
A NAO-based Intelligent Robotic System for a Word Search-like Game

Vı́ctor Lobato-Rı́os, Angélica Muñoz-Meléndez and José Martı́nez-Carranza
Computer Science Department

Instituto Nacional de Astrofı́sica, Óptica y Electrónica, México
Email: vlobato@ccc.inaoep.mx, {munoz, carranza}@inaoep.mx

Abstract—In this paper, we introduce a novel application based
on the NAO robotic platform and inspired by the word search
puzzle. In this scenario, NAO is presented with a worktable with
letter tokens on it. The goal of this game is for NAO to be given
a word that has to be assembled by using the letter tokens on the
table. Thus, the robot has to recognise, reach, grasp and bring,
to the bottom of the worktable, the tokens following the order of
the letters in the word. For NAO to solve this task, we propose
a computational strategy based on a vision system for the letter
recognition and a motion planning architecture that will enable
him to reach and manipulate the tokens. Our results indicate
that our approach is adequate and effective to implement this
intelligent robotic system, which also provides the basis for the
implementation of a more sophisticated robotic system.

Keywords–Planning; humanoid; grasping; object recognition.

I. INTRODUCTION

Among the several platforms available on the market, the
humanoid NAO1 offers an aesthetic design which makes it
appealing among people. Its friendly appearance makes this
robot a suitable candidate for companion, however, beyond the
cuteness and toy-like appearance, NAO is a genuine robotic
platform that can be exploited in several robotic tasks such
as object recognition, object manipulation, speech recognition
and human-robot interaction.

In this work, we present a novel application of the NAO
robotic platform, which contributes to the efforts made to
build friendly robots that can sit along humans at home or
in social environments for different purposes, e.g., companion,
assistance, interaction, etc. In this spirit, we have developed a
NAO-based robotic system that aims at solving a game inspired
by the word search puzzle2. In this task, NAO is presented with
a worktable where a set of tokens are laid on it, see Fig. 1.
Each token has a letter drawn on it and the goal in this game
is for NAO to be given a word whose compounding letters are
found among the tokens.

From the above, in a one-by-one fashion driven by the order
of the letters in the requested word, NAO has to: i) recognise,
with the help of his vision system, a token whose letter is
part of the word; ii) move his left or right hand towards the
recognised token on the worktable; iii) grasp the token; iv)
move the token towards the bottom part of the worktable and
release it in the corresponding position indicated by the order
of the letters in the word. The task ends when the word is fully
formed as illustrated in Fig. 1, where it can bee seen that, at
the bottom of the worktable, NAO has formed the word CAT.

1NAO robot is developed by the company Aldebaran. For more information
consult: https://www.aldebaran.com/en/humanoid-robot/nao-robot

2Word search puzzle: A puzzle consisting of letters arranged in a grid,
containing several hidden words written in any direction [1].

Figure 1. NAO robot assembling the word CAT: the tokens with the letters
corresponding to the word are placed at the bottom of the table in the respective
order.

For NAO to accomplish the task, we have developed a
visual recognition system and an efficient planning mechanism
that enables NAO to decide which arm to use and the trajectory
that it has to follow in order to grasp a token and where to
release it. The relevant tokens are recognised with the help of
our vision system, which analyses the imagery obtained with
NAO’s onboard camera. Also, our proposed planner allows
us to include relevant constraints in the configuration space
such as: possible hand rotations; grasping execution; passing
the token from one hand to the other and updates in the
configuration space due to accidental (or intentional) changes
in the position of the tokens on the worktable.

Our experiments indicate that our approach is effective and
the obtained results are promising. They indicate that we are
on track in terms of developing an intelligent robotic system
that could be used at home or in a social environment in the
future.

In order to describe our approach, this paper has been
organised as follows: Section II presents the related work; the
building blocks of our intelligent robotic system are presented
in Section III; Section IV describes our experiments and
results; Section V discusses our work and its scope; and
Section VI presents our conclusions and future work.

II. RELATED WORK

Several works related to the NAO robot are focused on
improving its performance in the RoboCup Standard Platform
League3. The main topics here are object recognition, color

3http://www.tzi.de/spl/bin/view/Website/WebHome

98Copyright (c) IARIA, 2015. ISBN: 978-1-61208-437-4

INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications

TABLE I. COMPARISON WITH CLOSEST RELATED WORK

Domain Resources &
capabilities

Real time
adaptation

Kovacic et al. [14] Tic Tac Toe
-Tokens recognition
-Tokens’ manipulation
-Arms motion

No

Jost et al. [13] Simon’s game -Speech recognition
-Arms motion No

Our work Word search-
like game

-Letters recognition
-Tokens’ manipulation
-Arms motion

Yes

segmentation, gait improvement and fall protection [2][3][4]
[5][6]. In this context, many works try to improve specific
movements of the robot such as its grasping or its balance
while performing a kick, whereas others focus on modelling
the kinematics of the robot [7][8].

However, because of its nice appearance, the NAO robot
has become a perfect candidate for tasks involving interaction
with people, especially in those involving children, elders or
people with special needs. For example, Janssen et al. [9]
developed a game to motivate children to learn arithmetic
through imitation activities between the robot and the child.
In [10], NAO is used to learn a set of physical exercises from
an expert trainer and then NAO is used to teach the moves to
elder people. Additionally, in [11] NAO has been used with
the Kinect 3D vision system seeking to imitate upper limb
movements of stroke rehabilitation patients.

Further, applications for NAO have also included daily life
activities like bringing a cup of coffee to someone [12], where
they made the motion plan for each arm in order to accomplish
the grasping of a cup and then release it when someone wants
to take it.

However, the closest works related to our research have
been developed by Jost et al. [13] and Kovacic et al. [14]. The
former adapts the Simon’s game to a scenario where a NAO
robot presents sequences of color that must be repeated and
extended by a user. In the latter, a NAO robot plays Tic-Tac-
Toe against a person; for that, the robot recognises the game
elements visually. Table I compares the main features of these
and our work.

III. ASSEMBLING WORDS WITH NAO ROBOT

In order to assemble a word with the NAO robot, which
involves letter recognition, grasping and arm motion planning,
two main modules were developed. The first module focuses
on visual recognition, which analyses the images captured by
the onboard camera in order to find the letters, among the
tokens on the worktable, that compose the requested word.
The second module is responsible for generating the motion
plan for the robot’s arms with three main goals: i) to move
the closest arm towards the token with the recognised letter;
ii) to grasp the token; iii) to move the arm whilst holding the
token towards the corresponding position at the bottom of the
worktable, where the token has to be placed/released. All of the
previous steps are necessary in order to assemble the requested
word. Both modules and the movement constraints that must
be considered will be explained in detail below, but first, a
general description of the robot activities will be presented in
the platform setup.

Figure 2. Components of the experimental platform.

(a) (b)

Figure 3. NAO robot with its worktable with: (a) StandInit position. (b) Ready
position.

A. Platform Setup
The platform used in this research consists of a NAO robot

v4 using the software NAOqi 1.14.44. The robot is connected
through an Ethernet cable or through WiFi to a laptop with
an Intel Core 2 Duo P8400 processor (2.26 GHz) operating
under Windows 8.1. It is worth to remark that the processing
of images captured by the robot as well as the planning of arm
movements are done on the laptop locally. For a sketch of the
platform see Fig. 2.

To begin its activities, the robot must be placed in front
of its worktable as depicted in Fig. 3(a). The posture of the
NAO is the one defined into the NAO robot environment as
StandInit, which gives stability and motion freedom to the
robot. Immediately after, the robot assumes a little different
posture, first, tilts its head to look at the worktable and then
raises both arms to chest height as shown in Fig. 3(b).

