
Establishing a Lightweight Communicative Multiagent Java Framework

Braxton McCraw, Justin Ruger, Roberto A. Flores
Department of Physics, Computer Science & Engineering

Christopher Newport University
Newport News, USA

braxton.mccraw.09@cnu.edu
justin.ruger.07@cnu.edu
roberto.flores@cnu.edu

Robert C. Kremer
Department of Computer Science

University of Calgary
Calgary, Canada

kremer@cpsc.ucalgary.ca

Abstract—This paper presents work in progress towards
building CASALITE, which is a Java programming framework
to create lightweight, communicational, hybrid multiagent
systems. Our goal is to create a framework that runs on small
and large devices with a minimal footprint (lightweight), that
relies in message communications as the basic mechanism of
interaction (communicational), and that allows building a mix
of agents ranging from purely software-based to robotic-based
(hybrid). To validate our work we plan test cases for single
robot control and multiple robot collaboration. CASALITE will
adopt a robot simulator for offline testing of robot programs.

Keywords: multiagent; robotic; programming; framework.

I. INTRODUCTION
When considering the advancement of technology, it is

important not only to consider the importance of solving new
problems but also finding ways to improve upon existing
solutions. Perhaps no field of study in computer science has
contributed more to the automation and efficiency of
optimizing problem solving than artificial intelligence. The
traditional view in this discipline holds that with a more
complex problem we must construct a more complex
solution, mostly through more sophisticated abilities for an
individual problem-solver component. An alternative
approach is to use not one complex (and usually expensive)
component but several low-cost units to handle separate parts
of the problem. However, it has been observed that having
large team sizes and a greater variety of components raises
the complexity of the system [1].

On an orthogonal dimension to multiagency we find the
means of implementation, where systems are not limited to
purely software or purely hardware components: it is
increasingly common to find hybrids (such as in robotics),
where versatile software programs are imbedded in the
control of complex hardware devices. The focus of our
research lies in this area, where groups of multiple separate
components (named agents) work together on a task (either
cooperatively or additively) and together comprise what is
referred to as a multi-agent system (MAS).

Agents can have varying degrees of cooperation and
communication between them as well as a range of decision-
making independence. Agents can either have the same
nature and abilities (homogenous) favoring tasks that are
scalable via agent addition, or have different specializations
(heterogeneous), favoring applications that benefit from a

division of labor. The greatest strength of a multiagent
approach is the low coupling afforded by the modularity of
its components. General multi-agent frameworks can then be
tailored to an application’s requirements, leading to a world
of possible implementations [2].

Multi-agent systems, while providing a useful abstraction
are not fully adopted yet for general use. This can be
attributed to a lack of awareness of the potential of agents
working in tandem, small publicity of successfully
implementations, over-expectations of early adopters of
agent technologies, aversion to taking risks on a relatively
young and unproven technology, and the lack of
developmental and design tools for creating agent systems
has led to trepidation of investing time and money into
widespread multi-agent applications [3].

Although MAS is an appealing abstraction to organize
complex systems, we are concerned with the lack of
appropriate tools to implement such systems and, in
particular, hybrid communicative MAS. A hybrid framework
would allow the implementation of potentially mixed
populations of software-controlled hardware agents (e.g.,
sensors, robots) and purely software agents (e.g., centralized
coordinators, decision-makers) that communicate through
explicit messaging to organize and coordinate their actions.
In our experience, several frameworks could be used to
implement such systems; among them are Player/Stage, MS
Robotics Developer Studio, JADE and CASA. Given the
objectives defined by their creators, the features in these
frameworks cannot squarely be compared vis-à-vis.
However, these features to a varying degree make them
amenable to hybrid MAS implementations.

