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Abstract—The aim of this work is to study the Transmission
Network Expansion Planning (TNEP) problem considering
uncertainty on the demand side. Such problem consists of
deciding how should an electrical network be expanded so that
the future demand is ensured. We expanded the power transport
problem formulation so that power losses are included in the
objective function. Uncertainty is included through stochastic
programming based on scenario analysis; different degrees of
uncertainty are considered. Further, an explicit risk measure is
added to mathematical model using the Conditional Value at
Risk (CVaR). Weighting the relative importance of minimizing
expansion and operational costs against the value of the CVaR
simulates the attitude of the investor towards risk and shows
to be of significant importance when planning the future. The
problem was optimized using Genetic Algorithms. This work
provided insight on how investment decisions change when
considering several levels of uncertainty and risk aversion, in
an extended formulation of the TNEP problem.

Keywords–Transmission Network Expansion Planning; Genetic
Algorithms; Uncertainty; Risk Analysis.

I. INTRODUCTION

The prime objective of the Transmission Network Expan-
sion Planning (TNEP) [1] problem is to decide how should a
power transmission network be expanded in order to supply a
forecast value (or values) of the demand.

Future uncertainties are such a challenging issue for the
various prediction methods that one must acknowledge that
long-term forecasts might, and most likely will, be wrong
[2]. In order to mitigate the effect of uncertainty, building
not only one but several scenarios has proved to be a tech-
nique that, despite its greater computational effort, presents
an reliable method to tackle the ambiguities of the future.
Some of the most commonly uncertainties studied in the TNEP
problem relate to: deliberate attacks upon the grid [1], [3],
capacity failing of the transmission lines [4], and demand
uncertainty [5]. The scenario analysis in the above works is
implemented using stochastic programming [4]. Despite the
usefulness of stochastic programming and scenario analysis,
these approaches do not provide a risk assessment method. The
work developed in [5] evaluates risk using fuzzy techniques
after the optimization is done for each scenario individually,

and so is not incorporated in the cost function. The drawback
of this approach is that not including risk measure in the
mathematical model conditions the number of scenarios that
can be tested mainly to the difficult interpretation of the
individual results of each scenario [3]. In this work we aim
to implement a risk-based stochastic formulation of the TNEP
problem that considers the concepts of Value at Risk (VaR)
and Conditional Value at Risk (CVaR).

In the business and finance sectors, the VaR summarizes
the worst expected loss over a target horizon within a given
confidence interval and CVaR is a measure which could be
defined as the expected value of the losses worse than VaR,
over the same target horizon [6]. In the TNEP problem the
losses that were just referred, concern the operational costs for
the different scenarios (namely generation and curtailment),
under each expansion plan.

The paper is organized as follows. Section 2 describes
the modeling of TNEP. Emphasis is made on modeling with
uncertainty. The risk analysis used in the paper are described
in Section 3. Section 4 described the genetic algorithm applied
to solve the TNEP problem. The obtained results are presented
and discussed in Section 5, and finally, Section 6 presents the
conclusions.

II. MODELING

A. Loss Free Model

The TNEP problem is a large combinatorial problem, as
many possible configurations of the network may satisfy the
demand, and more importantly might have very similar or
equal costs. A common approach to tackle the problem is to
use the DC model formulation for the power flow equations.

Even with the simplifications considered in the DC-Model
the TNEP problem constitutes a large combinatorial, non-
polynomial, multi-dimensional problem, that cannot be solved
either without employing further simplifications, or heuristic
and meta-heuristic approaches. The classical DC-Model for
the TNEP problem is presented below.

min
θ,g,n

∑
∀(i,k)∈Ω

ciknik +
∑

∀i∈Ωg

cgipgi (1)

s.t.
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−
∑
k 6=i

fik + pgi = di (2)

fik − bik(noik + nik)(θi − θj) = 0 (3)

|fik| ≤ (noik + nik)fik (4)
0 ≤ pgi ≤ pgi (5)
0 ≤ nik ≤ nik (6)

where nik is integer, θi is unbounded, (1) is the cost function
divided in two parcels, the first relating to expansion costs
and the second to operational costs, (2) is the flow balance
constraint in each node network, (3) is the flow calculation
formula, and (4)-(6) are the capacity constraints.

B. DC Model with power losses

The inclusion of power losses in a non-linear manner in the
TNEP problem has already been presented in [7] and results
in changes to (2) and (4) which can now be written as:

−
∑
k 6=i

(fik +
1

2
hik) + pgi = di (7)

|fik|+
1

2
hik ≤ (noik + nik)fik (8)

where the losses hik are defined as:

hik = gikθ
2
ik (9)

C. DC Model with load curtailment

This paper introduces load curtailment as measure of how
much active power is left unsupplied. This is an important vari-
able when considering uncertainty, since the unexpected rise
of the demand might lead to a shortage of power transmission
capability.

One must notice how the cost associated with unsupplied
power changes the problem in conceptual terms. If the cost of
load curtailment is low, then this would pose another decision
for the investor to make, whether or not to expand the network
further satisfying a higher percentage of the total demand or
if not leaving a higher percentage of the demand unsupplied.
On the other hand if the the cost of the load curtailment is
extremely hight this would cause the solutions that consider
curtailed load to be extremely costly. Practically, this means
that considering high curtailment costs is equivalent to search
for a solution where all of the demand is met.

The model considering load curtailment and power losses
simultaneously changes the problem cost function, (1), and the
flow balance (7), into the following:

min
θ,g,n,r

∑
∀(i,k)∈Ω

ciknik +
∑

∀i∈Ωg

cpgipgi +
∑

∀i∈Ωd

criri (10)

−
∑
k 6=i

(fik +
1

2
hik) + pgi + ri = di (11)

D. Model with uncertainty

Deterministic models can be transformed into stochastic
optimization models that take into account the randomness of
the stochastic variables and these models can be solved using
stochastic programming techniques. The stochastic model that
considers power losses, load curtailment and uncertainty is:

min
θ,g,n,r

∑
∀(i,k)∈Ω

ciknik+

∑
λ∈Λ

Π(λ)

 ∑
∀i∈Ωg

cpgip
λ
gi +

∑
∀i∈Ωd

crir
λ
i


s.t.

−
∑
k 6=i

(fλik +
1

2
hλik) + pλgi + rλi = dλi (12)

fλik − bik(noik + nik)(θi − θj) = 0 (13)

hλik = gik(θλik)2 (14)∣∣fλik∣∣+
1

2
hλik ≤ (noik + nik)fλik (15)

0 ≤ pλgi ≤ pλgi (16)

0 ≤ nik ≤ nik (17)

where nik is integer, θλi is unbounded, λ is a scenario, and
Π(λ) is the probability of each scenario. The model given
above shows that each expansion plan is evaluated for all
possible scenarios.

However, in [8], stochastic programming in itself does
not rule out that riskier options are chosen considering all
plausible scenarios. In fact, this stochastic formulation alone
is considered to be a Risk-Neutral approach when dealing
with uncertainty as pointed out by [1]. To address this issue
the following subsection describes the risk measure used in
this work, its relation to scenario analysis and stochastic
programming and its inclusion in the mathematical model.

III. RISK ANALYSIS

One of the major purposes of this work is to assess
investments cost under uncertainty considering an explicit risk
measure in the mathematical model. The choice then falls
on how to quantify risk and the investor’s respective risk
attitude. In order to so effectively, a measurement is needed
that provides reliable assessment on the relative risk of several
different solutions for set of plausible scenarios.

A. Conditional Value at Risk

The Conditional Value at Risk has proven to be an useful
tool in assessing risk due to its linearity and conservativeness
[9]. Moreover, CVaR has been reported to outperform other
risk measurements as it can readily be incorporated into any
optimization problem as using the following formula [9], [10]
as:

F̃ϕ(ωλ, ξ) = ξ +
1

m(1− ϕ)

m∑
λ=1

ωλ (18)
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and the CVaR optimization problem as:

min
ξ ωλ

F̃ϕ(ωλ, ξ) (19)

s.t.

ωλ ≥ 0 (20)
ωλ ≥ f(x, yλ)− ξ (21)

where m is the number of scenarios, x is the variable con-
cerning the option to be taken for the project and yλ the value
of the random variable y in scenario λ. In addition, for any
solution x and a confidence level ϕ, VaR is the value of ξ
such that the probability of the loss not exceeding ξ is ϕ [11].

To solve the TNEP problem. It is important to notice that
what Rockafellar defines in [9] and [10] as the losses function
f(x, yλ), relates in the TNEP problem, to the cost of a given
plan after uncertainty clears, i.e., the cost for a given scenario.
Minimizing the CVaR for a given expansion in the TNEP
problem can then be described by the model below.

min
ξ

CVaR (22)

s.t.

ωλ ≥ 0 (23)

ωλ ≥

 ∑
∀(i,k)∈Ω

ciknik+

∑
∀i∈Ωg

cpgip
λ
gi +

∑
∀i∈Ωd

crir
λ
i

− ξ ∀λ ∈ Λ

(24)

Notice that, in our model we aim to include the risk attitude
of the investor. The CVaR in itself does not provide informa-
tion about the attitude of the investor, it provides information
about the investment necessary to supply the demand under a
set of possible scenarios with a certain degree of confidence.
To include the risk attitude in the objective function the TNEP
problem is expanded to include the CVaR, and weights were
established between the stochastic formulation and the CVaR,
to reflect the relative importance of minimizing each one.

B. Stochastic Model with Risk Aversion

The full optimization problem is presented below:

min
θ,g,n,r

(1− β)

 ∑
∀(i,k)∈Ω

ciknik +
∑
λ∈Λ

Π(λ)

 ∑
∀i∈Ωg

cpgip
λ
gi

∑
∀i∈Ωd

crir
λ
i

+ β(CVaR) (25)

s.t.

−
∑
k 6=i

(fλik +
1

2
hλik) + pλgi + rλi = dλi (26)

fλik − bik(noik + nik)(θi − θj) = 0 (27)

hλik = gik(θλik)2 (28)∣∣fλik∣∣+
1

2
hλik ≤ (noik + nik)fλik (29)

0 ≤ pλgi ≤ pλgi (30)

0 ≤ nik ≤ nik (31)
ωλ ≥ 0 (32)

ωλ ≥

 ∑
∀(i,k)∈Ω

ciknik+

∑
∀i∈Ωg

cpgip
λ
gi +

∑
∀i∈Ωd

crir
λ
i

− ξ ∀λ ∈ Λ

(33)

with nik integer and θλi unbounded. In the objective function
the stochastic formulation presented earlier and the CVaR
are weighted by the parameter β. Such Parameter reflects
the attitude towards risk of the investor. The the higher the
β is, the more averse to risk the investor. Notice that for
β = 0 the objective is reduced to the one of the stochastic
formulation and so, according to [1], the investor is Risk-
Neutral. Therefore, an investor whose attitude towards risk
is very high will have a value of β very close to one. In this
work we will employ a variety of values of β to study different
levels of risk aversion.

IV. GENETIC ALGORITHMS IN TNEP

GA belong the set of evolutionary algorithms (EA), that
due to their population-based inherent nature, are able to tackle
problems with a high degree of complexity [12]. For the TNEP
problem an integer encoding is chosen that reflects the number
of lines in the connection that such entry of the chromosome
relates to, as done by Gallego in [13].

However, this information alone can only provide infor-
mation on the expansion cost of the solution. In order to
evaluate operational costs, namely generation and curtailment
an augmented version of the common Optimal Power Flow
problem was also derived in [7]. Possible load curtailment is
considered at every demand node by the inclusion of a high
cost generator andthe full augmented OPF is presented below.
One must notice that if the lossless model is to be tested the
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term G is dropped.

min
θ,Pg,Pr

∑
∀i∈Ωg

Γ(Pgi) +
∑

∀r∈Ωd

Γ(Pri) (34)

s.t.

−
∑
i6=k

(
Fik +Gik

θ2
ik

2

)
+ Pgi + Pri = Di (35)

Fik = −Bikθik (36)

|Fik|+Gik
θ2
ik

2
− F ik ≤ 0 (37)

0 ≤ Pgi ≤ P gi (38)
θr = 0 (39)

The GA then performs a series of iterative computations in
order to evolve a population of individuals (possible solutions),
using the principle of survival of the fittest. These steps are
the following: 1) Initialize the population; 2) Evaluate each
chromosome; 3) Selection; 4) Crossover; 5) Mutations; 6)
Replacement of the old population by the new; 7) Back to
2) until the termination criteria is met.

1) Evaluation: Operational costs are calculated through the
augmented version of the OPF. Performing risk analysis is
then possible minimizing the CVaR. Notice that if uncertainty
is not considered then the cost evaluations consists in running
the OPF once for the demand profile of case at study, since
there are no scenarios and no possible risk.

2) Selection: Selection is a fitness based method, used with
the purpose of choosing the most suited chromosomes in the
population to form new individuals.

3) Crossover: Two individuals are selected from the pop-
ulation (applying two times the chosen selection operator)
and are then recombined with a probability pc, creating two
new individuals. This is done by generating a random number
r ∈ [0, 1]. If r ≤ Cr, the two individuals are combined through
crossover. The method chosen in this work is the two-point
crossover.

4) Mutation: This operator selects an individual from the
population with probability Mr and randomly changes one
of its alleles. Having the chromosome integer variables, this
consists in randomly choose one of the values possible for that
variable.

5) Replacement and Elitism: Replacement is the process by
which the new individuals, created with the above operators,
are introduced in the population. There are cases when the
fittest individual in the population is replaced by an individual
with lower fitness. Therefore, the elitism reintroduces nc
copies of the best individual into the population.

V. RESULTS

A. Deterministic approach

The network studied in this section is one of the most
studied network configurations and was created specifically for
the TNEP problem. [14] This nwtowrk has been the subject
of various studies namely the ones presented in [14] [15] and
[7]. This network consists on 3 generation nodes with a total

TABLE I
LINE DATA FOR GRAVER’S EXAMPLE

Corridor R (pu) X (pu) Capacity Cost($*103)
1-2 0.10 0.40 100 40
1-3 0.09 0.38 100 38
1-4 0.15 0.60 80 60
1-5 0.05 0.20 100 20
1-6 0.17 0.68 70 68
2-3 0.05 0.20 100 20
2-4 0.10 0.40 100 40
2-5 0.08 0.31 100 31
2-6 0.08 0.30 100 30
3-4 0.15 0.59 82 59
3-5 0.05 0.20 100 20
3-6 0.12 0.48 100 48
4-5 0.16 0.63 75 63
5-6 0.15 0.61 78 61

TABLE II
BUS DATA FOR GRAVER’S EXAMPLE

Bus Di (MW) Pgi (MW) cgi e/MW
1 80 150 10
2 240
3 40 360 20
4 160
5 240
6 0 600 30

capacity of 1100 MW, 5 demand nodes with a total demand
of 760 (MW), and 15 different possible connections most
of them with different line characteristics. Each entry of the
chromosome corresponds to the listing of connection presented
in Table I, and the constraints concerning generation capacity
and the demand profile of the network are presented in Table
II. In order to validate our results we will begin by employing a
deterministic model, namely considering and neglecting losses.

At this stage, and to have comparable results, we considered
that no curtailment was possible and so, the cost of unsupplied
load is very high to penalize solutions unable to supply
all the demand. Notice that when using a meta-heuristic
approach the inclusion of the load curtailment a more natural
formulation of the problem,, since during the solution-space
search the random inherent characteristics of meta-heuristic
methods might find solutions where is impossible to supply all
the demand. Should this occur, considering load curtailment
in the mathematical model works as a penalty to the objective
function rather than a possible operational cost.

Below, Tables III and IV present the results yielded by our
GA when losses were neglected and considered, respectively.
From these results we notice that in both cases the GA were
able to find the best solution proposed thus far by any study.

Table V shows statistical results and the genetic operators
with which the solutions were obtained.

B. Stochastic Cases

In this section, the optimization problem tackled through the
GA is the one described from (25) to (33). For this purpose
30 scenarios were built randomly with a normal distribution
and standard deviations of: 0.1, 0.2 and 0.3 from the mean
value. Probabilities for each scenario were considered to be
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TABLE III
EXPANSION PLAN FOR GRAVER 6-BUS - LOSSES NEGLECTED

Method Corridor Number of Expansion
Lines Cost(103e)

Heuristic [14]
4-6 2
3-5 2 130
2-3 1

Genetic [13] 4-6 3 1103-5 1
Improved Heuristic [7] 4-6 3 1103-5 1

Proposed 4-6 3 110Genetic 3-5 1

TABLE IV
EXPANSION PLAN FOR GRAVER 6-BUS - CONSIDERING LOSSES

Method Corridor Number of Expansion
Lines Cost(103e)

MILP [15]
4-6 2

1403-5 1
2-6 2

Improved Heuristic [7]
4-6 2

1303-5 1
2-6 1
2-3 1

Proposed Genetic
4-6 2

1303-5 1
2-6 1
2-3 1

equal, and Risk Attitude (β) was considered to have values
of: 0; 0.25; 0.5; 0.75 and 1.

In order to consider a cost of curtailed load that will allow
the investor to choose between curtailed load for a subset of
scenarios and further network expansion we employ a method
used by Van Mieghen in [16] where such cost is based on
the concept of Critical Fractile (Cf ). The Critical Fractile
expresses the optimal service probability and depends on unit
cost to unit return [16] or in TNEP, unit cost to unmet unit
penalty. Practically it means that if the value of Cf is set a
priori, differently for each demand node, it will also impose
a different value of cri for each demand node. To transpose
these concepts from the work of Van Mieghen to the TNEP
problem, we propose a curtailment cost based not only on the
Critical Fractile but also on the average line cost and capacity
as follows:

cri =
c/F

1− Cf
(40)

Cfi = 0.5 ∀i ∈ Ωd (41)

where c is the average cost, F the average transmission
capability. Fig. 1 shows the evolution of the cost function value
as the risk aversion and standard deviation vary.

Notice how a standard deviation of 0.3 yields a much
costlier solution, specially for higher degrees of Risk Aversion.
This results show how for medium networks the effect of
uncertainty can be extremely constraining, specially when
many nodes have different mean values of demand. Secondly
we present in Table VI the configurations that yielded the
above costs.

TABLE V
GENETIC PARAMETERS AND STATISTIC RESULTS FOR GRAVER’S

NETWORK

Assumption Pz Mr Cr
Mean Std Dev Min
e*105 e*105 e*105

No Loss 150 0.04 0.9 1.4453 0.1935 1.2668
Loss 100 0.05 0.9 1.5519 0.1756 1.4716

Figure 1. Results for Graver’s Network under Uncertainty

Here we see that the solutions found for smaller values
of standard deviations are in fact very similar to the ones
obtained under the lossless-line assumption. Notice however,
that now we considered possible curtailment and so decision of
considering load which is not supplied is possible contrarily to
before. It is also interesting to notice how the the connections
built with an increasing degree of uncertainty and with and
increasing level of risk aversion are in fact reinforcements
of the configurations achieved before, meaning that for this
particular case there is a set of connections which is extremely
important when expanding the network.

Nevertheless, Fig.1 shows only the objective function value
considering different values of standard deviation and risk
aversion. Here would also be interesting to present how
expansion costs and the risk measure evolve with the give
varying parameters. Figs.2 and 3 show such evolutions.

As one can see, for any degree of uncertainty, we observe
a decreasing in the CVaR value as risk aversion increases. An
expected result as risk becomes more important to minimize
when comparing to the expansion costs that, as also observable
from Fig.2 increase as the aversion towards risk is higher.

Also these evolutions show that for some risk aversion levels
(namely β = 0.75 and β = 1) the values of both expansion
costs and CVaR are constant even though the value of the
objective function in Fig.1 increases. This is explained by the
different weights present in the objective function for different
levels of risk aversion which let us conclude that even with
an increasing aversion towards risk there was no solution that
could further decrease the value of CVaR.

VI. CONCLUSIONS

This paper studies the Transmission Network Expansion
Planning problem considering uncertainty on the demand side.
Uncertainty is included considering scenario analysis. An ex-
plicit risk measure is incorporated in the mathematical model
using the Conditional Value at Risk (CVaR). The problem
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TABLE VI
GA GRAVER’S NETWORK

σ Corridor β
0 0.25 0.5 0.75 1

0.1
4 - 6 3 3 2 2 2
3 - 5 1 1 1 1 1
2 - 6 0 0 2 2 2

0.2
4 - 6 3 2 2 2 2
3 - 5 1 1 2 2 2
2 - 6 0 2 2 2 2

0.3
4 - 6 1 2 2 2 2
3 - 5 1 1 2 2 2
2 - 6 2 2 2 3 3

Figure 2. Expansion Costs for Graver’s Network under Uncertainty

is optimized using genetic algorithms. Our results present
concrete values for investment, ranging from a slightly risk-
averse investor to an extremely risk-averse one. These results
show that the variation in investment is steeper between a
risk-neutral investor and a slightly-averse investor, since in
the former no importance is given to the Conditional Value at
Risk. We noticed that, even if the value of the cost function
increases, certain levels of aversion yield the same expansion
plan, meaning that in fact for this problem only a subset of
risk attitudes of those considered are relevant to the study.
From this perspective, this work also presents information on
which risk aversion levels are enough to study risk attitude
in TNEP, and in general values for β = {0, 0.5, 1} show
satisfactory differences that provide reliable information on
how investment will increase with risk aversion. Another
aspect of employing a risk analysis in TNEP is the cost
of curtailed load. An increasing aversion towards risk was
observed when a higher investment is needed.
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