
A Lightweight Simulator for Autonomous Driving Motion Planning Development

Tianyu Gu

Electrical & Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213, USA
Email: tianyu@cmu.edu

John M. Dolan

Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA
Email: jmd@cs.cmu.edu

Abstract—A good simulation environment will facilitate motion
planning algorithm development for urban autonomous driving.
The first requirement of such a simulator is to be able to replicate
a complex urban environment, including road network, curb,
general objects, etc. The second requirement is to simulate a
realistic host vehicle, which includes perception, control and
vehicle dynamics, to recreate imperfect inputs and non-accurate
execution of the planner. The third requirement is to model
traffic participants (other on-road vehicles) for microscopic traffic
simulation. Intelligent-agent-based techniques are used to allow
the traffic participants to interact with the environment and
each other. In this paper, we present an open-source lightweight
simulation environment, FastSim, which is designed to meet the
three requirements above.

Keywords–Traffic simulator; Intelligent agent; Motion Plan-
ning; Autonomous driving

I. INTRODUCTION

Autonomous passenger vehicles (APV) have demonstrated
promising social impacts that touch nearly all aspects of
modern transportation. Motion planning (MP) algorithms are
one of the most important components in such autonomous
systems. The development of a planning algorithm is typ-
ically first performed in a simulator before applying it on
the actual robot for convenience and safety reasons. Many
simulation environments are either too complex or overly-
simplified [1][2][3], and only a few are freely distributed for
community usage. In this paper, we present the development of
a lightweight and real-time simulation environment designed
specifically for quick motion planning algorithm prototyping in
urban environments, where the host vehicle operates on roads
or freeways with structured lane information.

A. Related Work
MP algorithms take inputs from the upper-level perception

processing module and generate outputs to the lower-level con-
troller modules. From the planner’s perspective, three factors
must be reproduced in a simulator: the ground-truth of the
surrounding environment, the perception of the ground-truth,
and the host vehicle dynamics where the actual execution result
of the planned actions is evaluated.

In terms of the environment ground-truth, Carnegie Mellon
University Grand Challenge team [2] proposed a simulation
package for desert vehicles with general object representations
for field navigation, but no capability to model common objects
in urban environments. The Tartan Racing Urban Challenge
System (TRUCS) [3] explicitly represented different types of
moving objects in urban environments, but was not capable
of modeling the interactive capabilities of many objects. For a
simulation environment that aimed at creating realistic micro-
scopic traffic, [1] proposed a lane changing and merging model

for on-road vehicles. However, these models used simplified
assumptions, which can only react to other in-lane vehicles,
but not to other environment objects like static objects and
pedestrians, etc.

Self-localization and sensing the surrounding environment
are the two pillars of perception. Prior simulators typically
assume perfect localization. In order to reproduce realistic
imperfect localization, a closer look at actual localization
methods used in reality and the nature of output dynamics
is required. For environment sensing, the majority of prior
simulation environments directly feed the motion planning
algorithms with complete knowledge (directly pass the sim-
ulated ground-truth). However, on real robot, sensing is never
perfect, e.g., [4] investigated the real-world perception failure
cases with real Light Detection and Ranging(LIDAR)-based
ranger. For MP to behave robustly on robot, imperfect sensing
(e.g., sensor limitations) is important to simulate for MP
development.

In terms of the host vehicle dynamics, there is a huge body
of literature in vehicle modeling [5]. Many prior simulators
used an overly simplified vehicle model. On the other hand,
too-complicated vehicle models would be computationally
unjustifiable. Meanwhile, lower-level vehicle controllers (e.g.,
path tracking and speed regulation) are external to the motion
planner, hence must also be simulated, preferably with the
actual controllers [6] implemented on the robot itself.

In the remainder of this paper, we explain the design of
the proposed real-time simulation environment FastSim for
MP algorithm development. The organization of this paper
is as follows. Section II explains the implementation details
of the proposed simulation environment FastSim. Section
III presents the computationally efficient implementation of
intelligent-agent-based microscopic traffic simulation. Section
IV describes the user interface design. Section V concludes
with our contributions and future work.

II. SIMULATION ENVIRONMENT

Based on the requirements from section I-A, the FastSim
simulator consists of three simulation engines (Figure 1):

• The environment simulation engine models different
invariant (e.g., road network, curb, etc.) and varying
world elements (e.g., general static or moving objects).

• The perception simulation engine models the imper-
fect self-localization and environment sensing.

• The host vehicle simulation engine models the vehicle
dynamics and low-level tracking controllers.