In this paper, we present as our contribution our early
efforts implementing CASALITE, a small-footprint framework
to build hybrid communicational multiagent systems. Our
framework is planned to be lightweight for deployment in a
range of devices, from small and embedded devices (such as
SUN/Oracle SPOT [4]) to hand-held devices (such as phones
and tablets), and computers with larger capacities. We chose
Java as the implementation language to maximize the array
of devices in which we could deploy our framework and for
its suitability as a familiar language for undergraduate
students. As a test case, we’ll deploy a CASALITE agent on an
Android tablet that both interfaces with an iRobot Create and
is able to exchange messages and video feedback to a remote
CASALITE agent running in a laptop. To validate the
appropriateness of CASALITE as a multiplatform framework,

29Copyright (c) IARIA, 2014. ISBN: 978-1-61208-352-0

INTELLI 2014 : The Third International Conference on Intelligent Systems and Applications

we’ll also implement a CASALITE agent for the NAO
humanoid robot [5]. To validate CASALITE as a collaborative
framework we will implement multi-robot collaboration to
solve a maze. Lastly, CASALITE supports inter-agent
communication through socket-based streams transmitting
text messages with LISP-like syntax compliant with KQML
(Knowledge Query Manipulation Language) [6] and FIPA
(Foundation for Intelligent Physical Agents) [7].

The remainder of the paper is organized as follows.
Section 2 discusses MAS taxonomy and frameworks
considered as existing alternatives to implement hybrid
communicational MAS. Section 3 briefly describes an
overview of the design of CASALITE, and Section 4 presents
our planned experiments and conclusions.

II. MAS TAXONOMY & FRAMEWORKS
In one dimension, agents are organized by their degree of

sophistication, from simple reactive components to
components of massive decision-making complexity. In
another dimension, agents are organized by their degree of
collaboration, from isolated components to components that
can function in teams and organizations [8]. In one other
dimension, agents are organized by their behaviors; for
example, grazing – where a robot traverses an area [9].
Naturally, this task is enhanced with a multi-agent approach,
since several robots can coordinate their actions to cover an
area faster. In such cases, the coordination mechanism must
survive the worst-case scenario of unit loss, which should not
be handled on a unit-to-unit basis but rather as a collective
[10] enabling the team to continue working even in cases of
unit loss [11]. We assume that message communication is a
coordinating mechanism that complements or even subsumes
other coordination mechanisms afforded by the environment.
For example, a robot waiting for a block to be moved by
another agent could perceive that the block has been moved
(thus making the block the coordinating device) or could
wait until the agent pursuing the task notifies that the block
has been moved (thus making the message the coordinating
device). In the former case, it is assumed that agents have the
awareness and comprehension to know when a block has
been fully moved (c.f., acting when the block is in an
intermediate and not final moving state) whereas the latter
waits until the agent responsible for the moving action has
cleared its completion. Our approach is to assume that
messages are the intrinsic coordination device and that
agents use communication to coordinate their actions.

Our initial approach towards finding a suitable hybrid
MAS platform was to survey existing frameworks to identify
candidates. Our ideal framework would be hybrid and
multiplatform (able to implement robot interfaces and
software agents), provide a simulator (in cases where
hardware is not readily available) and communicative (it
must support autonomous communication to enable explicit
collaboration between agents). An additional requirement is
that its communications comply to some degree to standards
such as KQML and FIPA. The first framework identified
was JADE (Java Agent Development Framework). Being
written in a familiar language made JADE an attractive
option as well as its inclusion of several Java packages that

could be used as-is or modified for the specific platform.
However, JADE lack of a robotic simulator yielded a less
attractive option than other frameworks [12]. JADE has been
used to implement MAS for human-robotic interaction [13],
for coordinating a citywide taxi ordering service [14], and an
intelligent hotel booking system [15] (further examples can
be found in [16]).

We also explored Player [17], which is a robotic device
server bundled with a robot simulator named Stage. Stage is
relatively lightweight, and is able to simulate hundreds of
robots on a standard desktop PC. Communications in Player
are achieved through socket streams (which is in line with
our goals), making it compatible with programs written in
languages supporting sockets. In addition to the Stage
simulator, the biggest draw to Player is its simplicity, since
the server core has been simplified and reworked to the point
where all the functionality is in a single thread of execution.
Player’s lightweight approach has been explored in large
distributed systems, such as the DARPA SDR program,
which implemented a 100-robot experiment [18]. On the
other hand, there have been reports of compatibility issues
between Player drivers and certain robot models, with some
problems being operating system specific [19].

