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Abstract — Partial discharges (PD) on high voltage insulator 

surfaces are directly related with the deposition of pollution 

over the insulators. A complete partial discharge sensor 

network was previously developed and has been in operation 

for approximately three years. This system records the PD 

activity classifying it into four levels. As the PD activity is 

influenced by the weather conditions the sensor network 

measures the one hour average temperature and relative 

humidity. Also a fuzzy inference system was developed to 

extract the flashover occurrence risk level based on the partial 

discharge activity recorded. However, a strong rain event can 

wash the insulators strings almost instantaneously decreasing 

the risk level. To a correct result interpretation it is important 

to properly analyze the weather data to detect the rain 

occurrence. This paper presents a comparison among three 

approaches for rain detection from humidity and temperature 

data. The three approaches, Naïve Bayes Classifier, Support 

Vector Machines and Multilayer Perceptron Neural Network 

are trained on data gathered by  meteorological stations 

located nearby the PD sensors and used in conjunction with the 

data obtained by those. Promising preliminary results are 

presented. 

Keywords; Partial discharges; rain detection; pattern 

recognition; leakage current; insulators. 

I.  INTRODUCTION 

The high voltage transmission lines are affected by many 
problems. One of them is the pollution accumulated over the 
insulators strings. When combined with high relative 
humidity the pollution layer becomes a conductive layer. A 
leakage current flows by this conductive layer causing 
irregular heating and then humidity evaporation, creating 
thin dry bands. The increase of electric charges in dry bands 
borders combined with the high electric field causes partial 
discharges near these dry bands [1]. The partial discharges 
phenomenon increases its rate and intensity until a complete 
discharge, known as flashover, bypassing all insulators 
causes a failure on the transmission line [2]. 

One way to avoid the flashover is by removing the 
pollution layer deposited over the insulator string by 
washing. However, this is a high cost operation and failures 
may occur during the procedure. 

Aiming to assist the decision regarding the need for 
maintenance of the insulator string, a sensor network was 
previously developed to detect and classify partial discharges 

according to their frequency of occurrence and intensity [3]. 
This system comprises an optical sensor coupled to an 
optical fiber, which transmits the leakage current [4] signal 
to an electronic processing module, which has also a 
temperature and a humidity sensor [5]. The collected data are 
transmitted via satellite and stored in a database. 

A fuzzy inference system has been developed in order to 
extract the flashover risk occurrence. The risk level is 
incremented and decremented according to the level of 
partial discharge activity considering its intrinsic relation 
with relative humidity [6]. The use of a fuzzy system has the 
advantage of being able to represent uncertainties of natural 
language, such as, for example, “the insulator string is 
slightly polluted”. 

However, on strong rain events the insulator string is 
washed ceasing the flashover risk after it. This almost 
instantaneous risk variation is not reflected on the fuzzy 
sequential decrement risk level. This work aims to develop a 
system capable of detecting the instantaneous cleaning of the 
insulator by strong rains, based on the available humidity and 
temperature data. The rain detection will make the fuzzy risk 
classification system more precise and turn the maintenance 
schedule more robust, reducing costs due to unnecessary 
washes. 

Common electronic rain sensors are only capable of 
detecting rain in a small surface and are not capable of 
quantifying the event [7]. Electromechanical rain sensors are 
capable of easily detecting and quantifying rain. 
Nevertheless, when installed in outdoor environments this 
kind of sensor accumulates water, in turn attracting 
infestation by wasps or bees. The presence of these insects 
increases the risk for operators of the power transmission 
company and increases the failure rate of the rain sensor 
itself once the hives might block the mechanical parts of the 
sensor. 

