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Abstract—In order to obtain components with desired properties
in production processes, it is necessary to consider all single
process steps. The holistic view of a process chain enables the
identification and the control of interactions between the single
processes. In contrast to the description of a single process, state
and control variables might not be consistent along the entire
process chain. We propose a universal characterization of state
and control features along the process chain that takes into
account all relevant information and, at the same time, reduces
the complexity in optimization. This allows us to optimize the
entire process chain to obtain a desired product at the end under
consideration of process noise, even for high dimensional state
and control spaces.
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I. INTRODUCTION

A production process describes the transformation of a
component from its initial to its final state (e.g., stresses in
the material) which depends on applied process controls (e.g.,
forces) and unknown process noise (e.g., different friction
conditions due to lubrication). The holistic view of a process
chain allows to identify and to control interactions between the
individual processes to obtain a desired product at the end of
the process chain (e.g., compensate geometric imperfections
with distortion engineering [1]). The linking of the single pro-
cesses can be realized by forward and backward information
exchange [2]. A statistical learning approach [3] enables the
control of a single process [2] using radial basis functions to
identify controls. For each time step, past process noise is taken
into account by measurements of process quantities. However,
future uncertainties are neglected in that approach, but are
considered in optimal control as realized for deep drawing
including process noise [4].

If the characteristic process state is not accessible dur-
ing processing, state observers can be used to extract the
state information by observable quantities that are measurable
during process execution. State observers can be established
by statistical learning approaches such as Artificial Neural
Networks [5] and Symbolic Regression [6].

While we can use the same state and control variables
within one process, the description among different processes
is not necessarily consistent. There are properties that are
meaningful for a specific process, but would be pointless for
the entire process chain (e.g., cup height is a component
property in deep drawing which is not applicable to rolling
or heat treatment). We can find a common description along
the entire process chain by expert knowledge (e.g., stresses in
sheet metal forming) and / or use a universal description for
state and control variables as proposed in this paper.

We introduce the concept of process chain optimization in
Section II and give an example process chain in Section III.

II. PROCESS CHAIN OPTIMIZATION

We propose a universal description for state and control
variables from which the characteristic features are auto-
matically extracted for optimization and retransformed for
application to the process.

A. Process chain modeling
Each process in the chain is characterized by its state during

processing. A single process pt transforms an initial state xt
to a final state xt+1 depending on the control variables ut

and the unknown process noise vt as depicted in Figure 1.
Each transformation is associated with local costs Ct (e.g.,
the production effort). The final costs Ct+1 are added at the
end of the process chain (e.g., the deviation of the actual state
from a desired state). The Bellman equation [7] describes the
optimal control problem for each process. The total costs Jt
to be minimized comprise the local costs Ct and the successor
costs Jt+1. The successor costs consist of the local costs of
the remaining processes in the chain plus the final costs at the
end. The Bellman equation can be solved by (Approximate)
Dynamic Programming [7] (e.g., modeling successor costs and
state transitions by nonlinear regression with Artificial Neural
Networks from simulation data [4]).
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Figure 1. Process chain modeling.

The process data ut, xt can be obtained by real experiments
including uncertainty or by deterministic simulations without
random noise. The local and final costs are defined by a human
process expert.

B. Feature extraction and unwrapping
In order to obtain a characteristic description of the process

chain, all relevant quantities are collected to represent

1) universal state variables x1, x2, . . . , xN , xN+1,
(e.g., thickness and depth [8])

2) universal control variables u1,u2, . . . ,uN .

Figure 2 points out how feature extracting and unwrapping
is interconnected with optimization. We can either apply Prin-
cipal Component Analysis (PCA) to state and control variables
separately or use Partial Least Squares Regression (PLS) on
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Figure 2. Feature extraction and unwrapping.

both simultaneously. PCA [3] allows dimension reduction from
a higher dimensional to a lower dimensional space retaining
most of the information (e.g., variance) in the data. PLS [3]
enables a dimension reduction in input and output during
regression. The features of the universal state and control
variables are extracted: the control features u∗ and the state
features x∗. The optimization problem (Bellman equation)
is formulated and solved in the feature space. The training
step establishes the models for state transitions and successor
costs, whereas the validation step tests the established models
with previously unseen data. Then the features are unwrapped
(inverse PCA / PLS). The unwrapped features reveal the
controls and states in its original space for process application
and are interpretable.

This procedure allows to reduce the dimensionality in state
and control spaces to handle the complexity in optimization
(that grows exponentially with increasing spaces). Constant
dimensions in state space (e.g., zero cup height in rolling) or
control space indicate that these dimensions are not affected
by any changes in the current process. They will be removed
by dimension reduction.

C. From process data to chain optimization
A real life example for sheet metal forming is to obtain

a homogeneous sheet thickness distribution at the end (final
costs) under consideration of low production effort in each step
(local costs). To realize the proposed concept, we recommend
to implement the following procedure:

• record process data ut, xt from simulations or experi-
ments and optionally induce artificial process noise vt
if not contained in process data,

• define cost functions (local costs Ct and final costs
CN+1) based on u and x,

• extract control features u∗ and state features x∗ along
process chain from process data ut, xt,

• create cost mapping functions based on extracted
features Ct(u∗, x∗) and CN+1(u∗, x∗),

• build and validate process models for each step in
chain by regression for (1) state transition, (2) costs,
and (3) Bellman equation (after its solution),

• unwrap control features u and state features x along
process chain from control features u∗ and state fea-
tures x∗,

• evaluate process chain optimization.

III. EXAMPLE PROCESS CHAIN

An example process chain in sheet metal forming is given
in Figure 3 [9]. It contains the processes rolling (forming a
metal sheet from a metal block), annealing (heat treatment) and
deep drawing (forming a cup-shaped workpiece from a metal

sheet). The optimization objective is to compensate direction-
dependent deformation which results in unwanted earing of the
resulting cup. The holistic view of the process chain allows to
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Figure 3. Example process chain ”sheet metal forming” [9].

understand and to control the deformation behavior of the sheet
metal components. The evolving microstructure (e.g., grain
size and orientation of the crystalline structure of metals [10])
as the characteristic state of the metal sheet is controlled along
forming, heat treatment and deep drawing operations to finally
produce minimal earing. The proposed approach enables the
handling of the complex microstructure.

IV. CONCLUSION

We introduced a universal characterization for state and
control features in production process chains. This allows a
consistent description along the entire process chain and, at
the same time, a reduction of complexity in state and con-
trol spaces to realize an efficient process chain optimization.
Future work deals with application of the proposed concept
to different process chains. This allows us to compare it with
conventional ways of process chain optimization.
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