94Copyright (c) IARIA, 2015. ISBN: 978-1-61208-437-4

INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications

Environment Simulation Engine

Perception Simulation Engine Host Vehicle Simulation Engine

Trackers Vehicle
Models

Map
Representation

Permanent
Obstacles

General
Objects

Imperfect
Localization

Imperfect
Sensing

Motion Planning
Algorithms

FastSim

Figure 1. System diagram of FastSim.

A. Environment Simulation
1) Road Network: A road network provides the inter-

connectivity of roads and roads’ lane-level information that
specifies the drivable regions. The route network definition file
(RNDF) [3] is a robust way to store road network information.
It makes use of road segments, where each segment contains
one or more parallel lanes. Each lane is specified by a series
of global way-points. Connectivity among lanes is defined
by pairs of exit/entry way-points. One main limitation of the
RNDF is its restriction to a fixed lane width and speed limit
for each lane.

FastSim uses a similar waypoint-based lane definition. But
for each waypoint, lane width (w) and speed limit (vlim)
are added to global position (x and y). An ever-increasing
station coordinate (s) is first calculated for each waypoint by
calculating piecewise-linear cumulative distance along-road.
Cubic polynomial or step signal could be used for smooth
or immediate interpolation:X(s) =

3∑
i=0

piX · si

X(s) = Xi|si≤s≤si+1

(1)

when X is global position (x, y), it is commonly interpolated
by cubic polynomials. The first-order (heading θ) and second-
order (curvature κ) geometric information is also easily ob-
tained via analytic differentiation. When X is lane width (w) or
speed limit (vlim), either interpolation could be used according
to the specific situation.

Curb

Fence

Active Map Area Preloaded Map AreaOccupancy Grid Map Segment

Figure 2. Permanent obstacles.

2) Permanent Obstacles: Permanent obstacles (Figure 2)
refer to the stationary environment constraints that make
certain regions non-traversable, such as curb and lane fences.
Unlike general objects below, permanent obstacles typically
do not have a separable shape. Hence, we use an occupancy

grid representation as an off-line map file, which is further
rasterized at a larger scale to break a large area into smaller
pieces. As the host vehicle moves, segments of occupancy
grids maps in proximity to the vehicle are loaded.

3) General Objects: Various static and moving objects
must be modeled in the urban environment. Objects of dif-
ferent types have different motion dynamics. The trivial non-
movement model is for static objects (e.g., trash bins), which
only contains unchanging pose information; a particle move-
ment model is used for objects whose motion can be omni-
directional (e.g., pedestrians); the kinematic bicycle model
can be used to model objects with non-holonomic kinematic
constraints (e.g., bicyclists and other passenger vehicles).

As for the motion of objects, it is sometimes useful for
other objects to follow a predetermined trajectory and not
react to other simulated objects, for objects like the leading
car in a queue of traffic, or a reckless pedestrian crossing the
street disregarding traffic. In other cases, it is more important
to create more realistic on-road traffic by enabling traffic
participants with some intelligence to interact. Section III will
explain more details on this matter.

B. Perception Simulation
In a realistic robot system, both localization and environ-

ment sensing have errors and limitations. One of the main
design goals of the simulator is for it to be sophisticated
enough to model such imperfect conditions for MP algorithm
design purposes. The environment simulation engine above
provides the ”ground-truth”, hence we need a separate percep-
tion simulation module to mimic realistic perception outcomes.

1) Imperfect Localization: The majority of localiza-
tion methods are based on Extended-Kalman-Filter (EKF),
Monte-Carlo-Filter (MCF) or Simultaneous-Localization-and-
Mapping (SLAM) algorithms. They output best estimates of
the vehicle state, along with covariance matrices describing
the confidence of measurement. However, localization error in
reality is largely situation-dependent, e.g., the vehicle loses
GPS in an urban canyon or enters an area where the environ-
ment’s features are quite different from the map. It is extremely
difficult to model these realistic scenarios in a simulation
environment. However, to make sure the perception outputs to
planners are compatible with that of a real perception system,
we add arbitrarily biased white-noise to the ground truth, and
apply an EKF to maintain a filter-based perception output.

2) Imperfect Object Sensing: Ranger-based sensing units
are the most commonly used on an APV. Two main sources
of imperfect (partial) perception are the limited field of view
(FOV) and occlusion. We simulate these limitations by the
placement of virtual sensors at different configurations on the
host vehicle (Figure 3). At each time-stamp, a constant-horizon
line-tracing algorithm is used to simulate the sensor scanning,
and only the objects that are reached by the simulated detection
rays are made visible to the MP algorithm.

C. Host Vehicle Simulation
In a realistic robot system, the plan is never executed per-

fectly due to actuation errors and unmodeled vehicle dynamics.
It is important for FastSim to simulate the execution of motion
plans with adequately sophisticated host vehicle models for
MP algorithm evaluation purposes.

95Copyright (c) IARIA, 2015. ISBN: 978-1-61208-437-4

INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications

Figure 3. Imperfect sensing due to limited field of view and occlusion.

1) Tracking Control: In most APV systems, a decoupled
planning and control scheme is used: the output of MP
algorithms is fed to lower-level tracking controller and execu-
tion components. From the motion planner’s perspective, the
controller contributes partially to the overall vehicle dynamics.
It is hence necessary to model the controllers. Two commonly
used tracking controllers, a pure-pursuit and Linear Quadratic
Regulator (LQR)-based trajectory tracker [6], are implemented.

L

(x, y)
θ

θ
δ

v

Easting (X)

N
or

th
in

g
(Y

)

Figure 4. Dynamic bicycle model.

2) Vehicle Dynamics: A simplistic kinematic model has
been used for many ground robot simulations [3]. While
suitable for low-speed navigation applications, they cannot
model realistic high-speed vehicle dynamics. Two of the most
important factors are latency and vehicle skidding dynamics.
Hence, we adopt a dynamic bicycle model (Figure 4):

ẋ = v · cos(θ)
ẏ = v · sin(θ)

θ̇ = Gs ·
v

L
· tanδ

δ̇ =
1

Tδ
· (δc(t)− δ)

v̇ = a

ȧ =
1

Ta
· (ac(t)− a)

(2)

where Gs ∈ [0, 1] is the slipping coefficient, Tδ and Ta are
actuation latency coefficients of first-order low-pass filters, x,
y and θ are the global pose, v is the speed scaler, δ and a are
the actual steering/acceleration scalars, and δc and ac are the
commanded steering/acceleration (model inputs).

III. MODELING TRAFFIC WITH INTELLIGENT-AGENTS

As explained in Section II-A3, it is sometimes impor-
tant to simulate basic interactive intelligence of other traffic
participants in order to recreate realistic traffic behavior. In
this paper, we are primarily concerned with surrounding on-
road vehicles, particularly, interested in modeling three basic
maneuver capabilities:

• M1: Swerve avoidance of static obstacles.
• M2: Longitudinal avoidance of/distance keeping to a

leading object.
• M3: Lane-changing maneuver.

The challenge is to model these behaviors in a compu-
tationally efficient manner. It is natural to think of using a
planner-based approach for each simulated on-road vehicle.
However, this is generally not scalable if the number of on-road
vehicles is large. In this section, we propose a computationally
efficient interaction model for other on-road vehicles capable
of performing the three maneuvers above.

Figure 5. M1: Swerve avoidance of static obstacles

ForM1 , the key is to plan a vehicle-independent reference
trajectory once per lane per cycle, and reuse this plan for
multiple on-road vehicles. We make use of the elastic-band
algorithm [7] to generate one reference trajectory per lane of
interest per cycle, so that all the moving objects in that lane
can reuse this planned trajectory (Figure 5).

xhost

xlead

llead

Sactual
Sdesiredδ

acmd

Figure 6. M2: Longitudinal avoidance /distance keeping to a leading object

Then the individual vehicles only need to implement cheap-
to-evaluate lateral and longitudinal controllers to track the
planned reference. For lateral control, tracking controllers
described in section II-C1 could be reused. For longitudinal
control (M2), a constant-time adaptive cruise controller [8] is
implemented to perform distance keeping and slowing-down
based on the relative distance to the leading object (Figure 6):

Sdesired = llead + T · ẋhost
Sactual = xlead − xhost
δ = Sdesired − Sactual
acmd = − 1

h · (−Ṡactual + λ · δ)

(3)

where Sdesired and Sactual are the desired and actual longitu-
dinal gaps between two vehicles, δ is the difference between
these two gaps, llead is the length of the leading vehicle, xhost
and xlead are the longitudinal positions of host and leading

96Copyright (c) IARIA, 2015. ISBN: 978-1-61208-437-4

INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications

vehicle, T is the time coefficient of the controller, h and λ are
the tunable coefficients to modify the aggressiveness of the
controller, and acmd is commanded acceleration, which is the
output of the controller.

X

Y

[0,0,0,κ 0]
[x f , yf ,θ f ,κ f]

y(t) = pi ⋅ x(t)
i=0

5

∑

Figure 7. M3: Lane-changing maneuver.

For M3, a single lane-change path is generated using a
polynomial [9] that connects from the current state of the
object to a look-ahead state in the target lane (Figure 7):

y(t) =

5∑
i=0

pi · x(t) (4)

where the polynomial coefficients pi can be found analytically,
hence computationally trivially. The look-ahead distance is an
empirical function of its current speed.

Depending on the nature of traffic, lane change can be free
or cooperative. The former is trivial. For the latter, if the same
controller for M2 is used, a significant change in the spacing
(after lane-change) between two simulated vehicles will cause
huge deceleration and generate a slowing-down shock-wave
effect on all following vehicles in the lane. We adopt the
controller proposed in [1] to simulate smoother cooperative
lane change in dense traffic. Refer to the original paper for
more details.

IV. RESULTS

The proposed simulator has been used to develop urban
driving motion planning algorithms [7] for the autonomous
Cadillac SRX testbed [10]. Compared with the simulator used
in the 2007 DARPA Urban Challenge [3], ”FastSim” is capable
of modeling host vehicle with more accurate dynamics by
using dynamic bicycle model, so that the vehicle response
at higher-speed can be replicated. Meanwhile, by directly
modeling perception system, ”FastSim” is capable to recreate
the non-perfect sensing limitation imposed by realistic sensors
to create challenging test cases for the motion planner. Finally,
”FastSim” can model various dynamic objects with more
flexible motion patterns, and traffic pattern which is important
for simulating urban driving scenarios.

A graphic user interface for FastSim is implemented to
facilitate real-time monitoring and manipulation (Figure 8).
It consists of six main functional components: world plotter
(A), XML-based scenario loading area (B), historical host
vehicle measurement (C), world plotter zoom/panning tool (D),
simulator/planner stop/go toggle tool (E) and external trigger
control panel (F). More description and example usage of
FastSim can be found in [11].

V. CONCLUSION

In this paper, we propose a lightweight simulation en-
vironment FastSim for rapid MP algorithm development for
urban autonomous driving. Three cornerstone simulation com-
ponents, i.e., surrounding environment, perception and host

A
B

C

D E

F

Figure 8. The graphic user interface of FastSim.

vehicle control/execution, are modeled to create a sufficiently
complex environment for MP algorithm evaluation. We fur-
ther proposed efficient models to reproduce basic interaction
intelligence of other on-road traffic participants to create a
more realistic simulation environment. FastSim is designed
with modular programming, hence the models of different
simulation components can be swapped for different research
projects easily.

In the future, the simulation environment will be further
expanded to be compatible with unstructured environments
like a parking lot. More moving object models will also
be implemented, such as the trailer model for trucks. In
addition, more interaction intelligence of other non-vehicle
traffic participants like pedestrians and bicyclists will also be
investigated and modeled.

REFERENCES
[1] P. Hidas, “Modelling vehicle interactions in microscopic simulation

of merging and weaving,” Transportation Research Part C: Emerging
Technologies, vol. 13, no. 1, 2005, pp. 37–62.

[2] C. Urmson et al., “High speed navigation of unrehearsed terrain: Red
team technology for grand challenge 2004,” Robotics Institute, CMU,
Tech. Rep. CMU-RI-TR-04-37, 2004.

[3] M. McNaughton et al., “Software infrastructure for an autonomous
ground vehicle,” Journal of Aerospace Computing, Information, and
Communication, vol. 5, no. 12, 2008, pp. 491–505.

[4] R. MacLachlan, “Tracking moving objects from a moving vehicle using
a laser scanner,” Robotics Institute, CMU, Tech. Rep. CMU-RI-TR-05-
07, 2005.

[5] W. Milliken and D. L. Milliken, Race car vehicle dynamics. Society
of Automotive Engineers Warrendale, 1995, vol. 400.

[6] J. M. Snider, “Automatic steering methods for autonomous automobile
path tracking,” Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-
RITR-09-08, 2009.

[7] T. Gu et al., “Tunable and stable real-time trajectory planning for
urban autonomous driving,” in IEEE/RSJ International Conference on
intelligent Robots and Systems (IROS 2015). To appear.

[8] R. Rajamani, Vehicle dynamics and control. Springer Science Business
Media, 2011.

[9] J.-W. Lee and B. Litkouhi, “A unified framework of the automated
lane centering/changing control for motion smoothness adaptation,”
in Intelligent Transportation Systems (ITSC), 2012 15th International
IEEE Conference on. IEEE, Conference Proceedings, pp. 282–287.

[10] J. Wei et al., “Towards a viable autonomous driving research platform,”
in Intelligent Vehicles Symposium (IV), 2013 IEEE. IEEE, Conference
Proceedings, pp. 763–770.

[11] T. Gu and J. Dolan, “Github page for FastSim”.” [Online]. Available:
http://www.tianyugu.net/publications.html

97Copyright (c) IARIA, 2015. ISBN: 978-1-61208-437-4

INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications

