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Abstract— The production of items is usually separated into a 
sequence of processing steps from raw materials to the finished 
product. Each of the processing steps is executed by dedicated 
machines where the output of one machine is the input of the 
next machine. The total effort of all processes can be 
drastically reduced and the resulting quality of the end 
product be maximized by exploiting the mutual dependencies 
of the individual process steps. The concepts of task-driven, 
intelligent production agents are extended to account for this 
global optimization task, maintaining the autonomous decision 
of the individual agent about the optimal process parameters. 
This can be reached by supplying the local production agent 
with information about the effect of some of its output on the 
efforts of the subsequent processes and with information about 
the actual input to be processed. When the process agent 
knows the efforts related to its own parameters required to 
transform the input into some output states, the overall effort 
can be minimized. Stochastic process influences turn the 
optimization into a Markov decision process where Bellmans 
equation can be applied to yield on average the best total result 
at lowest effort. The encountered exponential complexity when 
solving Bellmans equation via Dynamic Programming is 
relieved by Approximate Dynamic Programming. By looking 
upon one single process, as a process chain with discrete, 
repetitive steps with different process parameter values, the 
same optimization concept can be applied to control the 
individual process. Agents using this optimization scheme 
require special capabilities: output state estimation, state 
transformation function representation, Bellman optimization 
and assessment function representation (assigning effort to 
process output). The concepts, the architecture, the required 
components and the methods will be presented in this paper. 

Keywords-manufacturing; agent systems; process chain; 
optimization; control; Markov decision process; Bellmans 
principle. 

I.  INTRODUCTION 
Optimization of production processes can be performed 

on different levels: (a) supply chain, (b) workflow, (c) 
machine. The traditional way of looking at optimization 
assumes perfectly specified input/output relations on all 
levels. Deviations are considered as failures with eventual 
fall-back strategies to react on. In this sense only the most 
efficient supply chain/workflow has to be found and the best 
parameter values for the machine settings have to be 
investigated. The first two optimization tasks are of the 
discrete type and subject to intense research which has found 

its way to corresponding software products controlling 
supply chains and workflows.  

On the machine level, a continuous optimization task in 
the parameter space is encountered, where an optimum point 
maximizing a certain objective function (of quality, etc.) or 
minimizing a certain cost function (of energy, wear, time, 
etc.) has to be found. Usually, these functions are not given 
as analytic functions of the process parameters which would 
make optimization an easy task.  

One of the highest remaining potentials, but with also the 
highest challenges (even scientifically), is to account for the 
mutual influence of the processes in subsequent processes of 
a chain. The interrelation between processes is due to the fact 
that parts, with the same specification, may differ in aspects 
which are relevant for subsequent processing.  

Example: Different milling parameters can produce the 
same geometry but different surface layer properties 
(hardness, stresses, grain properties, etc.). Later heat 
treatment may then affect the geometry differently or 
subsequent surface processing will need different effort. 

In order to achieve an overall optimum over a whole 
process chain, these relations have to be accounted for. This 
requires that a process gets the information about its actual 
input. This information will be generated by the preceding 
process from its process data by means of a quality model. 
With this information, the parameters have to be set in a way 
that the cost related with them plus the expected cost of the 
subsequent processes, related to the output, minus the price 
of the final product are minimized. There exist scientific 
approaches to address this challenge, but they are of high 
computational complexity and need the full set of 
information, as mentioned above. 

An individual process which needs to compensate 
fluctuations during processing can be considered as temporal 
sequence of processing steps where after each step the 
parameter values for the next step are decided. The time 
steps can be looked upon like processes in a chain, and the 
approaches for process chains can be applied for the optimal 
control of a single process as well. 

The paper is organized as follows: The basic concept of 
an agent-based global optimization is developed in Section 
II, where also the required information and the additional 
components of self-optimizing agents are identified. Section 
III discusses the knowledge extraction and representation 
methods, which are called “Optimizations models” and 
Section IV presents the concept and methods of a chain-
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optimizing closed-loop controller. Conclusions about the 
presented concept are drawn in Section V.  