Temperature and humidity data gathered by the sensor 
network exhibits a daily regular pattern. This pattern is 
changed by rain events and a new rain pattern starts to occur. 
So, a pattern recognition system can be applied to detect the 
insulator washing by rain. A pattern recognition prototype 
system was developed based on the reliable data obtained 
from the Brazilian Institute of Meteorology, INMET, 
database. This database has humidity and temperature 
information as also the amount of rain precipitation per hour.  
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This paper compares three approaches for the rain 
detection system proposed: Naïve Bayes Classifier, Support 
Vector Machine (SVM) and Multilayer Perceptron Neural 
Network (MLP). After this analysis, the MLP was applied in 
a data set gathered by the partial discharge sensor network 
and visual inspections were realized to ensure empirically the 
rain detection success. 

The following sections are organized as: Section 2 
describes the satellite sensor system network; Section 3 
describes the used data sets and the rain pattern; Section 4 
discuss the concepts of each approach for rain detection; 
Section 5 describes the methodology used in this work; 
Section 6 presents the results and finally, the conclusions and 
final considerations are in Section 7. 

II. SATELLITE SENSOR SYSTEM NETWORK 

The satellite network is composed by six nodes operating 
and it has been in operation for three years in the Northeast 
region of Brazil. Each node is composed by an optical 
sensor, an electronic processing module and a satellite 
transmission modem [3], as illustrated in Fig. 1. 

Each hour the sensor node transmits the partial 
discharges activities, average temperature and average 
humidity. The partial discharge activity is classified into four 
current ranges named N1 to N4, which are related to current 
pulses larger than 5, 10, 20 and 40 mA, respectively [3]. 

The information gathered by each sensor is organized 
into two 64-bit packets and transmitted via satellite each half 
hour. After reception the data are stored in a database. The 
access to this database is provided by the ADECI (from their 
initials in Portuguese – Electric Performance Evaluation on 
Insulator Strings) system. Only identified employees of 
CHESF (the generation and distribution company in the 
Northeast region of Brazil) can access the information.  

III. DATA SETS AND RAIN PATTERN 

The temperature and humidity have an almost regular 
daily behavior. During the day, the temperature is high and 
the humidity is low; at night the temperature falls down and 
the humidity goes up. During rain events this behavior is 
modified because the rain causes an immediate increase in 
humidity and decrease in temperature. This behavior can be 
seen in Fig. 2 – at rain events the temperature falls down and 
the humidity goes up. This behavior is better observed in 
heavy rain events than in light rains.  

 

Figure 1.  Sensor node for partial discharge monitoring. 

 
Figure 2.  Plots of temperature and humidity patterns. 

The INMET meteorological stations data contain average 
temperature and humidity as also the amount of rain 
precipitation in millimeters per hour. Linear interpolations 
were used to complete the series on every data missing less 
than 5 hours. When the time period of the missing data was 
larger than 5 hours, data for the full day were excluded from 
the database. 

The INMET database was used to train each detection 
rain model for further use on ADECI bases. Fig. 3 shows the 
sensor network topology and each node of the nearest 
INMET meteorological station. Although each sensor node 
has a near INMET station, the distance between them is 
about tens of  kilometers and a rain in the INMET station 
does not imply a rain in the nearest ADECI sensor location. 

The data set was organized on day-long vectors as show 
in Table I. T0 to T23 represents the temperatures for the 24 
hours as well as U0 to U23 represent humidity values. If the 
day has a total rain precipitation larger than 1 mm, the day is 
classified as rainy. Otherwise it is classified as no rain. 

 

 
Figure 3.  Sensor node and INMET station location. 
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TABLE I.  DATA SET ATTRIBUTES AND CLASS. 

Attributes Class 

T0 … T23 U0 … U23 [rain / no rain] 

IV. APPLIED TECHNIQUES 

A. Naïve Bayes Classifier 

A Naïve Bayes Classifier [8] is a supervised-learning 
statistical technique. A vector   represents   
features             , in this work, each dimension of 
vector   comprehends an attribute of the database. The a 
posteriori probability of having rained in a specified day can 
be calculated using Bayes theorem as 

 
      |   

          |     

    
  

In (1),      is the probability of   occurring in the data set 
and    |      is the likelihood probability of   occurring in 
the “rain” class. 