Robotics Developer Studio (MSRDS) [20][21] is
Microsoft’s development environment for designing robot
applications across a variety of programming languages.
MSRDS has support for iRobot Create and LEGO Mind
storm platforms. MSRDS features a robust simulator that
can be adjusted through user-made scripts to define
simulation parameters. The simulator was the most enticing
aspect of MSRDS, supporting simple user-defined polygons
to represent the robot and obstacles in the environment. In
our view it is the easiest to use framework investigated,
although scripting was tedious and it does not lend itself well
to modification.

The Collaborative Agent Systems Architecture (CASA)
[22][23] is an elaborated framework for agent interaction
written in Java. CASA has a robust message and
conversational structure based on social commitments, and
implements a basic robot simulator for iRobot Create. Its
computational footprint, however, makes CASA an unlikely
choice to implement agents for small devices.

After reviewing these frameworks, we weighted their
communicational abilities, robotic simulation potential and
programming fitness for undergraduate students and decided
to explore redesigning the core functionality in CASA to
support hybrid MAS systems.

III. CASALITE
CASALITE is a small-footprint framework to build hybrid

communicational multiagent systems. It distances itself from
existing frameworks with its adaptability and simplicity
while incorporating features from other implementations.

Figure 1 shows the core design of our framework.
AbstractAgent is the super-class of all CASALITE agents. It
has an event hub (to queue and process events) and a
message hub (to queue incoming and handle outgoing
messages). Events (not shown) can be synchronous (agents
wait for its completion) or asynchronous (executing

30Copyright (c) IARIA, 2014. ISBN: 978-1-61208-352-0

INTELLI 2014 : The Third International Conference on Intelligent Systems and Applications

independently of an agent’s thread), and can be recurrent
(executing more than one time); if so, they can be timed to
occur at intervals. Message hubs implement socket streams
for receiving and sending text messages. Messages are text-
base strings whose syntax is KQML/FIPA-compliant. An
example message can be “(request :content (curve :speed
200 :radius -3000 :bump any) :language iRobot)”. In the
context of our iRobotCreate implementation, this message
requests the robot to drive forward at a certain speed and
radius (i.e., drive in a curve) and stop when the bump sensors
detect an obstacle. Events can have an event handler reacting
to the event’s transitions, e.g., enqueue, dequeue, updates.
Event handlers are useful to coordinate responses to message
requests when the events created by these requests are
resolved. AndroidAgent and NAOAgent (the latter not yet
implemented) are agents that implement bare-bone
scaffolding programs for their corresponding architecture
(namely Android OS and NAO’s OS, respectively).
AndroidiRobotAgent is an agent interfacing with the core
implementation of an iRobotCreate controller, which has its
own event hub to queue Create specific commands. This
abstract class is extended by either the hardware-aware class
of a concrete Create instance (iRobotActual) or by the
simulation compatible class (iRobotSimulated) that runs
within a 2-dimensional simulator ported from CASA. As will
be described in the next section we implement an Android
agent as the robot controller running in a tablet sitting atop
an iRobot Create robot. Communication between the tablet
and the Create are supported through a Bluetooth connection.
For practical purposes both the tablet and the Create are
treated as one autonomous component.

IV. PLANNED EXPERIMENTS & CONCLUSIONS
We plan several test cases to assert the adequacy of our

framework, first for robot control and then for collaboration.
Our first experiment will focus mostly on robot control,

with minimal communicational interaction and decision-
making. In particular, we will implement a CASALITE agent
in an Android tablet directly interfacing with an iRobot
Create through a Bluetooth connection. As mentioned
earlier, both the tablet and robot are considered a sole agent.

This agent will receive messages with commands to control
the robot from another agent located in a remote laptop.
Likewise, the laptop agent will receive notifications from the
Android agent informing of the success or failure of
submitted commands plus notifications about the state of the
robot. We are designing these notifications under a
subscription model, in which the laptop agent subscribes to
state changes on the robot monitored by the Android agent,
including changes to bumper, wall, floor and cliff sensors. In
addition, we will program the Android agent to stream video
to the remote laptop agent and to display text messages sent
from the laptop agent. At the end, the iRobot/Android agent
should be able to drive (guided by a human operator on the
laptop agent) through our building and to a different floor by
taking an elevator (by using its text interface to request the
help of human bystanders to push elevator buttons) and
return to the place where we deployed it.