II. BASIC CONCEPT AND COMPONENTS 
The core requirement to control individual processes in a 

way, that the result is also optimized for the subsequent 
processes, is to make the local optimization account for the 
subsequent processes. This can be achieved in the following 
way: if the process knows about the different efforts, which 
are caused by its different end states (results), then it has to 
consider the sum of its own effort to reach a certain end state 
plus the efforts of this end state for the subsequent processes. 
To be more precise, it is the effort or cost expectation value 
of the subsequent processes related to the end state. Now it 
needs to find the parameter values which yield the lowest 
total cost. Figure 1 shows the associated information flow 
and required data with the example of a three-step process 
chain, where a product is made from steel sheets by heat 
treatment and deep drawing of parts, which are welded 
together in the final step. 

 
Figure 1. Chain optimization work flow and required components 

The information about the „subsequent“ cost is 
propagated from the process next downstream the process 
chain (red arrow in Figure 1). To decide upon the control 
quantity or process parameter values, the information about 
the initial state is required as well. This is the final state of 
the preceding process and the information is propagated 
from there (blue arrows in Figure 1). The process state has 
therefore to be derived by the preceding process from the 
data from machine-attached sensors. This transformation 
from sensor data values to state variable values is 
represented by the blue box „process state estimator“ in 
Figure 1, which is using a quality model to specify the 
transformation. The optimizer/controller uses a state 
transition model (or process model) which relates the 
process state at a future time, to the process state at present 
under certain values of the control quantities. By virtue of 
this model, it can find the control quantities minimizing the 
total cost. This is depicted in the „online“ box in Figure 1, 
summarizing the activities which must be performed during 
processing. These activities are controlled by models 
(representing the sensor data – state relation and the state 

transition) which are fed into the „process mapping for state 
estimation“ and in the „process mapping for control“ 
respectively. These models must be executable in process 
real time, which means that they must be computationally 
simple. These models represent the dedicated process 
knowledge and have to be created in an off-line process. 
Usually, there are no simple analytical models for 
production processes, which mean that the models have to 
be formed from formalized prior expert knowledge and 
from experimental data (either real or simulated process 
executions with determinations of the process states). For 
simulation experiments, material models and data are 
required. 

When all the models are available for the processes of a 
process chain, the path (sequence of parameter values for 
the process steps) with minimum total cost can be found. 
The painful way would be to consider all combinations of 
all process parameters of all processes and to search the 
combination with the lowest cost (full search). Fortunately 
this is not necessary thanks to Bellmans theorem [5] which 
allows to propagate the cost upstream from the end, and to 
set up the „subsequent cost function“ for each process in the 
chain.  

In order to enable the downstream optimization, the 
process machines are extended accordingly with dedicated 
controls as shown in Figure 1. Such a control is an 
integrated component of some general production agent (for 
Instance NETDEV [1]) shell which has to acquire the 
necessary information and to perform the necessary 
optimizing control activities.  

A process chain is assumed to be a Markov process [8] 
where each step is transforming the input state of the (semi-
finished) product into some output state, and where the final 
product is the result of a sequence of such otherwise 
independent transformations. 
Describing the  

• input state via a vector 𝑥⃗ of state quantities, the  
• output state by vector 𝑦⃗ of state quantities and the  

• process as a general transformation operator 
𝑇
→,  

we can write a process step as 
 𝑥⃗𝑖−1

𝑇𝑖→ 𝑦⃗𝑖,  
where a process chain is then written as 

 𝑥⃗0
𝑇1→ 𝑦⃗1= 𝑥⃗1

𝑇2→ 𝑦⃗2= 𝑥⃗2 … = 𝑥⃗𝑁−1
𝑇𝑁�� 𝑦⃗𝑁.  

If the control is supposed to perform an optimizing process 
𝑇𝑖,𝑜𝑜𝑜�⎯⎯� , it will adjust the process parameters (or control 
quantities) 𝑢�⃗ 𝑖  in a way 𝑢�⃗ 𝑖,𝑜𝑜𝑜 , that the transformation will 
produce the lowest effort (cost) related to the parameters 
𝐽𝑖,𝑙𝑙𝑙(𝑢�⃗ 𝑖)  necessary to transform 𝑥⃗𝑖−1  into 𝑦⃗𝑖  and lowest 
effort (cost) for all subsequent downstream processes related 
to the produced output 𝑦⃗𝑖, namely 𝐽𝑖,𝑠𝑠𝑠(𝑦⃗𝑖). 
In order to do so properly, it requires the following 
information: 

• input state 𝑥⃗𝑖−1 
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• process model describing the transformation 
𝑇
→ , 

e.g., in functional form 𝑦⃗𝑖 = 𝑇�⃗ (𝑥⃗𝑖−1,𝑢�⃗ 𝑖) 
• cost associated with the process parameters 

𝐽𝑖,𝑙𝑙𝑙(𝑢�⃗ 𝑖) 
• cost of subsequent processes associated with output 

state 𝐽𝑖,𝑠𝑠𝑠(𝑦⃗𝑖) 
The input state information is supplied by the previous 

process which uses the sensor and process data to estimate 
its output state. Each NETDEV control component has 
therefor to generate this estimate for the next subsequent 
process. The estimation is transforming the observable 
sensor and process data 𝑠𝑖  into an estimated output state 
𝑦⃗𝑖,𝑒𝑒𝑒.  

This “measurement” transformation 
𝑀
→ is represented by 

a second process model, the “inverse measurement model”, 
which could again be described in functional form 𝑦⃗𝑖,𝑒𝑒𝑒 =
𝑀��⃗ (𝑥⃗𝑖−1, 𝑠𝑖). 

The optimizing process 
𝑇𝑖,𝑜𝑜𝑜�⎯⎯� consists of minimization of 

the total cost (local plus subsequent) with respect to the 
process parameters. 
𝑢�⃗ 𝑖,𝑜𝑜𝑜 = argmin𝑢��⃗ 𝑖�𝐽𝑖,𝑙𝑙𝑙(𝑢�⃗ 𝑖) + 𝐽𝑖,𝑠𝑠𝑠(𝑦⃗𝑖)|𝑦⃗𝑖 = 𝑇�⃗ (𝑥⃗𝑖−1,𝑢�⃗ 𝑖)� 

(1) 
The optimization therefore requires the supply of the 

respective information which is generated via dedicated 
models. This is depicted in Figure 2.  

 
Figure 2.  Information, models required for process-chain otpimizing 

controls 

During on-line optimization operation, these models are 
fed with the actual data (sensor, control quantities or process 
parameters) from which they derive the actual state, the 
expected output state and the related cost information, 
which is used by the optimization algorithm (solving 
Bellmans equation) in order to derive the optimal process 
parameters. 

III. METHODS FOR DERIVING THE OPTIMIZATION MODELS 
As discussed so far the models are transformation 

functions of different kind:  
1. The inverse measurement model which relates a 

process state to sensed process data and recorded 
process parameters, 

2. The process dynamics model which relates a next 
state to the present state under the action of 
dedicated process parameter values, 

3. The cost local cost model which relates effort 
(cost) to dedicated values of the process parameters 
and  

4. The subsequent cost model which relates expected 
cost to dedicated final process states. 

The requirements on the transformation models are: 
a. Sufficient precision to enable the optimization 

algorithms to yield results close to the theoretical 
optimum and to let them converge there robustly 
and quickly. 

b. Low computational complexity to allow 
information delivery at times defined by the 
process real time requirements. 

Requirement b prohibits quite often the direct usage of 
numerical process simulation or the direct solution of first 
principal equations during processing time, since in almost 
all cases both approaches are computationally extremely 
complex or analytically too difficult for a real process. 

This is the motivation, why the usage of numerically 
highly efficient regression models which are formed from 
process data is proposed. The split of the overall solution in 
the two steps of model creation and model application 
allows specifying low-complexity, real-time suited on-line 
models, which are efficiently executed during processing. 
The latter are representatives of a restricted class of the 
process (defined by the process capabilities of the device), 
encapsulating the respective process knowledge. The 
functional form of these on-line models is determined in a 
much more time-consuming off-line step in advance. Real-
time properties can be achieved this way for an optimizing 
control by representing the transformations in a simple, 
explicit form which is derived from the existing process 
knowledge. 
A generic method to set up these on-line models is to derive 
them from process data which are collected to form a 
representative sample of the input and output quantities of 
the respective transformations. A regression analysis is then 
applied to the sample data yielding an estimation of the 
desired transformation function. For this purpose, an Ansatz 
function with a set of parameters is defined where the 
parameters are fitted by means of the sample data set via 
minimization of a deviation cost function. The Ansatz 
function can be selected as a set of non-linear base functions 
(such as polynomial, logistic or Gaussian) using standard 
methods of (preferentially robust) optimization (M-
estimators or RANSAC) or as being composed of a set of 
pre-defined mathematical symbols where the formula 
structure and the parameters are optimized via genetic or 
evolutionary algorithms [7], forming the so-called symbolic 
regression. 

The data sampling can be either performed via 
laboratory experiments or by numerical experiments if such 
simulation models are available for the process under 
consideration. Also, a combination of both can be used, 
where the majority of samples are created in the computer 
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via simulation which is again calibrated by laboratory 
experiments to ensure correct simulation. 

The model formation, as discussed so far, complements 
the required methods. The according extension of the 
diagram of Figure 2 is shown in Figure 3. 

 
Figure 3.  Generic model creation based on representative process data 

samples 

The above discussed model generating components 
extend the production agent concepts, but not their internal 
structure.  

IV. CONCEPT OF A CHAIN OPTIMIZING CLOSED-LOOP 
CONTROLLER 

We have introduced methods to derive necessary models 
in a generic way by representing them as transformation 
functions which are derived via regression from data 
generated either by numerical or real experiments or from 
first principles equations. We can generate the necessary 
input for optimization this way. 

 
Figure 4.  Closed-loop control istantiated by an optimizer  

Still a method to find the optimum of the cost function 
(1) is missing. Figure 4 gives an overview of the local agent 
context of the closed-loop process control which is 
instantiated as an optimizer of (1). 

The discrete time sequence of a single process or a chain 
of subsequent processes was introduced in the generic chain 
optimization concept as a Markov process which is 
optimized using the Bellman principle [6].  
Figure 5 shows a time discrete Markov process where the 
output 𝒙𝑖 of one process i step (green box) is the input of the 
next process step i+1. The output 𝒙𝑖+1  is the result of the 
process i (under parameter values ui). The local cost JDi is 
associated with the deployed parameter values ui. From the 
subsequent process a cost function 𝐽𝑖+1  is supplied which 
associates cost with output 𝒙𝑖+1 . This cost function is the 
expectation value of the cost, which output 𝒙𝑖+1 is likely to 
produce with all subsequent processes minus the price 
(negative cost) of the expected final state. Since the output 
𝒙𝑖+1 is a result of the input and the process parameter values 
ui , 𝐽𝑖+1 is depending indirectly on ui as well. 

 

 
Figure 5.  Markov process and Bellman principle 

The best parameter values are therefore the ones 
minimizing the sum of 𝐽𝑖+1 and JDi which is expressed in 
 
𝑢𝑡 𝑜𝑜𝑜(𝒙𝑡) = 𝑎𝑎𝑎𝑎𝑎𝑎

𝑢𝑡∈𝑈𝑡
�𝐽𝐷𝐷(𝒙𝑡, 𝑢𝑡, 𝒙𝑡+1) + �𝐽̃𝑡+1(𝒙𝑡+1)⟩� 

(2) 
Where 〈 〉 denotes the statistical expectation value. 
 

The stochastic influence of disturbances on the process 
is reflected by the fact, that an output state xt+1 is reached 
from an input xt state under given process parameter values 
ut only with a certain probability 𝑃(𝑥𝑡+1|𝑥𝑡 ,𝑢𝑡). Then 
 

�𝐽𝑡+1(𝑥𝑡+1)� = � 𝑃(
𝑥′𝑡+1∈𝑋𝑡+1

𝒙′𝑡+1�𝒙𝑡,, 𝑢𝑡� 𝐽𝑡+1(𝒙′𝑡+1) 

(3) 
With 

� 𝑃(
𝑥′𝑡+1∈𝑋𝑡+1

𝑥′𝑡+1�𝑥𝑡,,𝑢𝑡� = 1 

 
The expectation values can be calculated in a back-

propagation way from the final process where the cost 
function of the final state is given by the price achieved with 
the end quality. Given the probabilities of arriving at an end 
state (with given cost) from a certain initial state, with all 
possible parameters (and associated cost), will result in an 
expectation value of the cost associated with the initial state. 
This way the expected cost can be calculated for all input 
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states which are the output states of the preceding process. 
The procedure can now be repeated for the process before 
the last process and so on, until the initial process is reached 
and the output states have assigned expected cost values for 
all processes in the chain. The procedure described so far, 
yields only such cost values for discrete states. These can be 
stored in a look-up table which can be used to yield a cost 
value for a state under consideration via assigning the cost 
value of the Nearest Neighbor (NN) or via interpolation 
with the nearest neighbors [9]. A complete function for 
〈𝐽𝑡+1(𝑥𝑡+1)〉 can be achieved for all processes if regression 
methods are employed as discussed in the preceding section. 

This is the backward Dynamical Programming (DP) 
algorithm of which the pseudo-code is given in Figure 6. 
 

 
Figure 6.  Backward DP algorithm for a finite time horizon 

The following models are involved in the optimization 
• State transition model 𝒙𝑡+1 = 𝒇𝑡�𝒙𝑡 ,𝒖𝑡 ,𝝂𝒑𝒕� in the 

deterministic case with added noise 𝝂𝒑𝒕 or 
𝑃(𝑥𝑡+1|𝑥𝑡 ,𝑢𝑡) in the stochastic case, from data via 
regression 

• Cost model 𝐽𝑡(𝒙𝑡) 
• Control law 𝒖𝑡 = 𝝅𝑡(𝒙𝑡) 
• Noise model from assumptions or experimental 

measurements 
 Normally distributed (𝜇,𝛴) 
 Additively superposed with state 

Cost considered 
• 𝐽𝐷𝑡 : Local cost (due to process efforts), derived 

from vendor knowledge 
• 𝐽𝐹: Final (negative) cost  (price achieved with end 

quality), derived from sales knowledge 
• 𝐽𝑡+1  or 〈𝐽𝑡+1(𝑥𝑡+1)〉 : Cost of subsequent process 

steps due to current state, calculated via backward 
calculation and regression or explored during 
processing 

The proposed method suffers from the curse of 
dimensionality [6], when longer process chains and high 
dimensional state spaces are involved which prevents real-
time control. The state space dimensionality can be 

drastically reduced by means of dimension reduction 
methods such as “Principal Function Approximators” (a 
kind of non-linear partial least squares method) [4] which 
already yields an optimally reduced state representation, 
derived from the observed process values. This approach 
belongs to the class of Approximate Dynamic Programming 
(ADP) [9]. If only a few process steps are involved, 
backward DP approach can be applied as was shown with a 
two stage process in [3]. 

Other approaches, also allowing the treatment of more 
complex processes, such as “Approximate forward Dynamic 
Programming” [2][11] have been investigated in [10].  

 
Figure 7.  Generic model of a downstream chain optimization control 

Combining the observer methods with the different DP 
approaches finally forms the generic model of downstream 
process chain optimization (Figure 7). 

V. CONCLUSION 
A concept has been presented, allowing a process-

dedicated production agent to set its process parameter 
values in a way that a process chain, which it is actually part 
of, will be (on average) globally optimized. Central 
optimizer components for each dedicated process chain are 
no longer required. This makes production more flexible 
and efficient, since the agent concept is maintained and the 
efforts are distributed optimally among the process chain 
members. In order to enable the agents for global 
optimization, they have to be supplied with extra 
information about the actual input they have to work on and 
about the efforts they produce by their outputs with the 
subsequent processes. This cost function has to be set up by 
a higher-level component from all downstream process 
information and is in the responsibility of the process chain 
agent. A generic method for this purpose has been 
presented, completing the set of methods contained in the 
extra components of chain-optimizing methods. 
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