknown sample z is defined. And
it is repeated until all the testing elements are went through
the processes, from the second to sixth step.

B. Bagging
Bagging (Bootstrap aggragating) is a type of ensemble

method, which uses bootstrap to improve the performance of
the classifier [19]. With bootstrap, many new training samples
are generated from the original training set. Then, for each
bootstrap training set, the test object is classified using k-
nearest neighbors. As a result of this process, a series of
classification results for each object are obtained. The test
object is finally assigned to the class where it was classified
by majority vote.

There are several possible setups for bootstrap [19] [22]
[20]. The classical bootstrapping uses random sampling with
replacement. This was already used with k-nearest neighbors
but without satisfactory results due to the ”stability” of the k-
nearest neighbors [19]. k-nearest neighbors is ”stable” because
small changes in the training data do not lead to significantly
different classification results.

However, Hamamoto’s bootstrap method [20] is consid-
erable because all the objects in the original training set
participate in creating the bootstrap training set using locally
weighted sum as shown in (5). Fig. 2 explains the principles
of Hamamoto’s bootstrap II method when k = 3 in a two-class
problem. The given data is separated by class and applied k-
nearest neighbors individually including selected sample itself.
The generated class data is derived using locally weighted sum,
and the process is repeated until all the data is processed. The
entire process is shown below.

1) Select one sample xi from Xc.
2) Using Euclidean distance, find the r nearest neighbors

xi,1,xi,2, · · · ,xi,r from Xc.
3) Compute a new bootstrap sample xb

i as a weighted
average of r nearest neighbors, including the selected
object i itself (xi,0):

xb
i =

r∑
j=0

ωjxi,j

= ω0xi,0 + ω1xi,1 + · · ·+ ωrxi,r

(5)

The weight ωj is given by

ωj =
∆j∑r
c=0 ∆c

, 0 ≤ j ≤ r (6)

where ∆j is chosen from a uniform distribution on [0, 1]
and

∑r
j=0 ωj = 1.

4) Step 1) to 3) are run for all the objects i = 1, · · · , lc of
xc, thus obtaining a new matrix Xb

c for class c = 1.
5) Step 1) to 4) are repeated for the other classes c =

2, · · · , C.

6) The bootstrap matrices Xb
c generated for all the classes

are then adjoined to obtain the bootstrap training set Xb

and Xb is used to classify the test object.
7) Step 1) to 5) are repeated B times and the results are

finally combined.

C. Bagged Extended Nearest Neighbors
Combining the Hamamoto’s II bootstrap method and the

extended nearest neighbors, we suggest the bagged extended
nearest neighbor as shown in Fig. 3. The operating principle is
as follow. First, the training data is divided into r number of
data by Hamamoto’s II bootstrap method. The samples inside
the divided data is not identical to the original training data,
because it is derived by (5). Second, each generated data is
applied to extended nearest neighbors classifier respectively.
Third, the testing data is applied each trained extended nearest
neighbors. Fourth, the results are gathered for voting using (7).

fBagged ENN(X) = arg max
i

r∑
j=1

I(fENNj
(xj) = i) (7)

where I(fENNj
(xj) = i) is an indicator function, which

derives 1 when they are matched, 0 otherwise.

III. ANOMALOUS PROPAGATION ECHO

For ground-based radar propagation at quasi-horizontal
beam elevation, the sensitive terms are the vertical gradient
of temperature distribution and water vapor. The quantity used
to describe the radar beam propagation is the refractivity N ,
a particular form of the refractive index n used because n is
close to unity for the atmosphere [23]. The refractivity can be
approximated with the simplified expression in (8)

(n− 1)× 106 = N =
0.776p

T
+

3730e

T 2
(8)

where p is the total atmospheric pressure, e is the water vapor
partial pressure, and T is the temperature [24].

Let’s assume α is the angle of the radar ray with the
surfaces of constant N , and let’s consider an arc ∂s along a
radar ray. And assume that ∂α is the corresponding variation of
the angle of the tangent to this ray. The curvature of the ray is
C and the radius of curvature ρ with C = 1/ρ = dα/ds. From
geometrical consideration, the radius of curvature is related
to the vertical gradient of refractivity ∂N/∂z where z is the
vertical coordinate, as shown in (9)

1

ρ
= − 1

n

∂N

∂z
cosα× 106 (9)

where ρ in meters if z is in meters. For an elevation close to
zero, it can be re-written as shown in (10)

1

ρ
≈ −∂N

∂z
× 106 (10)

There are four types of propagation: subrefraction, normal
refraction, superrefraction, and ducting as follows. [25].

• Subrefraction
◦ The radar beam bends less than usual
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Figure 2. Principles of Hamamoto’s bootstrap II method

Figure 3. Overall structure of suggested method

◦ ∂N
∂z > 0

• Normal refraction
◦ Considered as standard radar beam trajectory
◦ Corresponding to rays bending downward with ρ ≥ ρe
◦ ρe ≈ 6371km:

the radius of curvature of the Earth’s surface
◦ ∂N

∂z = 0

• Superrefraction
◦ The radar beam bends more towards the ground surface
◦ −0.157 ≤ ∂N

∂z ≤ −0.0787m−2

• Ducting
◦ Extreme case of superrefraction
◦ The ground surface can be observed as objects in the

atmosphere
◦ ∂N

∂z ≤ −0.157m−2

The subrefraction, superrefraction, and ducting are catego-
rized as the anomalous propagation echoes. The echoes can
be lead to erroneous calculations of quantitative rainfall esti-
mation. Therefore, reliable automatic detection and removal of
anomalous propagation echoes is one of the essential problems
in this area. In the weather forecasting process, there are some
complicated expert’s knowledge for removing the anomalous
propagation echo in the radar data as shown below.

1) The echo moves with near zero Doppler velocity ≈ 0m/s
2) The maximum altitude of the echo is low

3) The reflectivity distribution is discontinuous in vertical
and horizontal way

IV. EXPERIMENTAL RESULTS

In order to evaluate and compare the nearest neighbors
classifiers, this paper selected actual appearance cases of
the anomalous propagation echo. According to the expert’s
knowledge described in previous section, it is confirmed that
Doppler velocity, reflectivity, and altitude are essential input
variables for classification. Therefore, we use five features as
inputs in this paper: centroid altitude of the cluster, average
reflectivity, maximum reflectivity, average Doppler velocity,
and minimum Doppler velocity.

Considering that the suggested system is a type of binary
classifier, we applied accuracy, sensitivity and specificity as
verifications of each classifier performance as shown in (11),
(12), and (13).

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

Sensitivity =
TP

TP + FN
(12)

Specificity =
TN

TN + FP
(13)
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TABLE I. PERFORMANCE COMPARISON OF k-NN, ENN, AND
BAGGED ENN

Accuracy Sensitivity Specificity
Average StDev Average StDev Average StDev

k=3
k-NN 0.8075 0.0237 0.8335 0.0325 0.8431 0.0381
ENN 0.8055 0.0195 0.8258 0.0318 0.8325 0.0397

BENN 0.8794 0.0075 0.8690 0.0114 0.8638 0.0137

k=5
k-NN 0.8022 0.0183 0.8151 0.0245 0.8195 0.0313
ENN 0.8029 0.0145 0.8375 0.0355 0.8496 0.0417

BENN 0.8593 0.0079 0.8598 0.0106 0.8585 0.0122

k=7
k-NN 0.8000 0.0148 0.8205 0.0158 0.8297 0.0195
ENN 0.8063 0.0238 0.8399 0.0360 0.8520 0.0411

BENN 0.8516 0.0078 0.8560 0.0132 0.8561 0.0156

k=9
k-NN 0.8051 0.0187 0.8343 0.0302 0.8455 0.0350
ENN 0.8059 0.0248 0.8481 0.0409 0.8536 0.0591

BENN 0.8399 0.0050 0.8422 0.0091 0.8415 0.0113

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative. Also, in this paper, the true
means the anomalous propagation echo, and the false indicates
the non-anomalous propagation echo, respectively.

As shown in Table I, we compared the suggested method,
BENN which is a written abbreviation for bagged extended
nearest neighbors, to other nearest neighbors classifiers, the k-
nearest neighbors and the extended nearest neighbors. To avoid
a tie vote, we selected the number of nearest neighbors as
odd numbers under 10. In bagged extended nearest neighbors,
the number of k for bagging is set to 5. The experiments are
conducted 30 times in each case. The average and standard
deviation values of accuracy, sensitivity, specificity are shown
in Table I.

The bagged extended nearest neighbors shows the best
accuracy regardless of the number of k. And it shows the
best sensitivity and specificity in most of cases. In k = 9
case, the sensitivity and specificity of the bagged extended
nearest neighbors are slightly lower than the extended nearest
neighbors. However, considering that its standard deviations of
those factors are small, it seems more stable than the extended
nearest neighbors.

Fig. 4 shows the performances of nearest neighbors classi-
fiers in a form of boxplot: the first, fourth, seventh, and tenth
indicates the k-nearest neighbors; the second, fifth, eighth,
and eleventh indicates the extended nearest neighbors; and the
third, sixth, ninth, and twelfth indicates the bagged extended
nearest neighbors, respectively. Fig. 4 (a) describes that the
suggested method, bagged extended nearest neighbors, shows
impressive accuracy distribution than others when k = 3. From
Fig. 4 (b) to (d), even though the accuracy of the bagged
extended nearest neighbors is gradually decreased, it shows
better result than other results. Consequently, it is confirmed
that the bagged extended nearest neighbors classifier has the
best performance in most cases.

Fig. 5 shows one of graphically described experiment
results using the bagged extended nearest neighbors. Fig. 5 (a)
indicates a mixed case of precipitation echo and anomalous
propagation echo that the upper area is represented as the
anomalous propagation echo. Fig. 5 (b) describes the identified
anomalous propagation echo, and Fig. 5 (c) shows the radar
image without anomalous propagation echo. As a result, it is
also confirmed that the bagged extended nearest neighbors can
detect the anomalous propagation echo successfully.

Figure 4. Accuracy comparison of k-NN, ENN, and Bagged ENN methods:
(a) k=3, (b) k=5, (c) k=7, (d) k=9

V. CONCLUSION

The anomalous propagation echo occurs frequently and has
similar characteristics to precipitation echoes. And it should
be removed because it has a serious effect on the quantita-
tive precipitation estimation. Therefore, we suggest a novel
nearest neighbors classifier by combining bagging method
and extended nearest neighbors for identifying anomalous
propagation echo in radar data. Using the actual appearance
cases of the anomalous propagation echo, it is confirmed that
the suggested method is better than other nearest neighbors
classifiers.

In the future work, we will continue to study not only
for enhancing classification performance using parameter op-
timization but also for applying to other representative non-
precipitation echoes such as chaff and sea clutter. Furthermore,
based on the fact that the classification technique is one of
the most important of the data mining method, the proposed
method in this paper is expected to be able to perform an
important role in various fields.
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