INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications

Comparing Knowledge Representation Forms in Empirical Model Building

Hao Wang
Leiden Institute of Advanced

Ingo Schwab
Karlsruhe University of Applied

Michael Emmerich
Leiden Institute of Advanced

Computer Science Sciences Computer Science
'Lelden University Karlsruhe, Germany Leiden University
Leiden, The Netherlands e-mail: Leiden, The Netherlands

e-mail: h.wang@liacs.leidenuniv.nl

Abstract—Empirical models in engineering practice often come
from measurements of the machines but might also be
generated from expensive simulations to build so-called
surrogate models. From an abstract point of view can be seen
as approximations of functions that map input variables to
output variables. This paper describes and conceptually
compares different function approximation techniques, with a
focus on methods from machine learning, including Kriging
Models, Gaussian Processes, Artificial Neural Networks,
Radial Basis Functions, Random Forests, Functional
Regression, and Symbolic Regression. These methods are
compared on basis of different criteria, such as speed, number
and type of parameters, uncertainty assessment,
interpretability, and smoothness properties. Besides, a
particular focus is to compare the different ways of how
knowledge is represented in these models. Here we compare
the families of functions used to build the model and which
model components (structures, parameters) are provided by
the user or learned from the available data. Although this
paper is not about benchmarking, some numerical examples
are provided that illustrate the typical behavior of the
methods.

Keywords-Function Approximation; Machine learning;
Process Modelling; Model Formation; Symbolic Regression

L INTRODUCTION

Contemporary engineering design is heavily based on
computer simulations or work piece experiments. The results
are used not only for design verification but, even more
importantly, to adjust parameters of the system to have it
meet given performance requirements. Unfortunately,
accurate simulations or real life experiments with machines
or work pieces are often very expensive. High-fidelity
simulations can take with evaluation times as long as hours
or even days per design, making design automation using
conventional methods impractical. These and other problems
can be alleviated by the development and employment of so-
called surrogates that reliably represent the expensive,
simulation- or experiment based model of the system or
device of interest. They are often analytically tractable and
can give answers in a much faster or less costly way. Once
the model is set up, the parameter values which produce the
desired output from the given input can be retrieved fully
automatically and without any delay. More importantly, the
models can inter- or extrapolate values and thereby predict
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response values for new input parameters. In this way
empirical model building is a regression task. Methods
already exist, but it is still subject to intense research. In
particular advances were made in the field of machine
learning where by the use of computers significantly more
complex models can be studied than it was possible before
the ‘digital age’. This paper gives an overview over machine
learning methods and classical methods that can be used in
empirical model building. The goal is to compare them on
basis of a wide range of mainly conceptual (qualitative)
properties. In particular, we study how knowledge is
represented with these methods and which knowledge can be
introduced by the user or has to be learned by the method.
We deliberately avoided an evaluation of the different
algorithms on benchmark problems, as we think that such a
benchmark is beyond the scope of a workshop paper as it
would involve proper tuning/setting of model parameters in
order to provide a fair comparison. Instead, we provide
numerical examples in order to demonstrate typical behavior
of certain model types.

This paper is organized as follows. In Section II, the most
commonly exploited approximation models are briefly
introduced, illustrating their corresponding capabilities and
limitations. In addition, some intrinsic properties e.g., model
uncertainty assessment are discussed in detail. In Section III,
a numerical comparison is made through modelling the data
sampled from a 2-D Rastrigin function. In Section IV, we
compare the models in terms of their design principles as
well as their underlying mathematical structures and
parameters. Finally, Section V concludes the paper and
points out the further researches beyond this work.

II. BACKGROUND AND RELATED WORK

In this section we first briefly describe the most
commonly used function approximation models. Then, some
important properties of the models: symbolic representation,
model uncertainty assessment and universal function
approximation capability are discussed.

A. Function Approximation Models
1) Kriging
Kriging is a stochastic interpolation/regression approach,
which originates from earth science [1] and originally targets
at problems in geo-statistics and mining. Note, that the
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Kriging method is also termed as Gaussian Process
Regression [2] in the statistical machine learning literature,
although the latter is restricted to normal distributions and
typically provides a Bayesian interpretation of the predictor.
Kriging assumes that the observed input-output data is the
realization of a random field, and based on this assumption
estimates correlation parameters and then computes the best
linear unbiased estimator to predict the output value for a
given set of input variables. It offers a local assessment of
the prediction uncertainty, known as the Kriging variance at
any unobserved data point.

The Kriging method interpolates the output at unknown
data sample by modeling the response values as a realization
of a random process y, which is a sum of a function u(-) and
a centered Gaussian random field € [2].

y(x) = ulx) + e(x) 1)

Despite the fact that a spatial index is used (from R"
space) it is common in the literature to call the random field
also “Gaussian Process” for the multi-dimension case.
Moreover, unlike Gaussian Process Regression, the Kriging
framework can also be used for non-Gaussian random fields.

The centered Gaussian random field € is completely
defined by specifying the covariance functionk(-,-), that
solely depends on the relation between the input vectors.

k(x,x") = Covle(x),e(x")] = E[e(x)e(x")] ?2)

The user has to choose the structure of the covariance
function, which must be positive definite. It normally
depends on the similarity between the inputs, the parameters
of the covariance function are learned from the available
data, e.g., by maximum likelihood estimation.

When the function p(-) is assumed to be constant and
unknown, the method is called Ordinary Kriging (OK). If
u(-) is a functional regression model it is called Universal
Kriging. In OK, the predictions are made based on the
posterior distribution conditioning on the training set (X, y),
which is shown in (1). (here: V' (m, s?) denotes the normal
distribution with mean m and variance s?)

Y X, y,x8 ~ N(m(xb),s%(xb)) 3)

Where x* is target (unknown) input to make the prediction.
The posterior mean function is the estimator and the variance
can be used to compute uncertainty margins. For details,
refer to [2].
2)  Support Vector Machines

Support Vector Machines (SVMs) [3] [4] are supervised
learning algorithms which are originally designed for
classification tasks. The original SVM algorithm was
introduced in Computational Learning Theory conference
(COLT-92) by Boser, Guyon, Vapnik [4].It is now well-
established in machine learning. SVMs target at optimally
solving non-linear classification tasks, using two techniques
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to achieve the goal: maximum-margin separation and kernel
functions.

The simplest form, linear SVM construct a hyper
plane or set of hyper planes in a high-dimensional space.
Linear SVM can be considered as a perceptron but improve
it by performing an optimal classification. Informally, a
binary classification is achieved by finding two hyper planes.
Both of them separate the data while the distance between
them is maximized. The region bounded by these two hyper
planes is called the margin. The motivation behind this
approach is, in general, the larger the margin the lower
the generalization error of the classifier. The corresponding
linear classifier is known as the maximum margin classifier.
It is also equivalent to the perceptron of optimal stability.

In order to extend the capability of linear SVMs, the
well-known kernel trick [5] is applied to implicitly map the
samples to be separated to the (normally) high-dimension
feature space. This allows for a linear maximum-margin
separation in the feature space even if the problem is not
linearly separable in the input space.

3) Neural Networks

Artificial neural networks (ANNs) [6] [7] [8] is a broad
family of statistical learning algorithms inspired
by biological neural networks, whose structure is presented
as systems of interconnected artificial neurons. The first
artificial neuron, a simple linear classifier, was proposed in
1943 by the neurophysiologist Warren McCulloch and the
logician Walter Pits [8]. Each artificial neuron is modeled as
a transformation of a linear combination of its input. Given
the input to a neuron is x (not necessarily the input to the
whole network), the output O from an arbitrary neuron is:

0=<P(Zn:Wi'xi) )
i=1

Note that w; is the weight for the linear combination while
@(-) presents the transformation, or called activation
function more commonly. There are various activation
functions that have been applied. For example, linear,
Heaviside step function, sigmoid and hyperbolic tangent.

There are many types of ANNSs. If there are no cycles
(including self-connections) in the network, then we could
divide the network into layers, which is termed as feed
forward neural network [9]. This type of ANNSs are built by
choosing the number of layers and the class of activation
function for each neuron. Many well-known neural networks
belong to this category, for example, multi-layer perceptron
and radial basis function networks. If cycles or self-
connections exist in the network, it is generally called
recurrent neural network [10].

The feed forward neural network is of great interest here
because any real-valued continuous function can be
approximated arbitrarily close by a multi-layer perceptron
with just one hidden layer according to the universal
approximation theorem [11] [12] (see subchapter D of this
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article). Therefore, the feed forward network design is
expected as good approximation method. However, due to
the curse of dimensionality [13], it will be unavoidable that,
even for smooth functions, the amount of data needed for
precise approximation tends to grow exponentially with the
dimensionality, unless more precise assumptions on the
model class are made.

A variety of training techniques have been employed and
tested. Among them, the back-propagation technique [14] is
the most popular and influential. The general idea is to
express the training error (loss) function as the squared
difference between one true target and the approximated
value, which is differentiable with respect to the weights.
Consequently, we could compute the partial derivative of the
error to each weight so that some efficient optimization
techniques based on gradients can be applied.

4) Radial Basis Function Networks
Radial basis functions (RBFs) [15] are a special class of
real-valued functions whose value only depends on the
distance to the central point. In another word, any function h
having the property h(x) = h(||x||) is a radial basis
function. A classical and commonly used type is the

Gaussian:
|Ix —cl|
h(x) = exp <_r—2 )

where c is the center and r? is its radius. Many other types
are also available, e.g., multi-quadric. Please refer to [15] for
more details. Radial basis functions are typically used for
function approximations, in which multiple RBFs are
linearly weighted as the predictor:

)

§60 = > wi h(llx — el ©

i=1

Note that m is the number of the RBFs, each associated with
a different central point ¢; and a combination weight wj.
From the neural network perspective, the RBFs
approximation method can be viewed as an artificial neural
network, using radial basis function as activation function
and thus is also called radial basis function network (RBFN)
[16]. The RBFN is normally trained in two steps. Firstly, the
central points of the RBF functions are chosen in an
unsupervised manner. Usually, random sampling or k-mean
clustering is used for this step. Secondly, note that the
predictor §(-) is differentiable with respect to the weights.
Therefore, any well-established learning method involving
derivatives can be employed to train the RBFN [17], e.g.,
using the back-propagation method [14] to find optimal
weights.

RBFN is also closely related to the Kriging method we
have described earlier. Giannakoglou [18] introduced an
approach on how to employ RBF networks for exact
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interpolation in the sense that results for points in the training
set are reproduced exactly. This kind of RBFN leads to the
same equations as they are used in the prediction step of
Simple Kriging [19].

5) Polynomials and Splines

As an extension to the linear model, polynomial
regression models the relation between the response variable
and the input variables as a polynomial, which represents a
non-linear underlying assumption/knowledge. Therefore, it
has been widely applied on the data involving nonlinear
phenomena. The polynomial maps the input in R™ to high
dimensional space R™ ( m>n ) by introducing
interactions/correlations between input components. The free
parameters (to estimate) in the polynomial regression is the
coefficient of the polynomial plus the degree of the
polynomial. Although polynomial regression models a non-
linear relation, it is still linear to the unknown coefficients
and the transformed input in R™.

Second order polynomial functions are often used in real
live scenarios. However, the use of polynomials as a global
approximation only makes sense if the initial landscape, is
unimodal, which is often the case in engineering problems.

The coefficients are usually determined by the (ordinary)
least squares estimation method, which minimizes
the variance of the estimators of the coefficients. The degree
of the polynomial is usually specified by the user.

As an extension to simple polynomial functions, Splines
[21], which are piecewise polynomials defined on disjoint
domain partitions, are usually preferred for approximation
purposes due to their ability of avoiding the instability from
Runge’s phenomenon [22] in high degree polynomial fitting.
As for univariate regression of order n (the highest order of
all the polynomials), each piecewise polynomial defined on
disjoint interval is chosen such that the derivatives of each
pair of connecting polynomial at the connection point should
be equivalent up to order n — 1, which leads to the
continuous and continuously differentiable of the whole
spline curve.

The mostly applied splines are B-splines (‘B’ stands for
basis), particularly cubic B-splines. The importance of B-
splines is mainly due to the fact that any spline curve can be
represented as a weighted linear combination of B-Splines.
For each piecewise polynomial, the B-splines up to a certain
order can be evaluated recursively by De Boor’s algorithm
[23]. Using B-splines, a function approximation task can be
achieved by fitting a spline function composed of a
weighted sum of B-splines, using the least-squares method.

6) Random Forests

Ensemble learning algorithms [26] [27] construct a set of
classifiers and then label new data sets by taking a
(weighted) vote of their predictions, e.g., random forest [28].
The main principle behind ensemble methods is that the
prediction quality increases when a set of learning algorithms
are grouped together. There are different types of algorithms
for ensemble learning, i.e., boosting [29], bootstrap
aggregation [30] or stacking [31].
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Random forests are also a type of ensemble learning.
They combine different decision tree predictors such that
each tree depends on the values of a random vector sampled
independently and with the same distribution for all trees in
the forest. The calculation of the resulting class
(classification problem) or regression output is the most
straightforward. For classification the majority of the class
output of the decision trees are calculated. For a regression
problem accordingly the mean of the trees are the result of
the model.

The advantages of random forest is mostly its fast running
speed, both in training and prediction/classification and easy
interpretability. In addition, they are able to deal with
unbalanced and missing data, which is quite common in the
real application. Its weaknesses are that when used for
regression they cannot predict beyond the range in the
training data, and they may over-fit data sets that are
particularly noisy.

7)  Symbolic Regression

In the previous subsection, we assumed that we already
know the structure of the output. After that we choose the
best simplified model and fit the free parameters of the
model. From this point of view Symbolic Regression is
much more powerful. In this case, the function is composed
of an arbitrary (but predefined) set of mathematical symbols,
forming a valid expression of a parameterized function. Like
other statistical and machine learning regression techniques
symbolic regression also tries to fit observed experimental
data. But unlike the well-known regression techniques in
statistics and machine learning, symbolic regression is used
to identify an analytical mathematical description and it has
more degrees of freedom in building it.

A set of (basic) operators is predetermined (e.g., add,
multiply, sin, cos) and the algorithm is mostly free in
concatenating them. In contrast to the classical regression
approaches which optimize the parameters of a prescribed
structure, here the structure of the function is free and the
algorithm optimizes the parameters and the structure.

There are different ways to represent the solutions in
symbolic regression. For example, informal and formal
grammars have been used in genetic programming to
enhance the representation and the efficiency of a number of
applications including symbolic regression.

Since symbolic regression operates on discrete
representations of mathematical formulas, non-standard
optimization methods are needed to fit the data. The main
idea of the algorithm is to focus on searching promising
areas of the target space while abandoning unpromising
solutions (see [24] [25] for more details). In order to achieve
this, symbolic regression uses the main mechanisms of
Genetic and Evolutionary Algorithms. In particular, these are
mutation, crossover and selection which are applied to an
algebraic mathematical representation.

The representation is encoded in a tree. Both the
parameters and the form of the equation are subject to the
target space of all possible trees that representing
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mathematical expressions. The operations are nodes in the
tree and can be mathematical operations such as additions
(add), multiplications (mul), abs, exp, etc. The terminal
values of the tree consist of the function's input variables and
real numbers (constants). The input variables are realized by
the values of the training dataset.

In symbolic regression, many initially random symbolic
equations compete to model experimental data in the most
promising way. Promising are those solutions possessing a
good compromise between better prediction quality of the
observed data and the length of the mathematical formula.

Mutation in a symbolic expression can change the
mathematical type of formula in different ways. For
example, a div is changed to an add, the arguments of an
operation are replaced (e.g., change 2*x to 3*x), an operation
is deleted (e.g., change 2*x+1 to 2*x), or an operation is
added (e.g., change 2*x to 2*x+1).

The objective in symbolic regression, like in other
machine learning and data mining algorithms, is to minimize
the regression error on the training data. After an equation
reaches a desired level of accuracy, the algorithm returns the
best equation or a set of good solutions (the Pareto front). In
many cases the solution reflects the underlying principles of
the observed system.

B. Symbolic vs Subsymbolic Representation

In the perspective of symbolic representations, the
previously described methods can be categorized according
to whether they are using symbolic or subsymbolic model
representations.

As Smolensky [32] noted, the term subsymbolic
paradigm is intended to suggest symbolic representations
that are built out of many smaller constituents: “Entities that
are typically represented in the symbolic paradigm by
symbols are typically represented in the subsymbolic
paradigm by a large number of subsymbols” (p. 3).

The debate over symbolic versus subsymbolic
representations of human cognition is this: Does the human
cognitive system use symbols as a representation of
knowledge? Or does it process knowledge in a distributed
representation in a complex and meaningful way? E.g., in
neural networks the knowledge is represented in the
parameters of the model. It is not possible to determine the
exact position of the knowledge.

From this point of view, the syntactic role of subsymbols
can be described as the subsymbols participate in numerical
computation. In contrast, a single discrete operation in the
symbolic paradigm is often achieved in the subsymbolic
paradigm by a large number of much finer-grained
operations. One well known problem with subsymbolic
networks which have undergone training is that they are
extremely difficult to interpret and analyze. In [33], it is
argued that it is the inexplicable nature of mature networks.
Partially, it is due to the fact that subsymbolic knowledge
representations cannot be interpreted by humans and that
they are black box knowledge representations.
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C. Estimation Uncertainty

Commonly, the mean square error (MSE) of the
predictor, which measures the average of the squared error
over the validation data set in the cross validation, is the
most accessible error information from the models. It is used
as an objective function (loss function) to facilitate the model
fitting. For the regression model assuming homoscedasticity
(constant noise variances), MSE is also an estimation of the
uncertainty measure of the predicted values. When the noise
variances are assumed to be non-constant, MSE gives no
clue to the uncertainty measure of predicted values.

As a advantage of Kriging, it provides the MSE of the
estimator or so-called Kriging variance as a built-in feature.
It is of significant importance in machine learning as well as
global optimization. It directly shows the regions where
Kriging model might perform badly (high variance). The
Kriging variance is determined by the relative location
between the training data, the location of the input to predict
as well as the covariance structure.

D. Universal Function Approximators

As mentioned earlier, multi-layer neural networks can be
considered as universal function approximators. The formal
statement of universal approximation theorem [12] states that
neural nets with single hidden layer can approximate any
function which is continuous on n-dimensional unit
hypercube. In [11] Cybenko has showed that a continuous
function on a compact set can be approximated by a
piecewise constant function. And a piecewise constant
function can be represented as a neural net as follows. For
each region where the function is constant, use a neural net
as an indicator function for that region. Then build a final
layer with a single node, whose input linear combination is
the sum of all the indicators, with a weight equal to the
constant value of the corresponding region in the original
piecewise constant function. With this idea every continuous
function can be represented with a neural network.

While Cybenko's result is an approximation guarantee
Kolmogorov [34] proved that that a neural network provides
an equality. Additionally, with heterogeneous transfer
functions it can be proved that only O(n?) nodes are needed.
It should be mentioned that Cybenko's result, with using only
one type of activation function, is more relevant to machine
learning.

III. ILLUSTRATIONS

Despite all the discussions in this paper, the behavior of the
models is still quite vague at this moment. Thus, a small
illustration of the model behavior would be necessary. We
try to fulfill this task by showing the capability of modelling
methods on the well-known 2-D Rastrigin function, whose
highly rugged response surface is depicted in Fig. 1. By
drawing 1000 points using Latin hypercube sampling in
[—5,5]2, we build a Kriging, a polynomial regression and a
RBFN model. In addition, SVMs with linear and polynomial
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kernels are also constructed. The polynomial regression and
SVM with polynomial kernel look similar and generally
capture the global quadratic structure of the function but
smooth out the surface. The SVM with linear kernel is
expected to be a 2-D plane. The RBFs performs even better
than SVMs due to the fact that it also shows a “bumpy”
surface compared to the real surface. The Kriging model
both reproduces the global trend of the function and includes
small fluctuations although they are too small in scales.

IV. MODEL PROPERTY COMPARISONS

In order to obtain a more accessible view of the
similarities and differences among all the function
approximation methods described in this paper, we
summarize the major feature, characteristic and properties of
these models in two perspectives.

On one hand, we summarize the properties of models
which are implied by their corresponding design principles in
Table 1. Those intrinsic properties includes whether the
model is symbolic or subsymbolic, the uncertainty
assessment and time complexity, etc.

The models presented can be classified by whether they
are designed based on symbolic or subsymbolic
representations. As discussed in section II.B, such property
determines whether the model knowledge can be understood
by human.

Uncertainty measurement is another important aspect,
providing additional knowledge on the quality/confidence of
the model. In this case, Kriging model is distinguishing
because the exact mean square error is available for the
predicted values, as depicted in section I1.C.

These models also differ in the interpretability. Some
models have clear and meaningful explanations, e.g., the
linear relation between the output and the input in linear
regression. However, models like multi-layer perceptron has
no direct implications.

The training methods vary on these models due to
corresponding  underlying  assumptions and  model
complexity. Commonly used methods include least square
estimation, maximization likelihood, back-propagation,
cross-validation and mathematical programming. In some
models (e.g., SVM), an additional training method is needed
for the additional hyper-parameters. For example in SVM,
quadratic programming is used to find the model weights
while the cross-validation could also be applied to fit the
parameters in the kernel function.

Despite the theoretical elegance of some modeling
algorithms, the time complexity is crucial in the real
application, where some of them might be not
computationally feasible on large dataset. Kriging takes very
high O(n3) effort for the model training compared to O(n)
of linear regression.

On the other hand, in terms of the structure and
parameters contained in the model, we are also interested in
what kind underlying mathematical structures the models
assume/built upon, what mathematical structures/parameter
could be learned from the training data or should be fixed by
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the user. As a simple example, linear models assume a linear
structure, where no parameters needed to provide by the
users and the coefficients are learned from the data. In
contrast, for symbolic regression and random forest, the tree
structure is used. Such comparisons are listed in Table 2.

V. CONCLUSION

In this paper, we describe the most commonly used
function approximation methods. The basic properties of
them are discussed briefly. The meaning and effect of
symbolic/subsymbolic representation is depicted. We also
compare the ability of obtaining uncertainty measure for the
models. We construct several models on the 2-D Rastrigin
function and demonstrate the performance of approximation
of these models. Finally, two tables are made to summarize
and compare the essential conceptual properties of the
models, where most of the important aspects are covered.

One finding is that already before fitting the model many
decisions are made by the user. These decisions might
restrict the capability of the models and ultimately this will
unintendedly influence the prediction results. Universality

error/model consistency provided by the method itself
(Kriging method) or to build models that can be interpreted
by humans (symbolic regression, random forests). The
symbolic regression framework is particularly interesting
because it also frees the user from the burden of deciding on
a symbolic model representation a-priori, in cases where no
‘natural’ functional expression can be assumed.

In the future work, it would be interesting to investigate
how to combine a quantitative performance assessment with
the qualitative assessment of methods, on which our work
focused. Also, symbolic regression can naturally be
combined with some of the other machine learning
techniques, for instance by learning the structure of kernel
function.
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