At this point, the robot is ready to start the visual recog-
nition and obtain the coordinates of the letters that must be
reached. As it was stated above, the robot can assemble words
by recognising and reaching the letters among the tokens on
the worktable as illustrated in Fig. 3(a), where the robot will
attempt to assemble the word MORE. Furthermore, this same
problem is equivalent to assembling a sequence of letters such
as it is shown in Fig. 3(b), where NAO will attempt to assemble
the letter sequence A-B-C from the tokens on the worktable.
Either way, the requested word or letter sequence must be
previously known by the robot.

The worktable has two levels, the upper level is where
the candidate letters to be recognised are laid on. The lower
level is where the robot will bring and release the recognised
tokens in order to assemble the word or letter sequence. Once

4Documentation of NAOqi 1.14.4 can be found here:
http://doc.aldebaran.com/1-14/index.html

99Copyright (c) IARIA, 2015. ISBN: 978-1-61208-437-4

INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications

(a) (b)

Figure 4. (a) Taking the letter. (b) Releasing the letter.

the coordinates of the letters are known, the robot will grasp
these one by one as depicted in Fig. 4(a). NAO will recognise,
reach, grasp and bring the tokens by following the order of
the letters in the word or in the letter sequence, thus placing
these in that order on the lower level (at the bottom) of the
worktable as shown in Fig. 4(b).

This procedure ends when the robot has placed every letter
of the word or the sequence at the bottom of the table and in
the right order. The next section will describe in more detail
the vision module, which helps to recognise and locate the
letters among the tokens, and how their spatial positions are
located.

B. Visual Recognition

Once letters that compose the requested word or sequence
are known, the next step is to recognise these letters on the
image retrieved by its onboard lower camera. We used this
camera because it is located at the mouth of the robot and this
makes it easier to see all the surface of the worktable than when
using the upper camera located at the forehead of the robot.
The captured images have a resolution of 320 × 260 pixels.
However, when using the lower camera, due to its position
with respect to the worktable the objects observed with this
camera exhibit slight changes in appearance w.r.t. their original
appearance, i.e., objects at the bottom of the image are slightly
bigger whereas objects at the top are slightly smaller and
objects close to the left or right of the image suffer moderate
affine transformation. Therefore, the visual recognition model
has to be robust against such transformations even if these are
small.

To deal with the transformations mentioned above, we use
the skeleton of the letter as the template to be sought out
on the image where the recognition has to be carried out. To
create the template, each token is placed on the worktable in
such a way that the letter appears centred on the camera image.
Once the letter is well located a segmentation algorithm, based
on colour segmentation and morphological operators, is used
to extract the white area on the image, corresponding to the
token, and then over that area the skeleton is extracted. The
resulting template has an average size of 38×42 pixels. Thus,
at recognition time, for each letter of the requested word its
template is sought out in all the image, the pixel position with
the highest similarity score, obtained with normalised crossed
correlation, is used as the found image position indicating that
the letter has been recognised in that image position.

(a) (b)

Figure 5. (a) Side view of the vision cone of the NAO robot. (b) Top view of
the vision cone of the NAO robot.

The procedure described above will return the (xp, yp)
image position of a recognised letter and in order to obtain the
metric token’s position (x, y) on the worktable’s surface, we
use a simple but effective interpolation method that converts
a coordinate (xp, yp) into (x, y). For the coordinate y, the
method uses the angles θa and θb depicted in Fig 5(a), which
correspond to the angles formed in between the camera optical
centre and the lower and upper part of the worktable whose
sides are observed in the first and last row of the camera image,
hence θy = yp

θb−θa
h , where h is the total number of lines in

the image. From the latter and knowing the camera’s height
H w.r.t. the worktable, we have that y = H tan(θy). A similar
procedure is carried out in order to calculate x. In this case
the vertical length of the worktable is used instead of H , see
Fig. 5(a), where the known value of y can be used to simplify
the calculations.

C. Movement Constraints
The next module in our work is the motion planning

algorithm used to reach and grasp, with the robot’s arms,
the located recognised letters. This module includes some
constraints related to the robot’s arm motion, specifically, to
its wrist which only has one degree of freedom (DOF) in roll.
As a consequence, the robot’s hand can pick a token only if
the arm and wrist are parallel to the worktable’s y axis, see
Fig. 5(b). Another constraint is that related to the area that can
be reached with either hand. This is mainly due to the DOF of
the servo-motors in each shoulder. Fig 6 indicates what tokens
on the worktable can be reached with what hand. Due to these
constraints and the physical size of the tokens used in this
work, the maximum number of letters that the robot is able to
assemble is four. Nevertheless, we should highlight that this
number could be increased by using smaller tokens or having
a humanoid with more DOF but in either case, our proposed
methodology would remain the same.

Also, observe that there might be cases when a recognised
letter may be located on the left side of the worktable but then,
the robot has to place it on the bottom right side. In this case,
the corresponding token will be reached and picked by the
left hand and then this must be exchanged to the right hand
so that the right hand can bring the token to the bottom right
side. These steps are depicted in Fig. 7, which demonstrates
the ability of our system to deal with these type of situations
due to the fact that such cases are considered within our motion
planning algorithm.

Finally, we should highlight the fact that our motion

100Copyright (c) IARIA, 2015. ISBN: 978-1-61208-437-4

INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications

Figure 6. Possible token positions (1-4) and approximate goal positions (5-8).

(a) (b) (c)

Figure 7. (a) Taking the letter. (b) Exchanging the letter. (c) Releasing the
letter.

planning algorithm includes in its configuration space the
trajectories that the robot’s arm has to traverse in order to reach
a token. It also includes the situations when either hand has to
rotate (usually when there is an exchange of the token from one
hand to the other), and the trajectories that will bring a token
to its corresponding position at the bottom of the worktable.

D. Motion Planning

As mentioned at the end of the last section, our motion
planning algorithm takes into account the arm constraints in
combination with the token positions on the worktable, this
is, those positions where the tokens have to be reached and
picked and those where these have to be released. In order to
model all of the arm motions involved during the game, we
design a search tree which is shown in Fig. 8.

Each node of the tree represents the goal physical positions
where the robot’s hand has to arrive. This position includes the
hand’s translation and orientation. In this sense, the labels of
nodes indicate the motions for reaching and leaving a token
position, represented with the prefixes R and L, respectively.
Also, in order to perform an exchange, nodes are labelled as
REL to represent the right hand that has to reach the left hand,
and as RER to represent the left hand that has to reach the
right hand. Finally, if an exchange was performed, then the
tree includes the nodes with the required motions in order to
leave the exchange position, these are labelled with the LEL
and LER in similar fashion to the previous nodes.

Note that the nodes are coloured in either orange or
blue, which indicates which hand is manipulating the token.
For instance, orange nodes indicate that during the motion
execution driven by any of the orange nodes, the left hand
could grasp a token or, if it is alreadying hoding it, release
it in its corresponding position. The numbers associated with
each node correspond to the physical positions of the tokens
on the worktable, see Fig. 6.

Figure 8. Search tree for planning.

From the above, a node with the label R4 means that the
right arm has to traverse certain trajectory in order to reach
the position specified by R4 and at such position the arm’s
hand could grasp a token, assuming that a token is physically
in that position. If no grasping is required, the arm can move
towards another accesible position which is indicated by the
arrows in the tree, in this case, from R4 the arm can move
towards R3, a token position, and if a token has been grasped
then a leaving motion has to be performed in order to bring
the token to the bottom of the worktable. The motion planning
for this execution will be indicated by traversing the nodes L3
and any of the other nodes that drive the arm towards a release
position, for instance R8.

Note that the nodes representing the hand exchanges will
contain the required motion for one arm’s hand to reach the
other arm’s hand so that the exchange can be executed. For
instance, let’s say that the left hand has grasped a token
from the position indicated by the node R2 and it has to be
released on the other side of the worktable, then the arm has
to traverse the position indicated by the node L2 and then
towards the exchange position indicated by the node RER,
where the left hand will reach the right hand so the exchange
can be executed. Immediately after, the right hand will leave
the exchange position following the motion indicated by LER
and then another node or set of nodes in the tree will have to be
traversed to define the motion that the arm will have to follow
in order to bring the token to the bottom of the worktable, for
instance the sequence R8-R7.

In this way, our proposed tree represents all the paths that
could be traversed by the robot’s arms. Therefore, once a letter
has been recognised and its physical position on the worktable
calculated by the vision module, the tree will be useful to
determine which path is the shortest path in order to drive
the arm towards the corresponding token in order to reach it,
grasp it and bring it towards its position where it has to be
released. This path is found by executing a depth-first search,
which produces all the possible paths and that will return the
shortest.

A remarkable feature of the proposed methodology based
on our search tree is that once a token has been released in
a certain position, defined by a node, for the next recognised
letter the search for the shortest path does not have to begin
from the start robot’s position, but it can start from the actual
position, i.e., from the current node in the tree. These will save
some computational time in the search, but more importantly,
it will avoid unnecessary arm motion since having to return to
the start position will waste time and energy (NAO’s servo
motors decrease their performance as time goes by due to

101Copyright (c) IARIA, 2015. ISBN: 978-1-61208-437-4

INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications

(a) (b) (c) (d)

Figure 9. (a) Taking the first letter. (b-c) Changing the expected intermediate
state from C-�-B to B-�-C. (d) Dealing with changes.

(a) (b)

Figure 10. Computational strategies implemented in this work: (a) Static, the
basic strategy used to test our proposed application; (b) Dynamic, which is
robust to changes in positions of the tokens during the game.

overheat, hence it is convenient to move the arm as efficiently
as possible).

To implement the planner described above, we followed
two strategies, see Fig. 10. In a static strategy, a picture of
the environment is taken only once at the beginning of the
game. This image will be used to recognise each one of the
letters in the word or letter sequence. However, if the tokens
change their position later in time then the planner will not
be able to correct the plan since it will believe that the tokens
remain always in the same place. The second strategy is the
dynamic strategy where a picture of the worktable is taken soon
after a token has been released, i.e., the planner calculates the
position of the next token just before going for it. This will
bring robustness against changes in the position of the tokens
since it will enable the planner to correctly assign the shortest
path given that it will use the updated token’s position. Fig.
9 shows an example of the dynamic strategy where a user
intentionally changes the position of the tokens while the robot
is attempting to bring a grasped token to the position where it
has be released. Note that, regardless the change in position,
the robot manages to identify correctly the updated positions,
hence calculating and performing an adequate plan, something
that would fail with the static strategy.

IV. EXPERIMENTS

Three experiments were conducted in order to test our
strategies. The first one is a time invested comparison between
both strategies in static environments. The second experiment
is a time analysis of the dynamic strategy in dynamic envi-
ronments. Both experiments were performed for assembling

TABLE II. TIME INVESTED BY STATIC AND DYNAMIC STRATEGIES
FOR REACHING THE GOAL SEQUENCE A-B-C.

Average time (seconds)

Initial state Static strategy Dynamic strategy

A-B-C 76.66 ± 0.40 76.83 ± 0.15

B-A-C 92.59 ± 0.53 92.69 ± 0.11

sequences of three letters. The third experiment is a test of the
performance of the dynamic strategy to achieve the long case.

The worktable used for these experiments has these dimen-
sions: 30 cm of length, 15 cm of width of the upper level,
12 cm of width of the lower level, 24.5 cm of height of the
upper level and 20.5 cm of height of the lower level. Also,
wooden tokens of 3.5× 4× 2 cm and weight of 11g with the
letters printed on both sides were used.

All the experiments were run 5 times in similar conditions,
and averages and standard deviations were then calculated. It
is important to mention that the NAO robot has an automatic
monitor for the temperature of its joints. An alert message
warns about a situation of high temperature that might cause
an unexpected behavior of the robot. Thus, a condition was
also that any warning message appeared at the beginning of
the experiments.

A movie of these experiments can be watched here [15].

A. Simple Static Environments
The goal of the first experiment was to compare the time

invested by both strategies to achieve a sequence of three letters
in static environments. The goal sequence was A-B-C and two
initial positions were tested, A-B-C and B-A-C. The first one
was an easy case because the robot just has to take the tokens
and carry them to the goal position in the same order, whereas
the second case was harder because it requires two exchanges.
The results of this experiment are shown in Table II.

The intuitive hypothesis suggests that the dynamic strategy
might be more expensive than the static one since the former
invests more time in the process of double-checking the
conditions of the environment. However, this hypothesis was
not verified by our experiments. Even though the static strategy
scored better times that the dynamic strategy, 170 ms and
100 ms for the easy and hard case, respectively, the difference
is not statistically significant.

As expected, the harder case takes a longer time, that
results from the number of exchanges required to sort the
tokens. Note also that the dynamic strategy is in general more
consistent in terms of the variation of time invested for solving
a problem. That can be explained by the brief pause introduced
by the dynamic strategy for the process of double-checking,
that benefits at the same time the stability of the robot for
starting next movements.

B. Dynamic Environments
The second experiment is intended to verify the ability of

the dynamic strategy to react to unexpected changes that might
happen in the environment. For that, the goal sequence and the
initial states were defined as for the previous experiment, A-
B-C, A-B-C and B-A-C, respectively. Once the first token had

102Copyright (c) IARIA, 2015. ISBN: 978-1-61208-437-4

INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications

TABLE III. TIME INVESTED BY THE DYNAMIC STRATEGY FOR
REACHING THE GOAL SEQUENCE A-B-C IN CHANGING ENVIRON-
MENTS.

Intermediate state

Initial state Expected Actual Average time (seconds)

A-B-C �-B-C B-C-� 91.96 ± 0.20

C-�-B 85.99 ± 0.14

B-A-C B-�-C B-C-� 98.78 ± 0.19

C-�-B 92.58 ± 0.06

TABLE IV. TIME INVESTED BY THE DYNAMIC STRATEGY FOR
REACHING THE GOAL SEQUENCE A-B-C-D.

Initial state Average time (seconds)

A-B-C-D 91.61 ± 0.12

D-C-B-A 123.93 ± 0.07

been taken by the robot, the rest of the tokens were manually
resorted in a different configuration. The ability of the dynamic
strategy to double-check the state of tokens must be able to
deal with these changes. The results of this experiment are
shown in Table III.

Two important remarks can be highlighted from these
results. First, that the dynamic strategy is effectively able to
deal with unexpected changes in the environment, since for all
cases including intentional changes of the tokens the robot was
able to achieve the goal sequence. And second, that the time
invested by this strategy to solve unexpected changes depends
more on the specific configuration of the tokens than on the
number of exchanges of tokens.

To illustrate the second remark, note that from the initial
state, B-A-C and the intermediate state C-�-B for reaching
the goal sequence A-B-C (fourth row of Table III), the robot
takes practically the same time invested for going from B-A-C
with the intermediate state B-�-C for the same goal sequence
(second row of Table II). However, solving the same case with
the intermediate state B-C-� increases the time in 6 seconds,
on average. We have noticed that the time for solving a case
is increased particularly for tokens located in middle positions
of the worktable, independently of the distance to reach the
right position of the token in the goal sequence.

C. Testing with a Large Case
The goal of this experiment was that of testing the per-

formance of the dynamic strategy for solving a larger case,
i.e., assembling sequences of four letters that is the maximum
number of letters that can be solved by the robot in the current
settings.

In this case, the goal sequence was A-B-C-D and the
initial states were A-B-C-D and D-C-B-A, an easy and a hard
case as for previous experiments. The dynamic strategy was
chosen over the static one for its capability to corroborate the
conditions of the environment that is convenient when dealing
with a large sequence. The results of this experiment are shown
in Table IV.

From these results, we confirm that the dynamic strategy is
able to solve the largest possible goal sequences in the current
settings, as well for easy than for hard cases. Also, it is worth
to notice that this strategy scores in general results with small
variations, which makes it a stable strategy.

V. DISCUSSION

Programming intelligent robots able to interact with people
successfully requires the sum of small efforts in different fields
such as improving, for instance, visual recognition algorithms,
speech recognition skills, and grasping capabilities. However,
a challenging issue that is particularly relevant for this kind
of robots is that of how to achieve a flexible goal-oriented
behaviour, i.e., how to combine the capabilities for long-term
planning with the capabilities for prompt reaction.

A Word Search-like Game using a NAO robot was chosen
as a case study for investigating both: issues related to technical
aspects of the robot, such as image processing and grasping,
and issues related to behavioural aspects of the robot, such as
programming strategies for dealing with static and dynamic
environments.

The problem itself, a Word Search-like Game, was also
defined for a number of reasons that are summarised as
follows: i) it is a bound problem, i.e., it has a well-defined
set of rules, basic tokens, and initial and target positions; ii) it
is a problem whose difficulty can be gradually increased, i.e.,
variations of the game can be easily extended, for instance by
giving NAO spoken commands; iii) it is a problem naturally
involving human-robot interaction, i.e., a scenario where a
NAO robot plays with children, or assists teachers and helps
students to learn spelling is absolutely thinkable.

From the above, a Word Search-like Game using a NAO
robot is a problem that contains important ingredients for
becoming a solid benchmark for studying human-robot inter-
action and designing intelligent robots.

VI. CONCLUSION AND FUTURE WORK

We have presented a novel application of the NAO robotic
platform in the form of a Word Search-like Game. For this,
we have developed a strategy that involves two main modules:
a vision system that recognises letter tokens on a worktable,
and a motion planning module that resolves what motion the
robot’s arms have to execute to reach and manipulate the
tokens in order to solve the game.

Our proposed strategies enable the robot to solve a problem
requiring goal-oriented behaviour as well as reactivity against
dynamic changes of the tokens’ positions. These capabilities
are crucial for designing intelligent robots able to interact
successfully with people.

Programming automatic players able to successfully play
board games and puzzles is a challenging problem in the field
of Artificial Intelligence. In effect, there are many non-trivial
competences involved in the way people learn and play board
games, such as representation of knowledge, identification
and refinement of game strategies, and recognition of the
opponent’s expertise -in the case of interactive games- to
mention a few examples.

Programming robotic players able to successfully play
board games is a very appealing problem that combines issues
encountered in Artificial Intelligence research with physical

103Copyright (c) IARIA, 2015. ISBN: 978-1-61208-437-4

INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications

and tangible considerations, such as motion constraints, per-
ceptual limitations, time of response, among other.

We strongly believe that the platform and problem ad-
dressed in this research are on the track for developing
intelligent robotic systems.

In the future, we plan to enhance our approach in order
to exploit the walking capabilities of the NAO platform in
order to address tasks where the robot has to bring a token to
a different location outside the worktable. We will also find
potential research scenarios where our NAO-based application
can be exploited, for instance educational robotics and robots
companions.

ACKNOWLEDGMENT

The first author is supported by the Mexican National
Council for Science and Technology, CONACYT, under the
grant number 336541. This work was partially supported by
the RAFAGA project, funded by the Royal Society-Newton
Advanced Fellowship, 2015-2017.

REFERENCES
[1] Oxford Dictionaries, “Definition of: word search”. Available on:

http://www.oxforddictionaries.com/definition/english/word-search?q=
word+search

[2] T. González, “Artificial Vision in the Nao Humanoid Robot”,
Master’s Thesis, Department of Computer Science and Math-
ematics, Rovira I Virgili University, Sept. 2009, chapter 5-8,
pp. 30-77,URL: http://upcommons.upc.edu/pfc/bitstream/2099.1/7722/1/
MT TomasGonzalezSanchez-URV.pdf [accessed: 2015-05-29].

[3] C. Graf, A. Härtl, T. Röfer, and T. Laue, “A Robust Closed-Loop Gait
for the Standard Platform League Humanoid”, in Proceedings of the 4th
Workshop on Humanoid Soccer Robots (Humanoids 2009), Paris, France,
2009, pp. 30-37.

[4] S. Liemhetcharat, B. Coltin, and M. Veloso, “Vision-Based Cognition of
a Humanoid Robot in Standard Platform Robot Soccer”, in Proceedings
of the 5th Workshop on Humanoid Soccer Robots (Humanoids 2010),
Nashville, USA, 2010, pp. 47-52.

[5] J. Ruiz-del-Solar, R. Palma, R. Marchant, S. Parra, and P. Zegers ,
“Learning to fall: Designing low damage fall sequences for humanoid
soccer robots”, Robotics and Autonomous Systems, vol. 57, Issue 8,
2009, pp. 796–807.

[6] J. Strom, G. Slavov, and E. Chown, “Omnidirectional Walking Using
ZMP and Preview Control for the NAO Humanoid Robot”, RoboCup
2009: Robot Soccer World Cup XIII. Lecture Notes in Computer Science,
vol. 5949, 2010, pp. 378-389.

[7] N. Kofinas, E. Orfanoudakis, and M. Lagoudakis, “Complete Analytical
Inverse Kinematics for NAO”, in Proceedings of the 13th International
Conference on Autonomous Robot Systems (Robotica) Lisbon, Portugal,
2013, pp. 1-6.

[8] H. Mellmann and G. Cotugno, “Dynamic Motion Control: Adaptive
Bimanual Grasping for a Humanoid Robot”, Fundamenta Informaticae,
vol. 112, no. 1, 2011, pp. 89-101.

[9] J. Janssen, C. Wal, M. Neerincx, and R. Looije, “Motivating children to
learn arithmetic with an adaptive robot game”, Social Robotics. Lecture
Notes in Computer Science, vol. 7072, 2011, pp. 153-162.

[10] B. Görer, A. Salah, and H. Akin, “A Robotic Fitness Coach for the
Elderly”, Ambient Intelligence. Lecture Notes in Computer Science, vol.
8309, 2013, pp. 124-139.

[11] J. Ibarra, A. Malo, A. Gómez, J. Lavı́n, L. Rodrı́guez, and W. Sierra,
“Development of a system based on 3D vision, interactive virtual envi-
ronments, ergonometric signals and a humanoid for stroke rehabilitation”,
Journal of Computer Methods and Programs in Biomedicine, vol. 112,
Issue 2, 2013, pp. 239-249.

[12] J. Müller, U. Frese, T. Röfer, R. Gelin, and A. Mazel, “GRASPY –
Object Manipulation with NAO”, Gearing Up and Accelerating Cross-
fertilization between Academic and Industrial Robotics Research in
Europe: Springer Tracts in Advanced Robotics, vol. 94, 2014, pp. 177-
195.

[13] C. Jost, M. Grandgeorge, B. Le PÈvÈdic, and D. Duhaut, “Robot or
Tablet: Users’ behaviours on a Memory Game”, The 23rd IEEE Inter-
national Symposium on Robot and Human Interactive Communication,
Edinburgh, Scotland, 2014, pp. 1050-1055.

[14] Z. Kovacic, F. Petric, D. Miklic, A. Babic, and K. Hrvatinic, “NAO
Plays a Tic-Tac-Toe Game: Intelligent Grasping and Interaction”, Uni-
versity of Zagreb, Feb. 2014. Available from https://www.fer.unizg.hr/
download/repository/nao book.pdf [accessed: 2015-05-25].

[15] V. Lobato-Rı́os, A. Muñoz-Meléndez, and J. Martı́nez-Carranza,
“Video: A NAO-based Intelligent Robotic System for a Word Search-
like Game”. Available on: http://youtu.be/xvMX5glu7Jk

104Copyright (c) IARIA, 2015. ISBN: 978-1-61208-437-4

INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications

