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Abstract—Empirical models in engineering practice often come 
from measurements of the machines but might also be 
generated from expensive simulations to build so-called 
surrogate models. From an abstract point of view can be seen 
as approximations of functions that map input variables to 
output variables. This paper describes and conceptually 
compares different function approximation techniques, with a 
focus on methods from machine learning, including Kriging 
Models, Gaussian Processes, Artificial Neural Networks, 
Radial Basis Functions, Random Forests, Functional 
Regression, and Symbolic Regression. These methods are 
compared on basis of different criteria, such as speed, number 
and type of parameters, uncertainty assessment, 
interpretability, and smoothness properties. Besides, a 
particular focus is to compare the different ways of how 
knowledge is represented in these models. Here we compare 
the families of functions used to build the model and which 
model components (structures, parameters) are provided by 
the user or learned from the available data. Although this 
paper is not about benchmarking, some numerical examples 
are provided that illustrate the typical behavior of the 
methods.  

Keywords-Function Approximation; Machine learning; 
Process Modelling; Model Formation; Symbolic Regression 

I.!  INTRODUCTION 
Contemporary engineering design is heavily based on 

computer simulations or work piece experiments. The results 
are used not only for design verification but, even more 
importantly, to adjust parameters of the system to have it 
meet given performance requirements. Unfortunately, 
accurate simulations or real life experiments with machines 
or work pieces are often very expensive. High-fidelity 
simulations can take with evaluation times as long as hours 
or even days per design, making design automation using 
conventional methods impractical. These and other problems 
can be alleviated by the development and employment of so-
called surrogates that reliably represent the expensive, 
simulation- or experiment based model of the system or 
device of interest. They are often analytically tractable and 
can give answers in a much faster or less costly way. Once 
the model is set up, the parameter values which produce the 
desired output from the given input can be retrieved fully 
automatically and without any delay. More importantly, the 
models can inter- or extrapolate values and thereby predict  

response values for new input parameters. In this way 
empirical model building is a regression task. Methods 
already exist, but it is still subject to intense research. In 
particular advances were made in the field of machine 
learning where by the use of computers significantly more 
complex models can be studied than it was possible before 
the ‘digital age’. This paper gives an overview over machine 
learning methods and classical methods that can be used in 
empirical model building. The goal is to compare them on 
basis of a wide range of mainly conceptual (qualitative) 
properties. In particular, we study how knowledge is 
represented with these methods and which knowledge can be 
introduced by the user or has to be learned by the method. 
We deliberately avoided an evaluation of the different 
algorithms on benchmark problems, as we think that such a 
benchmark is beyond the scope of a workshop paper as it 
would involve proper tuning/setting of model parameters in 
order to provide a fair comparison. Instead, we provide 
numerical examples in order to demonstrate typical behavior 
of certain model types.     

This paper is organized as follows. In Section II, the most  
commonly exploited approximation models are briefly 
introduced, illustrating their corresponding capabilities and 
limitations. In addition, some intrinsic properties e.g., model 
uncertainty assessment are discussed in detail. In Section III,  
a numerical comparison is made through modelling the data 
sampled from a 2-D Rastrigin function. In Section IV, we 
compare the models  in terms of their design principles as 
well as their underlying mathematical structures and 
parameters. Finally, Section V concludes the paper and 
points out the further researches beyond this work. 

II.! BACKGROUND AND RELATED WORK 
In this section we first briefly describe the most 

commonly used function approximation models. Then, some 
important properties of the models: symbolic representation, 
model uncertainty assessment and universal function 
approximation capability are discussed. 

A.! Function Approximation Models 
1)! Kriging 

Kriging is a stochastic interpolation/regression approach, 
which originates from earth science [1] and originally targets 
at problems in geo-statistics and mining. Note, that the 
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Kriging method is also termed as Gaussian Process 
Regression [2] in the statistical machine learning literature, 
although the latter is restricted to normal distributions and 
typically provides a Bayesian interpretation of the predictor. 
Kriging assumes that the observed input-output data is the 
realization of a random field, and based on this assumption 
estimates correlation parameters and then computes the best 
linear unbiased estimator to predict the output value for a 
given set of input variables. It offers a local assessment of 
the prediction uncertainty, known as the Kriging variance at 
any unobserved data point.  

The Kriging method interpolates the output at unknown 
data sample by modeling the response values as a realization 
of a random process !, which is a sum of a function "(⋅) and 
a centered Gaussian random field & [2].  
 

 !(') = " ' + & '  
 

(1) 

Despite the fact that a spatial index is used (from R+ 
space) it is common in the literature to call the random field 
also “Gaussian Process” for the multi-dimension case. 
Moreover, unlike Gaussian Process Regression, the Kriging 
framework can also be used for non-Gaussian random fields. 

The centered Gaussian random field ε  is completely 
defined by specifying the covariance function k ⋅,⋅ ,  that 
solely depends on the relation between the input vectors. 
 
 / ', '0 = 123 & ' , & '0 = 4[& ' & '0 ] (2) 

The user has to choose the structure of the covariance 
function, which must be positive definite. It normally 
depends on the similarity between the inputs, the parameters 
of the covariance function are learned from the available 
data, e.g., by maximum likelihood estimation. 

When the function  7(⋅) is assumed to be constant and 
unknown, the method is called Ordinary Kriging (OK). If  
7(⋅)  is a functional regression model it is called Universal 
Kriging. In OK, the predictions are made based on the 
posterior distribution conditioning on the training set (8, !), 
which is shown in (1). (here:9:(m, s=) denotes the normal 
distribution with mean m and variance s=) 

 
 !>|98, !, '> 9∼ 9:(A 9'> , B=('>)) (3) 

Where 'C is target (unknown) input to make the prediction. 
The posterior mean function is the estimator and the variance 
can be used to compute uncertainty margins. For details, 
refer to [2]. 

2)! Support Vector Machines 
Support Vector Machines (SVMs) [3] [4] are supervised 

learning algorithms which are originally designed for 
classification tasks. The original SVM algorithm was 
introduced in Computational Learning Theory conference 
(COLT-92) by Boser, Guyon, Vapnik [4]. It is now well-
established in machine learning. SVMs target at optimally 
solving non-linear classification tasks, using two techniques 

to achieve the goal: maximum-margin separation and kernel 
functions. 

The simplest form, linear SVM construct a hyper 
plane or set of hyper planes in a high-dimensional space. 
Linear SVM can be considered as a perceptron but improve 
it by performing an optimal classification. Informally, a 
binary classification is achieved by finding two hyper planes. 
Both of them separate the data while the distance between 
them is maximized. The region bounded by these two hyper 
planes is called the margin. The motivation behind this 
approach is, in general, the larger the margin the lower 
the generalization error of the classifier. The corresponding 
linear classifier is known as the maximum margin classifier. 
It is also equivalent to the perceptron of optimal stability. 

In order to extend the capability of linear SVMs, the 
well-known kernel trick [5] is applied to implicitly map the 
samples to be separated to the (normally) high-dimension 
feature space. This allows for a linear maximum-margin 
separation in the feature space even if the problem is not 
linearly separable in the input space. 

3)! Neural Networks 
Artificial neural networks (ANNs) [6] [7] [8] is a broad 

family of statistical learning algorithms inspired 
by biological neural networks, whose structure is presented 
as systems of interconnected artificial neurons. The first 
artificial neuron, a simple linear classifier, was proposed in 
1943 by the neurophysiologist Warren McCulloch and the 
logician Walter Pits [8]. Each artificial neuron is modeled as 
a transformation of a linear combination of its input.  Given 
the input to a neuron is ' (not necessarily the input to the 
whole network), the output O from an arbitrary neuron is: 
 
 

E = F GH ⋅ 'H
I

HJK

 (4) 

Note that wM is the weight for the linear combination while 
φ ⋅  presents the transformation, or called activation 
function more commonly. There are various activation 
functions that have been applied. For example, linear, 
Heaviside step function, sigmoid and hyperbolic tangent. 

There are many types of ANNs. If there are no cycles 
(including self-connections) in the network, then we could 
divide the network into layers, which is termed as feed 
forward neural network [9]. This type of ANNs are built by 
choosing the number of layers and the class of activation 
function for each neuron. Many well-known neural networks 
belong to this category, for example, multi-layer perceptron 
and radial basis function networks. If cycles or self-
connections exist in the network, it is generally called 
recurrent neural network [10]. 

The feed forward neural network is of great interest here 
because any real-valued continuous function can be 
approximated arbitrarily close by a multi-layer perceptron 
with just one hidden layer according to the universal 
approximation theorem [11] [12] (see subchapter D of this 
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article). Therefore, the feed forward network design is 
expected as good approximation method. However, due to 
the curse of dimensionality [13], it will be unavoidable that, 
even for smooth functions, the amount of data needed for 
precise approximation tends to grow exponentially with the 
dimensionality, unless more precise assumptions on the 
model class are made. 

A variety of training techniques have been employed and 
tested.  Among them, the back-propagation technique [14] is 
the most popular and influential. The general idea is to 
express the training error (loss) function as the squared 
difference between one true target and the approximated 
value, which is differentiable with respect to the weights. 
Consequently, we could compute the partial derivative of the 
error to each weight so that some efficient optimization 
techniques based on gradients can be applied.  
 

4)! Radial Basis Function Networks 
Radial basis functions (RBFs) [15] are a special class of 

real-valued functions whose value only depends on the 
distance to the central point. In another word, any function h 
having the property h ' = h(||'||)  is a radial basis 
function. A classical and commonly used type is the 
Gaussian: 

 
 

h ' = exp −
' − T
r= , (5) 

where T is the center and r= is its radius. Many other types 
are also available, e.g., multi-quadric. Please refer to [15] for 
more details. Radial basis functions are typically used for 
function approximations, in which multiple RBFs are 
linearly weighted as the predictor: 
 
 

! V = GH9ℎ(||V − XH||)
Y

HJK

 (6) 

Note that m is the number of the RBFs, each associated with 
a different central point TM  and a combination weight wM . 
From the neural network perspective, the RBFs 
approximation method  can be viewed as an artificial neural 
network, using radial basis function as activation function 
and thus is also called radial basis function network (RBFN) 
[16]. The RBFN is normally trained in two steps. Firstly, the 
central points of the RBF functions are chosen in an 
unsupervised manner. Usually, random sampling or k-mean 
clustering is used for this step. Secondly, note that the 
predictor y(⋅) is differentiable with respect to the weights. 
Therefore, any well-established learning method involving 
derivatives can be employed to train the RBFN [17], e.g., 
using the back-propagation  method  [14] to find optimal 
weights. 

RBFN is also closely related to the Kriging method we 
have described earlier. Giannakoglou [18] introduced an 
approach on how to employ RBF networks for exact 

interpolation in the sense that results for points in the training 
set are reproduced exactly. This kind of RBFN leads to the 
same equations as they are used in the prediction step of 
Simple Kriging [19]. 

5)! Polynomials and Splines 
As an extension to the linear model, polynomial 

regression models the relation between the response variable 
and the input variables as a polynomial, which represents a 
non-linear underlying assumption/knowledge. Therefore, it 
has been widely applied on the data involving nonlinear 
phenomena. The polynomial maps the input in [I  to high 
dimensional space [Y  ( A > ] ) by introducing 
interactions/correlations between input components. The free 
parameters (to estimate) in the polynomial regression is the 
coefficient of the polynomial plus the degree of the 
polynomial.  Although polynomial regression models a non-
linear relation, it is still linear to the unknown coefficients 
and the transformed input in [Y. 

Second order polynomial functions are often used in real 
live scenarios. However, the use of polynomials as a global 
approximation only makes sense if the initial landscape, is 
unimodal, which is often the case in engineering problems. 

The coefficients are usually determined by the (ordinary) 
least squares estimation method, which minimizes 
the variance of the estimators of the coefficients. The degree 
of the polynomial is usually specified by the user. 

As an extension to simple polynomial functions, Splines 
[21], which are piecewise polynomials defined on disjoint 
domain partitions, are usually preferred for approximation 
purposes due to their ability of avoiding the instability from 
Runge’s phenomenon [22] in high degree polynomial fitting. 
As for univariate regression of order ] (the highest order of 
all the polynomials), each piecewise polynomial defined on 
disjoint interval is chosen such that the derivatives of each 
pair of connecting polynomial at the connection point should 
be equivalent up to order ] − 1 , which leads to the 
continuous and continuously differentiable of the whole 
spline curve. 

The mostly applied splines are B-splines (‘B’ stands for 
basis), particularly cubic B-splines. The importance of B-
splines is mainly due to the fact that any spline curve can be 
represented as a weighted linear combination of B-Splines. 
For each piecewise polynomial, the B-splines up to a certain 
order can be evaluated recursively by De Boor’s algorithm 
[23]. Using B-splines, a function approximation task can be 
achieved by fitting a spline function composed of  a 
weighted sum of B-splines, using the least-squares method.   

6)! Random Forests 
Ensemble learning algorithms [26] [27] construct a set of 

classifiers and then label new data sets by taking a 
(weighted) vote of their predictions, e.g., random forest [28]. 
The main principle behind ensemble methods is that the 
prediction quality increases when a set of learning algorithms 
are grouped together. There are different types of algorithms 
for ensemble learning, i.e., boosting [29], bootstrap 
aggregation [30] or stacking [31].  
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Random forests are also a type of ensemble learning. 
They combine different decision tree predictors such that 
each tree depends on the values of a random vector sampled 
independently and with the same distribution for all trees in 
the forest. The calculation of the resulting class 
(classification problem) or regression output is the most 
straightforward. For classification the majority of the class 
output of the decision trees are calculated. For a regression 
problem accordingly the mean of the trees are the result of 
the model.  
The advantages of random forest is mostly its fast running 
speed, both in training and prediction/classification and easy 
interpretability. In addition, they are able to deal with 
unbalanced and missing data, which is quite common in the 
real application. Its weaknesses are that when used for 
regression they cannot predict beyond the range in the 
training data, and they may over-fit data sets that are 
particularly noisy. 

7)! Symbolic Regression 
In the previous subsection, we assumed that we already 

know the structure of the output. After that we choose the 
best simplified model and fit the free parameters of the 
model. From this point of view Symbolic Regression is 
much more powerful. In this case, the function is composed 
of an arbitrary (but predefined) set of mathematical symbols, 
forming a valid expression of a parameterized function. Like 
other statistical and machine learning regression techniques 
symbolic regression also tries to fit observed experimental 
data. But unlike the well-known regression techniques in 
statistics and machine learning, symbolic regression is used 
to identify an analytical mathematical description and it has 
more degrees of freedom in building it. 

A set of (basic) operators is predetermined (e.g., add, 
multiply, sin, cos) and the algorithm is mostly free in 
concatenating them. In contrast to the classical regression 
approaches which optimize the parameters of a prescribed 
structure, here the structure of the function is free and the 
algorithm optimizes the parameters and the structure. 

There are different ways to represent the solutions in 
symbolic regression. For example, informal and formal 
grammars have been used in genetic programming to 
enhance the representation and the efficiency of a number of 
applications including symbolic regression. 

Since symbolic regression operates on discrete 
representations of mathematical formulas, non-standard 
optimization methods are needed to fit the data. The main 
idea of the algorithm is to focus on searching promising 
areas of the target space while abandoning unpromising 
solutions (see [24] [25] for more details). In order to achieve 
this, symbolic regression uses the main mechanisms of 
Genetic and Evolutionary Algorithms. In particular, these are 
mutation, crossover and selection which are applied to an 
algebraic mathematical representation. 

The representation is encoded in a tree. Both the 
parameters and the form of the equation are subject to  the 
target space of all possible trees that representing 

mathematical expressions. The operations are nodes in the 
tree and can be mathematical operations such as additions 
(add), multiplications (mul), abs, exp, etc. The terminal 
values of the tree consist of the function's input variables and 
real numbers (constants). The input variables are realized by 
the values of the training dataset. 

In symbolic regression, many initially random symbolic 
equations compete to model experimental data in the most 
promising way. Promising are those solutions possessing a 
good compromise between better prediction quality of the 
observed data and the length of the mathematical formula. 

Mutation in a symbolic expression can change the 
mathematical type of formula in different ways. For 
example, a div is changed to an add, the arguments of an 
operation are replaced (e.g., change 2*x to 3*x), an operation 
is deleted (e.g., change 2*x+1 to 2*x), or an operation is 
added (e.g., change 2*x to 2*x+1). 

The objective in symbolic regression, like in other 
machine learning and data mining algorithms, is to minimize 
the regression error on the training data. After an equation 
reaches a desired level of accuracy, the algorithm returns the 
best equation or a set of good solutions (the Pareto front). In 
many cases the solution reflects the underlying principles of 
the observed system. 

B.! Symbolic vs Subsymbolic Representation  
In the perspective of symbolic representations, the 

previously described methods can be categorized according 
to whether they are using symbolic or subsymbolic model 
representations.  

As Smolensky [32] noted, the term subsymbolic 
paradigm is intended to suggest symbolic representations 
that are built out of many smaller constituents: “Entities that 
are typically represented in the symbolic paradigm by 
symbols are typically represented in the subsymbolic 
paradigm by a large number of subsymbols” (p. 3). 

The debate over symbolic versus subsymbolic 
representations of human cognition is this: Does the human 
cognitive system use symbols as a representation of 
knowledge? Or does it process knowledge in a distributed 
representation in a complex and meaningful way? E.g., in 
neural networks the knowledge is represented in the 
parameters of the model. It is not possible to determine the 
exact position of the knowledge. 

From this point of view, the syntactic role of subsymbols 
can be described as the subsymbols participate in numerical 
computation. In contrast, a single discrete operation in the 
symbolic paradigm is often achieved in the subsymbolic 
paradigm by a large number of much finer-grained 
operations. One well known problem with subsymbolic 
networks which have undergone training is that they are 
extremely difficult to interpret and analyze. In [33], it is 
argued that it is the inexplicable nature of mature networks. 
Partially, it is due to the fact that subsymbolic knowledge 
representations cannot be interpreted by humans and that 
they are black box knowledge representations. 
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C.! Estimation Uncertainty 
Commonly, the mean square error (MSE) of the 

predictor, which measures the average of the squared error 
over the validation data set in the cross validation, is the 
most accessible error information from the models. It is used 
as an objective function (loss function) to facilitate the model 
fitting. For the regression model assuming homoscedasticity 
(constant noise variances), MSE is also an estimation of the 
uncertainty measure of the predicted values. When the noise 
variances are assumed to be non-constant, MSE gives no 
clue to the uncertainty measure of predicted values. 

As a advantage of Kriging, it provides the MSE of the 
estimator or so-called Kriging variance as a built-in feature. 
It is of significant importance in machine learning as well as 
global optimization. It directly shows the regions where 
Kriging model might perform badly (high variance). The 
Kriging variance is determined by the relative location 
between the training data, the location of the input to predict 
as well as the covariance structure.  

D.!Universal Function Approximators  
As mentioned earlier, multi-layer neural networks can be 

considered as universal function approximators. The formal 
statement of universal approximation theorem [12] states that 
neural nets with single hidden layer can approximate any 
function which is continuous on n-dimensional unit 
hypercube.  In [11] Cybenko has showed that a continuous 
function on a compact set can be approximated by a 
piecewise constant function. And a piecewise constant 
function can be represented as a neural net as follows. For 
each region where the function is constant, use a neural net 
as an indicator function for that region. Then build a final 
layer with a single node, whose input linear combination is 
the sum of all the indicators, with a weight equal to the 
constant value of the corresponding region in the original 
piecewise constant function. With this idea every continuous 
function can be represented with a neural network. 

While Cybenko's result is an approximation guarantee  
Kolmogorov [34] proved that that a neural network provides 
an equality. Additionally, with heterogeneous transfer 
functions it can be proved that only O(n=) nodes are needed. 
It should be mentioned that Cybenko's result, with using only 
one type of activation function, is more relevant to machine 
learning. 
 

III.! ILLUSTRATIONS 
Despite all the discussions in this paper, the behavior of the 
models is still quite vague at this moment. Thus, a small 
illustration of the model behavior would be necessary. We 
try to fulfill this task by showing the capability of modelling 
methods on the well-known 2-D Rastrigin function, whose 
highly rugged response surface is depicted in Fig. 1. By 
drawing 1000 points using Latin hypercube sampling in 
−5, 5 =, we build a Kriging, a polynomial regression and a 

RBFN model. In addition, SVMs with linear and polynomial 

kernels are also constructed. The polynomial regression and 
SVM with polynomial kernel look similar and generally 
capture the global quadratic structure of the function but 
smooth out the surface. The SVM with linear kernel is 
expected to be a 2-D plane. The RBFs performs even better 
than SVMs due to the fact that it also shows a “bumpy” 
surface compared to the real surface. The Kriging model 
both reproduces the global trend of the function and includes 
small fluctuations although they are too small in scales. 
 

IV.! MODEL PROPERTY COMPARISONS 
In order to obtain a more accessible view of the 

similarities and differences among all the function 
approximation methods described in this paper, we 
summarize the major feature, characteristic and properties of 
these models in two perspectives.  

On one hand, we summarize the properties of models 
which are implied by their corresponding design principles in 
Table 1. Those intrinsic properties includes whether the 
model is symbolic or subsymbolic, the uncertainty 
assessment and time complexity, etc. 

The models presented can be classified by whether they 
are designed based on symbolic or subsymbolic 
representations. As discussed in section II.B, such property 
determines whether the model knowledge can be understood 
by human.  

Uncertainty measurement is another important aspect, 
providing additional knowledge on the quality/confidence of 
the model. In this case, Kriging model is distinguishing 
because the exact mean square error is available for the 
predicted values, as depicted in section II.C.  

These models also differ in the interpretability. Some 
models have clear and meaningful explanations, e.g., the 
linear relation between the output and the input in linear 
regression. However, models like multi-layer perceptron has 
no direct implications.  

The training methods vary on these models due to 
corresponding underlying assumptions and model 
complexity. Commonly used methods include least square 
estimation, maximization likelihood, back-propagation, 
cross-validation and mathematical programming. In some 
models (e.g., SVM), an additional training method is needed 
for the additional hyper-parameters. For example in SVM, 
quadratic programming is used to find the model weights 
while the cross-validation could also be applied to fit the 
parameters in the kernel function. 

Despite the theoretical elegance of some modeling 
algorithms, the time complexity is crucial in the real 
application, where some of them might be not 
computationally feasible on large dataset. Kriging takes very 
high O(na) effort for the model training compared to O(n) 
of linear regression. 

On the other hand, in terms of the structure and 
parameters contained in the model, we are also interested in 
what kind underlying mathematical structures the models 
assume/built upon, what mathematical structures/parameter 
could be learned from the training data or should be fixed by 
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the user. As a simple example, linear models assume a linear 
structure, where no parameters needed to provide by the 
users and the coefficients are learned from the data. In 
contrast, for symbolic regression and random forest, the tree 
structure is used. Such comparisons are listed in Table 2.  

V.! CONCLUSION 
In this paper, we describe the most commonly used 

function approximation methods. The basic properties of 
them are discussed briefly. The meaning and effect of 
symbolic/subsymbolic representation is depicted. We also 
compare the ability of obtaining uncertainty measure for the 
models. We construct several models on the 2-D Rastrigin 
function and demonstrate the performance of approximation 
of these models. Finally, two tables are made to summarize 
and compare the essential conceptual properties of the 
models, where most of the important aspects are covered.  

One finding is that already before fitting the model many 
decisions are made by the user. These decisions might 
restrict the capability of the models and ultimately this will 
unintendedly influence the prediction results. Universality 
properties do not practically solve these issues, as they are 
stated for a model whose size tends to infinity. A more 
meaningful approach to find models that can be used with 
confidence might be to use self-assessment of the 

error/model consistency provided by the method itself 
(Kriging method) or to build models that can be interpreted 
by humans (symbolic regression, random forests). The 
symbolic regression framework is particularly interesting 
because it also frees the user from the burden of deciding on 
a symbolic model representation a-priori, in cases where no 
‘natural’ functional expression can be assumed.  

In the future work, it would be interesting to investigate 
how to combine a quantitative performance assessment with 
the qualitative assessment of methods, on which our work 
focused. Also, symbolic regression can naturally be 
combined with some of the other machine learning 
techniques, for instance by learning the structure of kernel 
function. 
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Figure 1 . On 2-D, the function approximations from 6 methods on Rastrigin function. 
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TABLE I.     COMPARISON OF FUNCTION APPROXIMATION AND CLASSIFICATION MODELS BASED ON DIFFERENT PROPERTIES. 
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TABLE II.     COMPARISON OF MODELS. ROLES OF USER, LEARNING COMPONENT AND FRAMEWORK 
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