Our second experiment will consist of multiple robots
searching for an exit in a rectangular maze. Robots are
deployed randomly without a priori knowledge of the
environment although they will be aware of other robots
through their communications. Initially robots are only aware
of their immediate surroundings as afforded by their local
sensors, and begin by traversing the maze in single-decision
making mode, acquiring knowledge of the maze as they
advance and using a simple search algorithm to identify
paths to traverse. A different mindset takes over once agents
come in contact with each other. At that point, agents
communicate their individual maze mappings and combine
them (taking as reference their point of contact) into
common ground to start division of labor. Any new search
paths are negotiated between these agents and any new map
space discoveries are shared through their communications,
with the potential to add other agents (either isolated or part
of other clusters) as they come in contact with each other.
Agents will continue exploring the maze until one of the
robots finds an exit and communicates its location to all
agents in its cluster. To facilitate traversal of the maze,
robots will need an ultrasound sensor not currently provided
on the Create. This feature will also need to be implemented
in the robot simulator.

To conclude, in this paper we present our earlier efforts
to build CASALITE, a Java-based framework for
implementing lightweight, communicational, hybrid
multiagent systems. Agents are programmed with basic
communicational abilities to transmit KQML/FIPA-syntax
compliant text messages through network streams as a way
to enable collaboration. Currently, we have implemented the
basic functionality of an abstract agent and the interface to
the iRobot Create. Shortly we will begin implementing the
Android agent to be deployed in our initial single robot test
case scenario. After this test case we will integrate to
CASALITE the robot simulator from the CASA framework
and use it to program the collaborative test case in which
several robots communicate to find a maze exit.

Figure 1. Overview of the main class hierarchy in CASALITE.

31Copyright (c) IARIA, 2014. ISBN: 978-1-61208-352-0

INTELLI 2014 : The Third International Conference on Intelligent Systems and Applications

V. ACKNOWLEDGEMENTS
The work presented in this paper is partially supported by

the National Science Foundation under Grant Number (NSF
0841295), GK12 Program, CNU W.I.S.E.

REFERENCES
[1] B. Gerkey and M.J. Matarić, “A formal analysis and

taxonomy of task allocation in multi-robot systems.” The
International Journal of Robotics Research, volume 23, issue
9, pages 939-954, September 2004.

[2] K.P. Sycara, “Multiagent Systems.”AI Magazine, American
Association for Artificial Intelligence (AAAI), volume 19,
number 2, pages 79-92, 1998.

[3] M. Pĕchouček and V. Mařík, “Industrial deployment of multi-
agent technologies: review and selected case studies.”
Autonomous Agents and Multi-Agent Systems, volume 17,
issue 3, pages 397-431, 2008. doi: 10.1007/s10458-008-9050-
0

[4] Sun/Oracle SPOT, Sun SPOT World [Online] Available from:
http://www.sunspotworld.com/ [retrieved: May 2014]

[5] NAO, Aldebaran Robotics [Online] Available from:
http://www.aldebaran-robotics.com/ [retrieved: May 2014]

[6] T. Finin, Y. Labrou, and J. Mayfield, “KQML as an agent
communication language.” In Software Agents, J.M.
Bradshaw (Ed.), AAAI/MIT Press, pages 291-316, 1997.

[7] FIPA, Foundation of Intelligent Physical Agents [Online]
Available from: http://fipa.org/ [retrieved: May 2014]

[8] A. Farinelli, L. Iocchi, and D. Nardi, “Multi-robot systems: A
classication focused on coordination.” IEEE Transactions on
System Man and Cybernetics, Part B, pages 2015-2028, 2004.

[9] T. Balch and R.C. Arkin, “Communication in reactive
multiagent robotic systems.” Autonomous Robots, volume 1,
issue 1, pages 27-52, 1994. doi: 10.1007/BF00735341

[10] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “A taxonomy
for multi-agent robotics.” Autonomous Robots, volume 3,
issue 4, pages 375-397, 1996. doi:10.1007/BF00240651

[11] J. Ferber, “Multi-agent system: An introduction to distributed
artificial intelligence.” Addison Wesley Longman, 1999.
ISBN 0-201-36048-9

[12] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE–A FIPA-
compliant agent framework.” Proceedings of Practical
Applications of Agents and Multi-Agents (PAAM), pages 97-
108, London, 1999.

[13] V.S. Santos, C.P. Cândido, P. Santana, L.C. Correia, and J.B.
Barata, “Developments on a system for human-robot teams.”
Conference on Autonomous Robot Systems & Competitions
(Robótica 2007), volume 1, pages 1-7, Paderne, Portugal,
2007.

[14] A. Moreno, A. Valls, and A. Viejo, “Using JADE-LEAP to
implement agents in mobile devices.” EXP-In Search for
Innovation (special issue on JADE), Telecom Italia Lab,
volume 3, issue 3, 2003. [Online] Available from:
http://jade.tilab.com/papers/EXP/02Moreno.pdf [retrieved:
May 2014]

[15] C. McTavish and S. Sankaranarayanan, “Intelligent agent
based hotel search & booking system.” 9th WSEAS
International Conference on Telecommunications and
Informatics (TELE-INFO ‘10), pages 61-66, Catania, Sicily,
Italy, May 29-31, 2010 [Online] Available from:
http://wseas.us/e-library/conferences/2010/Catania/TELE-
INFO/TELE-INFO-09.pdf [retrieved: May 2014]

[16] JADE, Java Agent Development Framework. [Online]
Available from: http://jade.tilab.com/ [retrieved: May 2014]

[17] The Player Project: Software for robot & sensor applications.
[Online] Available from: http://playerstage.sourceforge.net/
[retrieved: May 2014]

[18] M. Kranz, R.B. Rusu, A. Maldonado, M. Beetz, and A.
Schmidt, “A player/stage system for context-aware intelligent
environments.” Proceedings of UbiSys‘06, System Support
for Ubiquitous Computing Workshop, 8th Annual Conference
on Ubiquitous Computing (Ubicomp 2006), Orange County
California, September 2006, pages 17-21. [Online]
http://www.eislab.net/publications/2006/Rusu06UbiSys_prepr
int.pdf [retrieved: May 2014]

[19] D.S. Michal and L. Etzkorn, “A comparison of
player/stage/gazebo and Microsoft robotics developer studio.”
Proceedings of the 49th Annual Southeast Regional
Conference (ACM-SE ’11), ACM, pages 60-66, Kennesaw,
Georgia, 2011. doi: 10.1145/2016039.2016062

[20] K. Johns and T. Taylor, “Professional Microsoft robotics
developer studio.” Wiley Publishing, Indianapolis, 2008.
ISBN 978-0-470-14107-6

[21] J.S. Cepeda, L. Chaimowicz, and R. Soto, “Exploring
Microsoft robotics studio as a mechanism for service-oriented
robotics.” Proceedings of the 2010 Latin American Robotics
Symposium and Intelligent Robotics Meeting (LARS ’10),
IEEE Computer Society, pages 7-12, 2010. doi
10.1109/LARS.2010.18

[22] R.C. Kremer, “CASA User Manual.” [Online] Available
from: http://casa.cpsc.ucalgary.ca/doc/CasaUserManual.pdf
[retrieved: May 2014]

[23] R.C. Kremer, R.A. Flores, and C. La Fournie, “A
performative type hierarchy and other considerations in the
design of the CASA agent communication architecture.” In F.
Dignum (ed.), Advances in Agent Communication, Lecture
Notes in Artificial Intelligence, Volume 2922, Springer-
Verlag, pages 59-74, 2004.

32Copyright (c) IARIA, 2014. ISBN: 978-1-61208-352-0

INTELLI 2014 : The Third International Conference on Intelligent Systems and Applications

