
Globally Optimized Production by Co-operating Production Agents Based on
Bellmans Principle

Norbert Link
Karlsruhe University of Applied Sciences

Karlsruhe, Germany
e-mail: norbert.link@hs-karlsruhe.de

Abstract— The production of items is usually separated into a
sequence of processing steps from raw materials to the finished
product. Each of the processing steps is executed by dedicated
machines where the output of one machine is the input of the
next machine. The total effort of all processes can be
drastically reduced and the resulting quality of the end
product be maximized by exploiting the mutual dependencies
of the individual process steps. The concepts of task-driven,
intelligent production agents are extended to account for this
global optimization task, maintaining the autonomous decision
of the individual agent about the optimal process parameters.
This can be reached by supplying the local production agent
with information about the effect of some of its output on the
efforts of the subsequent processes and with information about
the actual input to be processed. When the process agent
knows the efforts related to its own parameters required to
transform the input into some output states, the overall effort
can be minimized. Stochastic process influences turn the
optimization into a Markov decision process where Bellmans
equation can be applied to yield on average the best total result
at lowest effort. The encountered exponential complexity when
solving Bellmans equation via Dynamic Programming is
relieved by Approximate Dynamic Programming. By looking
upon one single process, as a process chain with discrete,
repetitive steps with different process parameter values, the
same optimization concept can be applied to control the
individual process. Agents using this optimization scheme
require special capabilities: output state estimation, state
transformation function representation, Bellman optimization
and assessment function representation (assigning effort to
process output). The concepts, the architecture, the required
components and the methods will be presented in this paper.

Keywords-manufacturing; agent systems; process chain;
optimization; control; Markov decision process; Bellmans
principle.

I. INTRODUCTION
Optimization of production processes can be performed

on different levels: (a) supply chain, (b) workflow, (c)
machine. The traditional way of looking at optimization
assumes perfectly specified input/output relations on all
levels. Deviations are considered as failures with eventual
fall-back strategies to react on. In this sense only the most
efficient supply chain/workflow has to be found and the best
parameter values for the machine settings have to be
investigated. The first two optimization tasks are of the
discrete type and subject to intense research which has found

its way to corresponding software products controlling
supply chains and workflows.

On the machine level, a continuous optimization task in
the parameter space is encountered, where an optimum point
maximizing a certain objective function (of quality, etc.) or
minimizing a certain cost function (of energy, wear, time,
etc.) has to be found. Usually, these functions are not given
as analytic functions of the process parameters which would
make optimization an easy task.

One of the highest remaining potentials, but with also the
highest challenges (even scientifically), is to account for the
mutual influence of the processes in subsequent processes of
a chain. The interrelation between processes is due to the fact
that parts, with the same specification, may differ in aspects
which are relevant for subsequent processing.

Example: Different milling parameters can produce the
same geometry but different surface layer properties
(hardness, stresses, grain properties, etc.). Later heat
treatment may then affect the geometry differently or
subsequent surface processing will need different effort.

In order to achieve an overall optimum over a whole
process chain, these relations have to be accounted for. This
requires that a process gets the information about its actual
input. This information will be generated by the preceding
process from its process data by means of a quality model.
With this information, the parameters have to be set in a way
that the cost related with them plus the expected cost of the
subsequent processes, related to the output, minus the price
of the final product are minimized. There exist scientific
approaches to address this challenge, but they are of high
computational complexity and need the full set of
information, as mentioned above.

An individual process which needs to compensate
fluctuations during processing can be considered as temporal
sequence of processing steps where after each step the
parameter values for the next step are decided. The time
steps can be looked upon like processes in a chain, and the
approaches for process chains can be applied for the optimal
control of a single process as well.

The paper is organized as follows: The basic concept of
an agent-based global optimization is developed in Section
II, where also the required information and the additional
components of self-optimizing agents are identified. Section
III discusses the knowledge extraction and representation
methods, which are called “Optimizations models” and
Section IV presents the concept and methods of a chain-

134Copyright (c) IARIA, 2015. ISBN: 978-1-61208-437-4

INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications

optimizing closed-loop controller. Conclusions about the
presented concept are drawn in Section V.

II. BASIC CONCEPT AND COMPONENTS
The core requirement to control individual processes in a

way, that the result is also optimized for the subsequent
processes, is to make the local optimization account for the
subsequent processes. This can be achieved in the following
way: if the process knows about the different efforts, which
are caused by its different end states (results), then it has to
consider the sum of its own effort to reach a certain end state
plus the efforts of this end state for the subsequent processes.
To be more precise, it is the effort or cost expectation value
of the subsequent processes related to the end state. Now it
needs to find the parameter values which yield the lowest
total cost. Figure 1 shows the associated information flow
and required data with the example of a three-step process
chain, where a product is made from steel sheets by heat
treatment and deep drawing of parts, which are welded
together in the final step.

Figure 1. Chain optimization work flow and required components

The information about the „subsequent“ cost is
propagated from the process next downstream the process
chain (red arrow in Figure 1). To decide upon the control
quantity or process parameter values, the information about
the initial state is required as well. This is the final state of
the preceding process and the information is propagated
from there (blue arrows in Figure 1). The process state has
therefore to be derived by the preceding process from the
data from machine-attached sensors. This transformation
from sensor data values to state variable values is
represented by the blue box „process state estimator“ in
Figure 1, which is using a quality model to specify the
transformation. The optimizer/controller uses a state
transition model (or process model) which relates the
process state at a future time, to the process state at present
under certain values of the control quantities. By virtue of
this model, it can find the control quantities minimizing the
total cost. This is depicted in the „online“ box in Figure 1,
summarizing the activities which must be performed during
processing. These activities are controlled by models
(representing the sensor data – state relation and the state

transition) which are fed into the „process mapping for state
estimation“ and in the „process mapping for control“
respectively. These models must be executable in process
real time, which means that they must be computationally
simple. These models represent the dedicated process
knowledge and have to be created in an off-line process.
Usually, there are no simple analytical models for
production processes, which mean that the models have to
be formed from formalized prior expert knowledge and
from experimental data (either real or simulated process
executions with determinations of the process states). For
simulation experiments, material models and data are
required.

When all the models are available for the processes of a
process chain, the path (sequence of parameter values for
the process steps) with minimum total cost can be found.
The painful way would be to consider all combinations of
all process parameters of all processes and to search the
combination with the lowest cost (full search). Fortunately
this is not necessary thanks to Bellmans theorem [5] which
allows to propagate the cost upstream from the end, and to
set up the „subsequent cost function“ for each process in the
chain.

In order to enable the downstream optimization, the
process machines are extended accordingly with dedicated
controls as shown in Figure 1. Such a control is an
integrated component of some general production agent (for
Instance NETDEV [1]) shell which has to acquire the
necessary information and to perform the necessary
optimizing control activities.

A process chain is assumed to be a Markov process [8]
where each step is transforming the input state of the (semi-
finished) product into some output state, and where the final
product is the result of a sequence of such otherwise
independent transformations.
Describing the

• input state via a vector 𝑥⃗ of state quantities, the
• output state by vector 𝑦⃗ of state quantities and the

• process as a general transformation operator
𝑇
→,

we can write a process step as
 𝑥⃗𝑖−1

𝑇𝑖→ 𝑦⃗𝑖,
where a process chain is then written as

 𝑥⃗0
𝑇1→ 𝑦⃗1= 𝑥⃗1

𝑇2→ 𝑦⃗2= 𝑥⃗2 … = 𝑥⃗𝑁−1
𝑇𝑁�� 𝑦⃗𝑁.

If the control is supposed to perform an optimizing process
𝑇𝑖,𝑜𝑜𝑜�⎯⎯� , it will adjust the process parameters (or control
quantities) 𝑢�⃗ 𝑖 in a way 𝑢�⃗ 𝑖,𝑜𝑜𝑜 , that the transformation will
produce the lowest effort (cost) related to the parameters
𝐽𝑖,𝑙𝑙𝑙(𝑢�⃗ 𝑖) necessary to transform 𝑥⃗𝑖−1 into 𝑦⃗𝑖 and lowest
effort (cost) for all subsequent downstream processes related
to the produced output 𝑦⃗𝑖, namely 𝐽𝑖,𝑠𝑠𝑠(𝑦⃗𝑖).
In order to do so properly, it requires the following
information:

• input state 𝑥⃗𝑖−1

135Copyright (c) IARIA, 2015. ISBN: 978-1-61208-437-4

INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications

• process model describing the transformation
𝑇
→ ,

e.g., in functional form 𝑦⃗𝑖 = 𝑇�⃗ (𝑥⃗𝑖−1,𝑢�⃗ 𝑖)
• cost associated with the process parameters

𝐽𝑖,𝑙𝑙𝑙(𝑢�⃗ 𝑖)
• cost of subsequent processes associated with output

state 𝐽𝑖,𝑠𝑠𝑠(𝑦⃗𝑖)
The input state information is supplied by the previous

process which uses the sensor and process data to estimate
its output state. Each NETDEV control component has
therefor to generate this estimate for the next subsequent
process. The estimation is transforming the observable
sensor and process data 𝑠𝑖 into an estimated output state
𝑦⃗𝑖,𝑒𝑒𝑒.

This “measurement” transformation
𝑀
→ is represented by

a second process model, the “inverse measurement model”,
which could again be described in functional form 𝑦⃗𝑖,𝑒𝑒𝑒 =
𝑀��⃗ (𝑥⃗𝑖−1, 𝑠𝑖).

The optimizing process
𝑇𝑖,𝑜𝑜𝑜�⎯⎯� consists of minimization of

the total cost (local plus subsequent) with respect to the
process parameters.
𝑢�⃗ 𝑖,𝑜𝑜𝑜 = argmin𝑢��⃗ 𝑖�𝐽𝑖,𝑙𝑙𝑙(𝑢�⃗ 𝑖) + 𝐽𝑖,𝑠𝑠𝑠(𝑦⃗𝑖)|𝑦⃗𝑖 = 𝑇�⃗ (𝑥⃗𝑖−1,𝑢�⃗ 𝑖)�

(1)
The optimization therefore requires the supply of the

respective information which is generated via dedicated
models. This is depicted in Figure 2.

Figure 2. Information, models required for process-chain otpimizing

controls

During on-line optimization operation, these models are
fed with the actual data (sensor, control quantities or process
parameters) from which they derive the actual state, the
expected output state and the related cost information,
which is used by the optimization algorithm (solving
Bellmans equation) in order to derive the optimal process
parameters.

III. METHODS FOR DERIVING THE OPTIMIZATION MODELS
As discussed so far the models are transformation

functions of different kind:
1. The inverse measurement model which relates a

process state to sensed process data and recorded
process parameters,

2. The process dynamics model which relates a next
state to the present state under the action of
dedicated process parameter values,

3. The cost local cost model which relates effort
(cost) to dedicated values of the process parameters
and

4. The subsequent cost model which relates expected
cost to dedicated final process states.

The requirements on the transformation models are:
a. Sufficient precision to enable the optimization

algorithms to yield results close to the theoretical
optimum and to let them converge there robustly
and quickly.

b. Low computational complexity to allow
information delivery at times defined by the
process real time requirements.

Requirement b prohibits quite often the direct usage of
numerical process simulation or the direct solution of first
principal equations during processing time, since in almost
all cases both approaches are computationally extremely
complex or analytically too difficult for a real process.

This is the motivation, why the usage of numerically
highly efficient regression models which are formed from
process data is proposed. The split of the overall solution in
the two steps of model creation and model application
allows specifying low-complexity, real-time suited on-line
models, which are efficiently executed during processing.
The latter are representatives of a restricted class of the
process (defined by the process capabilities of the device),
encapsulating the respective process knowledge. The
functional form of these on-line models is determined in a
much more time-consuming off-line step in advance. Real-
time properties can be achieved this way for an optimizing
control by representing the transformations in a simple,
explicit form which is derived from the existing process
knowledge.
A generic method to set up these on-line models is to derive
them from process data which are collected to form a
representative sample of the input and output quantities of
the respective transformations. A regression analysis is then
applied to the sample data yielding an estimation of the
desired transformation function. For this purpose, an Ansatz
function with a set of parameters is defined where the
parameters are fitted by means of the sample data set via
minimization of a deviation cost function. The Ansatz
function can be selected as a set of non-linear base functions
(such as polynomial, logistic or Gaussian) using standard
methods of (preferentially robust) optimization (M-
estimators or RANSAC) or as being composed of a set of
pre-defined mathematical symbols where the formula
structure and the parameters are optimized via genetic or
evolutionary algorithms [7], forming the so-called symbolic
regression.

The data sampling can be either performed via
laboratory experiments or by numerical experiments if such
simulation models are available for the process under
consideration. Also, a combination of both can be used,
where the majority of samples are created in the computer

136Copyright (c) IARIA, 2015. ISBN: 978-1-61208-437-4

INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications

via simulation which is again calibrated by laboratory
experiments to ensure correct simulation.

The model formation, as discussed so far, complements
the required methods. The according extension of the
diagram of Figure 2 is shown in Figure 3.

Figure 3. Generic model creation based on representative process data

samples

The above discussed model generating components
extend the production agent concepts, but not their internal
structure.

IV. CONCEPT OF A CHAIN OPTIMIZING CLOSED-LOOP
CONTROLLER

We have introduced methods to derive necessary models
in a generic way by representing them as transformation
functions which are derived via regression from data
generated either by numerical or real experiments or from
first principles equations. We can generate the necessary
input for optimization this way.

Figure 4. Closed-loop control istantiated by an optimizer

Still a method to find the optimum of the cost function
(1) is missing. Figure 4 gives an overview of the local agent
context of the closed-loop process control which is
instantiated as an optimizer of (1).

The discrete time sequence of a single process or a chain
of subsequent processes was introduced in the generic chain
optimization concept as a Markov process which is
optimized using the Bellman principle [6].
Figure 5 shows a time discrete Markov process where the
output 𝒙𝑖 of one process i step (green box) is the input of the
next process step i+1. The output 𝒙𝑖+1 is the result of the
process i (under parameter values ui). The local cost JDi is
associated with the deployed parameter values ui. From the
subsequent process a cost function 𝐽𝑖+1 is supplied which
associates cost with output 𝒙𝑖+1 . This cost function is the
expectation value of the cost, which output 𝒙𝑖+1 is likely to
produce with all subsequent processes minus the price
(negative cost) of the expected final state. Since the output
𝒙𝑖+1 is a result of the input and the process parameter values
ui , 𝐽𝑖+1 is depending indirectly on ui as well.

Figure 5. Markov process and Bellman principle

The best parameter values are therefore the ones
minimizing the sum of 𝐽𝑖+1 and JDi which is expressed in

𝑢𝑡 𝑜𝑜𝑜(𝒙𝑡) = 𝑎𝑎𝑎𝑎𝑎𝑎

𝑢𝑡∈𝑈𝑡
�𝐽𝐷𝐷(𝒙𝑡, 𝑢𝑡, 𝒙𝑡+1) + �𝐽̃𝑡+1(𝒙𝑡+1)⟩�

(2)
Where 〈 〉 denotes the statistical expectation value.

The stochastic influence of disturbances on the process
is reflected by the fact, that an output state xt+1 is reached
from an input xt state under given process parameter values
ut only with a certain probability 𝑃(𝑥𝑡+1|𝑥𝑡 ,𝑢𝑡). Then

�𝐽𝑡+1(𝑥𝑡+1)� = � 𝑃(
𝑥′𝑡+1∈𝑋𝑡+1

𝒙′𝑡+1�𝒙𝑡,, 𝑢𝑡� 𝐽𝑡+1(𝒙′𝑡+1)

(3)
With

� 𝑃(
𝑥′𝑡+1∈𝑋𝑡+1

𝑥′𝑡+1�𝑥𝑡,,𝑢𝑡� = 1

The expectation values can be calculated in a back-

propagation way from the final process where the cost
function of the final state is given by the price achieved with
the end quality. Given the probabilities of arriving at an end
state (with given cost) from a certain initial state, with all
possible parameters (and associated cost), will result in an
expectation value of the cost associated with the initial state.
This way the expected cost can be calculated for all input

137Copyright (c) IARIA, 2015. ISBN: 978-1-61208-437-4

INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications

states which are the output states of the preceding process.
The procedure can now be repeated for the process before
the last process and so on, until the initial process is reached
and the output states have assigned expected cost values for
all processes in the chain. The procedure described so far,
yields only such cost values for discrete states. These can be
stored in a look-up table which can be used to yield a cost
value for a state under consideration via assigning the cost
value of the Nearest Neighbor (NN) or via interpolation
with the nearest neighbors [9]. A complete function for
〈𝐽𝑡+1(𝑥𝑡+1)〉 can be achieved for all processes if regression
methods are employed as discussed in the preceding section.

This is the backward Dynamical Programming (DP)
algorithm of which the pseudo-code is given in Figure 6.

Figure 6. Backward DP algorithm for a finite time horizon

The following models are involved in the optimization
• State transition model 𝒙𝑡+1 = 𝒇𝑡�𝒙𝑡 ,𝒖𝑡 ,𝝂𝒑𝒕� in the

deterministic case with added noise 𝝂𝒑𝒕 or
𝑃(𝑥𝑡+1|𝑥𝑡 ,𝑢𝑡) in the stochastic case, from data via
regression

• Cost model 𝐽𝑡(𝒙𝑡)
• Control law 𝒖𝑡 = 𝝅𝑡(𝒙𝑡)
• Noise model from assumptions or experimental

measurements
 Normally distributed (𝜇,𝛴)
 Additively superposed with state

Cost considered
• 𝐽𝐷𝑡 : Local cost (due to process efforts), derived

from vendor knowledge
• 𝐽𝐹: Final (negative) cost (price achieved with end

quality), derived from sales knowledge
• 𝐽𝑡+1 or 〈𝐽𝑡+1(𝑥𝑡+1)〉 : Cost of subsequent process

steps due to current state, calculated via backward
calculation and regression or explored during
processing

The proposed method suffers from the curse of
dimensionality [6], when longer process chains and high
dimensional state spaces are involved which prevents real-
time control. The state space dimensionality can be

drastically reduced by means of dimension reduction
methods such as “Principal Function Approximators” (a
kind of non-linear partial least squares method) [4] which
already yields an optimally reduced state representation,
derived from the observed process values. This approach
belongs to the class of Approximate Dynamic Programming
(ADP) [9]. If only a few process steps are involved,
backward DP approach can be applied as was shown with a
two stage process in [3].

Other approaches, also allowing the treatment of more
complex processes, such as “Approximate forward Dynamic
Programming” [2][11] have been investigated in [10].

Figure 7. Generic model of a downstream chain optimization control

Combining the observer methods with the different DP
approaches finally forms the generic model of downstream
process chain optimization (Figure 7).

V. CONCLUSION
A concept has been presented, allowing a process-

dedicated production agent to set its process parameter
values in a way that a process chain, which it is actually part
of, will be (on average) globally optimized. Central
optimizer components for each dedicated process chain are
no longer required. This makes production more flexible
and efficient, since the agent concept is maintained and the
efforts are distributed optimally among the process chain
members. In order to enable the agents for global
optimization, they have to be supplied with extra
information about the actual input they have to work on and
about the efforts they produce by their outputs with the
subsequent processes. This cost function has to be set up by
a higher-level component from all downstream process
information and is in the responsibility of the process chain
agent. A generic method for this purpose has been
presented, completing the set of methods contained in the
extra components of chain-optimizing methods.

ACKNOWLEDGMENT
The author wants to thank especially Melanie Senn for

evaluating, developing and promoting the ADP methods
during her work in our research group. The research leading
to these results has received funding from the [European

138Copyright (c) IARIA, 2015. ISBN: 978-1-61208-437-4

INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications

Union] Seventh Framework Programme ([FP7/2007-2013])
under grant agreement no. [314329]."

REFERENCES
[1] G. Gonçalves, J. Reis, R. Pinto, M. Alves, and J. Correia, “A step

forward on Intelligent Factories: A Smart Sensor-oriented approach,”
Emerging Technology and Factory Automation (ETFA), 2014 IEEE
(pp. 1-8), 2014.

[2] J. H. Lee, “Model predictive control and dynamic programming,”
11th International Conference on Control, Automation and Systems,
pp. 1807–1809, 2011.

[3] M. Senn, J. Schäfer, J. Pollak and N. Link, “A system-oriented
approach for the optimal control of process chains under stochastic
influences,” AIP Conference Proceedings 1389, pp. 419–422, 2011.

[4] M. Senn and N. Link, “A universal model for hidden state
observation in adaptive process controls,” International Journal on
Advances in Intelligent Systems 4 (3–4), pp. 245–255, 2012.

[5] R. E. Bellman, “Dynamic Programming,” Courier Dover
Publications, Mineola, New York, USA, 2003.

[6] W. B. Powell, “Approximate Dynamic Programming: Solving the
Curses of Dimensionality,” 2nd ed., Wiley, Hoboken, New Jersey,
USA, 2011.

[7] M. Davarynejad, J. van Ast, J. L. M. Vrancken and J. van den Berg,
“Evolutionary value function approximation,” 2011 IEEE
Symposium on Adaptive Dynamic Programming and Reinforcement
Learning (ADPRL), pp. 151–155, 2011.

[8] N. E. Pratikakis, M. J. Realff and J. H. Lee, “Strategic capacity
decision-making in a stochastic manufacturing environment using
real-time approximate dynamic programming,” Naval Research
Logistics 57 (3), pp. 211–224, 2010.

[9] J. H. Lee and W. Wong, “Approximate dynamic programming
approach for process control,” Journal of Process Control 20, pp.
1038–1048, 2010.

[10] M. Senn, N. Link, J. Pollak, and J. H. Lee, “Reducing the
computational effort of optimal process controllers for continuous
state spaces by using incremental learning and post-decision state
formulations,” Journal of Process Control, 24(3), pp.133-143, 2014.

.

139Copyright (c) IARIA, 2015. ISBN: 978-1-61208-437-4

INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications

	I. Introduction
	II. Basic Concept and Components
	III. Methods for deriving the optimization models
	IV. Concept of a chain optimizing closed-loop controller
	V. Conclusion
	Acknowledgment
	References