By using the naïve assumption, i.e. the attributes are 
conditionally independent, the likelihood probably of 
   |      is 

 
   |       ∏    |     

 

   

  

It means that under the naïve assumption, the conditional 
distribution over the “rain” class can be expressed as 

 
      |   

 

 
       ∏    |     

 

   

  

where  , the evidence, is a scaling factor dependent only on  
the features of the   vector. 

All the Naïve Bayes Classifier parameters (the class prior 
and feature probability distributions) can be approximated 
with relative frequencies from the training set. In this work 
the continuous values associated with each class were 
considered to have a Gaussian distribution. 

B. Multilayer Perceptron Neural Network  

The MLP [9] is an artificial neural network whose 
architecture is based on multiple layers of neurons: an input 
layer, one or more hidden layers and an output layer. The 
number of hidden layers can be changed depending on the 
application. 

Each neuron can be seen as an element with inputs, 
weights, one activation function and the output signal. The 
output signal of each neuron is given by 

 
     (∑      

 

   

)  

where,   is the output signal of the   neuron,    is the ith 

entry of the   neuron,    is the ith weight of the    neuron 

and  is the activation function. In this work the sigmoid 
function was used as activation function [9]. The signal is 
propagated from the input layer to the output layer – where 
the classifier result is available.  

The training of a MLP consists on the weights adjusts. 
The objective is to train the MLP network to achieve a 
balance between the ability to respond correctly to the input 
patterns used for training and the ability to provide good 
results for other similar inputs, i.e. train the network to be 
capable of performing generalization. For this task, the 
classic backpropagation algorithm was used to realize the 
training of the neural network [9]. 

C. Support Vector Machine 

The SVM [10] is a statistically robust learning method in 
which the training process consists into finding an optimal 
hyperplane which maximizes the margin between two 
classes of data in the kernel induced feature space.  

Given an input data of   samples              
classified into two classes. Each one of the classes associated 
with labels are       for the positive class (rain) and 
      for the negative class (no rain), respectively. For 
linear data, it is possible to determine the hyperplane  

              

where   an M-dimensional vector and   is a scalar. This 
separating hyperplane should satisfy the constraints 

                  
                  



Furthermore, as the SVM searches for an optimal 
hyperplane, the margin width between the support vectors 
and the optimum hyperplane must be maximized, as showed 
in Fig. 5. The margin is calculated as 

 
    

 

|| ||
  

so || || must be minimized. 

 

Figure 4.  Support Vectors and separating hyperplane. 
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There is also the introduction of positive slack variables   , 
to measure the distance between the margin and the 
vectors     , which means that some mistakes can be 
tolerated. The optimal hyperplane separating the data can be 
obtained by solving the optimization problem 

 
   

 

 
|| ||   ∑   

 

   

  

subject to 

                   

The constraints aim to put the instances with positive 
label at one side of the margin of the hyperplane, and the 
ones with negative labels at the other side.   is the cost 
parameter, with is a positive constant specified by the user.  

The optimization problem of the SVM is usually solved 
by introducing the Lagrangian multipliers   , transforming 
the problem on the dual quadratic optimization. 

SVM can also be used to classify nonlinear problems. By 
using a nonlinear mapping function, called Kernel function, 
the original data are mapped into a high-dimensional feature 
space, where the linear classification is possible. There are 
different Kernel functions used in SVMs, such as linear, 
polynomial, sigmoidal and Gaussian RBF. The selection of 
the better Kernel function is very important, since this 
function will define the feature space in which the training 
set examples will be classified [10].  

V. METHODOLOGY 

A. Experiments to setup parameters 

At first, some experimental arrangements were made in 
order to evaluate the best set up parameter for the ANN MLP 
and for the SVM. 

For the used ANN MLP the numbers of hidden layers 
were limited in two. The tested topologies are showed in the 
Table II. There are two MLP output neurons, one indicates 
the “rain” class and the other indicates the “no rain” class. 
The validation set, necessary to avoid overfit was generated 
by selecting randomly 30% of the normalized complete data 
set. 

TABLE II.  EXPERIMENTAL ARANGEMENT FOR MLP. 

Neuron quantity 

First hidden layer Second hidden layer 

10 0 

20 0 

30 0 

40 0 

5 5 

10 10 

20 20 

30 30 

 
For the SVM, four kernel functions were tested: radial 

basis, linear, sigmoid and polynomial. For each kernel 

function the   parameter assumed respectively 1, 5, 10 and 
30. The   parameter was fixed in 0.001. And for the Naïve 
Bayes Classifier a gaussian distribution function was 
assumed. 

The test method for all experiments was the stratified 
cross-validation 5-fold. For the MLP the experiment was 
repeated twenty times. One INMET database (near São 
Miguel dos Campos) was used to evaluate the best setup 
parameter for the techniques. 

The metrics used to compare the three techniques are the 
TP (True Positive) rate and the F-Measure. The F-Measure is 
an accuracy evaluation which considers the precision 
generating an overall score about the classifier. For this 
application, the TP of no-rain class is a very important 
measure, and this rate must be maximized. A false positive 
for the rain class will cause a decrease of the risk level of a 
flashover and the prediction system can miss the flashover 
event because of this false positive rain detection. 

B. Experiments to evaluate the trainig applied in other data 

bases 

With the best setup parameters, all three techniques were 
trained with the data from São Miguel dos Campos INMET 
station and the trained models were applied in all others 
INMET stations. 

The main objective was to evaluate if a training realized 
on one station could be applied to another one. The 
geographic limits of the training and the influence of the 
climate were also investigated. 

C. Results on ADECI data 

The trained models were applied on ADECI databases 
aiming to verify if the rain detection was satisfactorily. 

The analysis of these experiments could not be measured 
in mathematical ways because the ADECI data does not 
include the rain information. Instead careful visual 
inspections were made to identify the temperature and 
humidity behavior changes in order to qualitatively verify the 
results obtained. 

VI. RESULTS 

A. Evaluation of setup parameters 

Table III presents the results for the Naïve Bayes 
Classifier. There are no parameters to adjust on this 
classifier. 

The Naïve Bayes Classifier achieve TP rate over 0.5 for 
both classes.  However, the FP (false positive) rate of the 
“no-rain” class is still high for the application (the FP for the 
“no rain” class is 0.227). The high result of FP “no rain” is a 
bad issue as it can lead to unnecessary maintenance action 
for insulators wash. 

Table IV presents the results for all ANN MLP 
topologies experimented. 

TABLE III.  EXPERIMENTAL ARANGEMENT FOR NAÏVE BAYES 

CLASSIFIER. 

TP rate “rain” TP rate “no-rain” F-Measure “rain” class 

0.807 0.798 0.746 
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TABLE IV.  RESULTS FOR ANN MLP. 

Topology 
(as in 

Table II) 

TP rate 
“rain” 
class 

TP rate 
“no-rain” 

class 

F-Measure 
“rain” 
class 

10, 0 0.802 (0.047) 0.873 (0.020) 0.790 (0.016) 

20, 0 0.793 (0.049) 0.877 (0.022) 0.788 (0.016) 

30, 0 0.784 (0.049) 0.878 (0.021) 0.783 (0.016) 

40, 0 0.784 (0.049) 0.878 (0.021) 0.783 (0.016) 

5, 5 0.810 (0.050) 0.866 (0.025) 0.791 (0.016) 

10, 10 0.810 (0.051) 0.869 (0.024) 0.792 (0.017) 

20, 20 0.814 (0.049) 0.867 (0.022) 0.793 (0.016) 

30,30 0.812 (0.051) 0.867 (0.022) 0.793 (0.018) 

 
In order to choose the best topology for the ANN MLP, 

statistical tests were made. With the Shapiro Wilk test, all 
samples follow the normal distribution, and with the F test, 
all samples have the same variance. So, the T-Student test 
was applied to evaluate the best topology with statistical 
significance. The result of  the T-Student test proves that 
there is no statistical difference between the topologies. So, 
the topology with fewer neurons in one layer was chosen. As 
shown in the highlighted cells in Table IV the results of the 
ANN MLP were better than those of the Naïve Bayes 
Classifier.  

Table V presents the results for the SVM. In this table, 
only the best results for each kernel function are presented. 

As the SVM classifier presents a unique solution, the set 
of parameters that resulted on the highest F-Measure was 
chosen (Radial Basis kernel function and   equals 10.0). 

The results obtained with training and execution of the 
classifiers within the same database shows that the rain 
pattern recognition is possible. 

TABLE V.  RESULTS FOR SVM. 

Kernel 
Function 

C 
TP rate 
“rain” 

TP rate 
“no-
rain” 

F-Measure 
“rain” 

Linear 

1 0.758 0.896 0.781 

5 0.754 0.880 0.767 

10 0.754 0.880 0.767 

Polynomial 
(3 degree) 

1 0.256 0.973 0.393 

5 0.575 0.929 0.676 

10 0.643 0.916 0.717 

Radial 
Basis 

1 0.720 0.910 0.766 

5 0.749 0.889 0.777 

10 0.758 0.902 0.785 

Sigmoidal 
 

1 0.671 0.921 0.741 

5 0.744 0.905 0.778 

10 0.754 0.905 0.784 

 

B. Evaluation of trainig applied in other databases 

Each classifier was trained with the data from the São 
Miguel dos Campos INMET station and applied in all others 
INMET stations. The parameter set used for the ANN MLP 
and for the SVM were the ones chosen in the previous 
section. The results for the Naïve Bayes Classifier, ANN 

MLP and SVM methods are presented on Tables VI, VII and 
VIII, respectively. 

TABLE VI.  NAÏVE BAYES CLASSIFIER TRAINED WITH SÃO MIGUEL DOS 

CAMPOS INMET STATION. 

Data Base 
used for 

Evaluation 
(INMET 
station) 

Naive Bayes Classifier 

TP rate 
“rain” 
class 

TP rate 
“no-rain” 

class 

F-Measure 
“rain” 
class 

Sobral 0.585 0.720 0.385 

Fortaleza 0.033 1.00 0.065 

Mossoró 0.203 0.989 0.316 

Angelim 0.995 0.060 0.522 

TABLE VII.  ANN MLP TRAINED WITH SÃO MIGUEL DOS CAMPOS INMET 

STATION. 

Data Base 
used for 

Evaluation 
(INMET 
station) 

ANN MLP 

TP rate 
“rain” 
class 

TP rate 
“no-rain” 

class 

F-Measure 
“rain” 
class 

Sobral 
0.830 

(0.041) 
0.895 

(0.020) 
0.823 

(0.024) 

Fortaleza 
0.856 

(0.058) 
0.887 

(0.027) 
0.832 

(0.025) 

Mossoró 
0.842 

(0.045) 
0.883 

(0.023) 
0.821 

(0.014) 

Angelim 
0.835 

(0.043) 
0.887 

(0.020) 
0.820 

(0.016) 

TABLE VIII.  SVM TRAINED WITH SÃO MIGUEL DOS CAMPOS INMET 

STATION. 

Data Base 
used for 

Evaluation 
(INMET 
station) 

SVM 

TP rate 
“rain” 
class 

TP rate 
“no-rain” 

class 

F-Measure 
“rain” 
class 

Sobral 0.585 0.880 0.523 

Fortaleza 0.366 0.981 0.506 

Mossoró 0.270 1.000 0.423 

Angelim 0.967 0.599 0.705 

 
The Naïve Bayes Classifier presented unstable results. In 

the Fortaleza INMET station, only 3.3% of the examples of 
the “rain” class were correctly classified. But in the Angelim 
INMET station, the result was the opposite: only 6.0% of  
the “no-rain” class was classified correctly. A possible 
reason for this is the climate difference between these 
stations. Fortaleza has a tropical climate, with average 
temperature over 25ºC and there is almost no rain in the 
second semester of the year. Angelim is a mountain region 
with a mesothermal climate and average temperature of 
20ºC. This is a strong clue that this classifier is sensible to 
climate differences. 

The SVM presented a result similar to the Naïve Bayes 
Classifier; however, the result of SVM was better than the 
previous one. But the result analysis for the SVM indicates 
that this classifier is also sensible to climate differences. In 
fact, these results mean that the used kernel function is 
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sensitive to the climate difference, i.e, the kernel was not 
able to provide a linear separation between the ‘rain’ and 
‘no-rain’ class with the gathered data in all stations.  

The ANN MLP was able to identify more assertively the 
pattern of rainfall in all other databases. This means that the 
power of generalization of this classifier acted more 
efficiently. 

Comparing the three classifiers, the ANN MLP presented 
better results. The selected INMET stations are located in 
different climates. It implies differences on the mean values 
of temperature and humidity between the databases. This 
difference affects the Naïve Bayes Classifier, since the 
means and standard deviations (parameters of the Gaussian 
distribution) in the training can be very different in test 
dataset. This same influence affects the SVM, since this 
technique finds a unique hyperplane solution which separate 
booth classes, and the power of generalization depends on 
the  parameter. Some  variation experiments need to be done 
in order to evaluate the SVM. The ANN MLP also finds a 
hyperplane solution which separates booth classes. The 
solution might not be the optimum, but in this case it 
presented the higher generalization power.  

 

C. Evaluation on ADECI data 

The ADECI data does not include the information about 
the amount of rain, so, a visual analysis was made in order to 
verify results. Once the MLP presents better results only this 
strategy was applied on ADECI databases. 

Fig. 5 shows the result of the ANN MLP trained with the 
data from São Miguel dos Campos INMET station and 

applied in the São Miguel dos Campos ADECI station. The 
result of the ANN MLP is a binary neuron indicating class 
“rain” (one) and “no rain” (zero). As can be seen in Fig. 5, 
the rain pattern was successfully recognized in some data 
subsets. The visual analysis of the rain pattern matches with 
the previous patterns in Fig. 2. 

There are some possible rain events not successfully 
recognized. These events are marked in Fig. 5. But, for every 
rain detected the visual analysis of temperature and humidity 
suggests a rain event.   

If a rain is not properly detected, as showed on 
highlighted areas of Fig. 5, the risk level will not be reset. If 
the risk level before the rain event was high enough to 
require a schedule maintenance, this maintenance will 
happen, even with the insulator rain wash, causing an 
unnecessary spending by the electric company. But some 
rain events were detected, and in these cases the maintenance 
schedule could be reprogrammed with this new information. 
It is not possible to quantify the rain detection efficiency but 
visually it is possible to verify that approximately 66% of 
rain events n Fig. 5 were properly detected. 

Furthermore, during a rain event, naturally there is an 
increase in the activity rate, mainly N1 as can be seen in the 
last rain detection, marked in Fig. 5. This activity increase 
causes an increment in the risk level leading to wrong 
interpretations. With the proper rain detection, the activity 
increase can be related to the rain event and the risk level is 
not increased.  

Fig. 6 shows the result of the same ANN MLP applied in 
the Mossoró ADECI station.  

 

 

Figure 5.  Application of ANN MLP in São Miguel dos Campos ADECI station. 

    

Possible rain events not 

recognized 

 

Last rain detection 

181Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications



 

Figure 6.  Application of ANN MLP in Mossoró ADECI station. 

A clear rain pattern was successfully recognized, but the 
visual analysis also suggests that some rain events were not 
successfully recognized. The general visual analysis suggests 
that the false negative rain rate was higher in Mossoró 
ADECI station than in São Miguel dos Campos ADECI 
station. The efficiency decrease observed to Mossoró 
ADECI station suggests that it decreases with distance, 
indicating that one single model can not be used to analyze 
all network nodes.  

VII. CONCLUSION AND FUTURE WORK 

This work presented an initial attempt to detect rain with 
relative humidity and temperature obtained from the partial 
discharges satellite sensor network. Preliminary results show 
that it is possible to detect rain events and use them to 
improve the flashover risk classification.  

The initial tests were performed on the reliable data from 
INMET meteorological stations in the Northeast Region of 
Brazil. Three techniques were applied: Naïve Bayes 
Classifier, ANN MLP and SVM.  

All three techniques presented acceptable results when 
tested on data from the same base. However, when the three 
classifiers were trained with data from one station and 
applied in the others INMET stations, only the ANN MLP 
presented acceptable results. The main reason for this is the 
different climates between each station, so the generalization 
ability of the classifier is an important feature. 

The ANN MLP trained with the São Miguel dos Campos 
INMET station was applied in data sets from ADECI 
database (obtained from the sensor network). Two ADECI 
stations were used to evaluate the ANN MLP. The rain 
pattern was successfully recognized in this database, 
however some false negatives were visually observed. 

The result of this work will improve the maintenance 
schedule system. Without the rain detection attibute, when a 
rain event occurs, the initial humidity increase causes a PD 
activity increase rising the risk of a flashover in the 
prediction system. With the addition of the rain detection 
attribute, this effect will not be taken into account and after 
the rain event, the flashover risk can be reset because the 
insulator string was washed. 

Future works aims to evaluate the threshold of rain 
precipitation, in millimeters, used to label the day as a rainy 
day and use larger data sets to evaluate the techniques. Data 
sets from different locations will also be used in order to test 
the climate characteristics influence on the proposed 
approach to rain detection and define the borders where the 
same model can be applied.  

Another improvement on the system is to split the days in 
mornings and nights because rain events during mornings 
cause a greater change in the temperature/humidity behavior 
than on nights.  

 

 

Possible rain event not 

recognized 

182Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications



ACKNOWLEDGMENT 

The authors thank CHESF.  

REFERENCES 

[1] M. G. Danikas, “The definitions used for partial discharge 
phenomena,” IEEE Transactions on Electrical Insulation, vol. 28, no. 
6, pp. 1075-1081, 1993. 

[2] E. O. Abdelaziz, M. Javoronkov, C. Abdeliziz, G. Fethi, and B. 
Zohra, “Prevention of the interruptions due to the phenomena of the 
electric insulators pollution,” Control, Communiation and Signal 
Processing, 2004. First International Symposium on, pp. 493-497, 
2004. 

[3] R. a de Lima et al., “Remote monitoring of the degree of pollution of 
high voltage insulator strings via satellite with a sensor system 
network,” 2010 IEEE Sensors, Nov. 2010, pp. 1113-1117. 

[4] E. Thalassinakis and C. G. Karagiannopoulos, “Measurements and 
interpretations concerning leakage currents on polluted high voltage 
insulators,” Meas. Sci. Technol, vol. 421, pp. 421-426, 2003. 

[5] E. Fontana, S. C. Oliveira, F. J. Cavalcanti, R. B. Lima, J. F. Martins-
Filho, and E. Meneses-Pacheco, “Novel Sensor System for Leakage 
Current Detection on Insulator Strings of Overhead Transmission 
Lines,” vol. 21, no. 4, pp. 2064-2070, 2006. 

[6] H. O. de Lima, S. C. Oliveira, and E. Fontana, “Flashover risk 
prediction on polluted insulators strings of high voltage transmission 
lines,” 11th International Conference on Intelligent Systems Design 
and Applications, Nov. 2011. pp. 397-401. 

[7] K. N. Choi, “Omni-directional rain sensor utilizing scattered light 
reflection by water particle on automotive windshield glass,” in 2011 
IEEE Sensors Proceedings, 2011, pp. 1728-1731. 

[8] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley-
Interscience; 2 edition (October 2000), 2000, p. 654. 

[9] S. Haykin, Neural Networks: A Comprehensive Foundation. PTR 
Upper Saddle River, NJ, USA, Prentice Hall, 1994. 

[10] A. Christmann and I. Steinwart, Support Vector Machines, Springer. 
New York, NY: Springer New York, 2008.  

 

183Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications


