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Abstract— The evaluation of final workpiece properties at 
process end can be realized by process modeling instead of 
destructive testing methods. In this paper, we give an overview 
about different modeling strategies. They are focused on the 
amount of available domain knowledge. White box models try 
to model the reality by physical principles and black box 
models are mainly data driven. Grey box models are hybrid 
variants. The different strategies are applied to the domain of 
resistance spot welding. The proposed approaches are able to 
improve the quality of resistance spot welding.   

Keywords- Intelligent Systems; Machine Learning 
Manufacturing. 

I.  INTRODUCTION 

Several methods exist to model the dynamics of 
nonlinear complex systems [1]. Conceptually, they can be 
split into two classes. The first class includes prior domain 
knowledge from human experts. For example, numerical 
simulations like finite elements or phase field methods 
describe the behavior of systems with domain knowledge 
from human experts. The second class is characterized by the 
use of phenomenological or general basis function models, 
which try to fit the observed behavior of the systems as good 
as possible. The latter approach includes many Machine 
Learning, Data Mining and statistical methods. 

The second class can be further refined in modeling via 
symbolic [2, 3] (e.g., general formula expressions) and 
subsymbolic (e.g., dedicated base function class, support 
vector machines or neural networks) representations. 
Symbolic learning representations can be interpreted by 
human domain experts and they can help to understand the 
process in a more formal way. Therefore, this class does not 
only aim to model the system behavior. Sometimes the 
human experts are able to identify previously unknown facts 
of the observed process.  

In contrast, subsymbolic representations are black box 
models. In most cases, it is very difficult or impossible to 
interpret the behavior of the learnt representation [3].  

The proposed methods in this paper can be interpreted as 
modeling the dynamic of processes. A generic process model 
is depicted in Fig. 1 with an observer and a controller. This 
representation enables a universal process description by 
means of the observable quantities, the characteristic process 
state and the process parameters that allow manipulating the 
process purposefully. The observer can predict the 
characteristic state and the workpiece properties for quality 
evaluation from static or dynamic observable quantities. The 
observer model depends on the embedded domain 
knowledge (white, grey or black box). Independently from 
this, the observer model that represents the process dynamics 
might be of static or dynamic model type. The controller can 
then determine the optimal process parameters from the 
evolution of the characteristic state by solving a multi-stage 
optimization problem compensating the process noise.    

The purpose of this paper is twofold. It can be used as a 
guideline and introduction for the creation of a model for 
system processes with different constraints on the amount of 
existing prior domain knowledge and/or insufficient 
experimental data. On the other hand, it attempts to give an 
overview of our developments concerning intelligent 
systems. The application domain is resistance spot welding. 
To this end, we decided to summarize the results of some of 
our projects, give some background information and refer to 
some of our already published papers. This article is 
organized as follows. We start in Section II by giving a brief 
overview of different modeling strategies, which are 
predetermined by the amount of existing prior system 
knowledge and the amount of observed experimental system 
data. These approaches include in general white box and 
black box models. Grey box models represent a compromise 
between both ideas. Section III gives a brief overview on 
resistance spot welding. Section IV reviews some basic ideas 
of the used Machine Learning, Data Mining and parameter 
fitting techniques and section V summarizes how we use 
them. We conclude with a discussion of open questions and 
future steps of our project. Most of the results and conducted 
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experiments have been published elsewhere, but this paper 
focuses on an comprehensive overview. 

 
Figure 1.  A generic process model. 

 

II. PROCESS MODELING  

The basis of system identification is always a model 
illustrating an idea of the physical reality. In principle, two 
major modeling approaches can be identified. They are 
different in terms of the used structure and the free 
parameters of the model. The structure determines the 
general behavior and the complexity of the model 
(qualitative model description) and the parameters determine 
the specific behavior of a given structure (quantitative model 
description). Generally, the approaches depend on the 
existing prior knowledge about the modeled system.  

 
 White box models: White box models result from 

complete understanding of the system behavior and 
theoretical analysis. This analysis is performed by 
formulating physical or geometric equations. The predefined 
model structure and the precise match of the internal model 
parameters and known physical parameters (e.g., from 
textbooks) are characteristic for white box models. From this 
point of view, the parameters are interpretable in a symbolic 
way which includes a predefined semantic.  The model 
parameters can be compared and fitted to measurements. 
White box models usually have a high accuracy. However, 
they assume that the system behavior was analyzed in great 
detail, which can often be very time-consuming or even 
impossible. White box models are from this point of view 
parametric models and the parameters are interpretable by 
human experts.  

 
Black box models: Sometimes the complicated and time 

consuming theoretical analysis is not possible. The lack of 
knowledge of the underlying system principles requires 
alternative approaches. Most of them make use of the 
experimental observation data and thus the learning process 
is mainly data driven. This means that the free parameters of 
the model are optimized to reproduce the observations of the 
system as good as possible. The optimized model is a so-

called black box model or grey box model. The difference 
between the two model types is determined by the amount of 
prior knowledge which is integrated into the model. The 
characteristic property of black box models is that there is no 
or very limited prior knowledge about the behavior and 
structure of the observed system. Typically, the free 
parameters of the model have no direct link to the physical 
meaning of the system. In this case, we refer to non-
parametric models (aka subsymbolic knowledge 
representation). It reflects only the input and output of the 
system and the physical parameters are represented 
implicitly by the values of the weighting functions (e.g., the 
basis functions in neural networks). The parameters of a 
black box model are not interpretable by a human expert. 

 
Grey box models: Grey box models are a mixture of 

white box and black box models. They generally involve 
information from physical equations and data as well as 
qualitative information in form of rules. Grey box models 
often judge on the basis of assumptions about the structure of 
the system and the process. In this case, the free parameters 
of the system have a physical meaning of the system and we 
refer to parametric models (aka symbolic representation).  

 
Figure 2.  Process modeling. 

TABLE I. PROCESS MODEL AND PROPOSED METHODS 
Proposed Methods 

white box model Simulations (e.g., Sorpas) 
grey box model Phenomonologic Model, Symbolic Regression
black box model SVR

 
Which type of model is chosen depends on the amount of 

prior knowledge about the system and the intended use of the 
extracted model. From a control theory standpoint [4, 5], 
internal system states are mandatory. This includes white and 
grey box models. The dynamics of the system (e.g., the 
behavior of resistance spot welding proposed in this paper) 
are modeled and the internal states are used to (re-)adjust the 
parameters in order to optimize the parameters of a goal 
function. This goal function can be of completely diverse  
nature, but in most cases it involves reducing costs.  

In some use cases, a mapping from the input of a system 
to its output is sufficient. In these cases, black box models 
can be applied and experimental data can be used for the 
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learning process. In this case, the dynamics of the system are 
not modeled. Consequentially, readjusting parameters during 
operational time is not possible. Even though, the goal 
function can also be optimized since a mapping from the 
starting parameters to the final states is constructed and a 
good starting point from the parameters can be chosen.  

Table I summarizes the methods which we elaborated in 
the course of our projects. Support Vector Regression (see 
Section IV) is a black box model and is able to map the 
starting parameters to the final states in an efficient way. 
Phenomonologic models (which are also expanded by a 
correction term found by Symbolic Regression) are used to 
model the system dynamics in a sense of control theory. That 
means, that the parameters can be readjusted during the 
service time to further improve the quality of the process. 

In the following section, we will introduce the 
application of resistance spot welding following by a brief 
introduction to the used methods (Section IV).  

 

III. RESISTANCE SPOT WELDING  

In resistance spot welding (RSW, see [8, 9] for more 
details), two metal sheets are joined together by means of an 
evolving welding spot that results from local melting of the 
sheet material. The melting is caused by the electrical current 
flow and an associated temperature increase through the 
application of an electrode force and an electrical current. 
The experimental RSW environment with its tools, namely 
the electrodes, the two sheets and the individual resistance 
components that describe the combined dynamic resistance 
is depicted in Fig. 3. The temporal evolution of the dynamic 
resistance is shown in Fig. 4. The diameter of the welding 
spot serves as a visual, nondestructive quality indicator for 
the processed experiments. During RSW, quantities such as 
the electrical current, the voltage, the electrode force and the 
electrode displacement can be measured. The electrical 
resistance can then be calculated from the current and the 
voltage. 

 

 
Figure 3.    Experimental resistance spot welding environment: tools, 

sheets and resistance components. 

 
Figure 4.  Temporal evolution of the dynamic resistance during resistance 

spot welding. 

Analytical resistance model 

In our previous work [6, 7], we have formulated an 
analytical model of the dynamic resistance that is composed 
of the individual resistance components as indicated in Fig. 
1. The combined dynamic resistance )(tRD is composed of 

the bulk resistance )(tRB
, the contact resistance )(tRC

, the 

spot resistance )(tRS and the static resistance )(0 tR : 

)()()()()( 0 tRtRtRtRtR SCBD  .       (1) 

The bulk resistance  
))exp(1()( ttR BCBLB           (2) 

describes the rising resistivity in the bulk material with 
increasing temperature. The contact resistance  

)exp()exp(

)()()(

tt

tRtRtR

CCCCCDCFCCFD

CCCFC





        (3) 

consists of the contact film resistance )(tRCF caused by 

contaminations on the sheet surface and the contact 

constriction resistance )(tRCC . The contact resistance 

decreases with increasing contact area. The spot resistance  

))(exp(1

1
)(

SDSC
SHS t

tR





        (4) 

drops with the evolution of the welding spot. The static 
resistance 

.)(0 consttR O            (5) 

comprises the constant percentages of all previously 
introduced resistance components. The meaningful features 
of the dynamic resistance can then be represented by the 
model parameters 
  SDSHSCCFCCFDCCCCCDBCBLO  ,,,,,,,,,  

which can be determined by fitting the model to 
experimental data. A fitted model instance from [2, 7] is 
depicted in Fig. 5. 
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Figure 5.  Analytical resistance model fitted to data. 

 

 

IV. MODELING APPROACHES 

  This section provides a brief overview of the used 
methods. Due to a lack of space of this paper, we have to 
limit the explained methods. For example, the proposed 
Support Vector Machines should be reread in the literature 
(see [1] for more details) 

A. Nonlinear Curve Fitting + Partial Least Squares 

  A grey box model for predicting the welding spot diameter 
as a quality measure from the meaningful features of the 
dynamic resistance has been introduced in [8, 9]. In a first 
step, the analytical resistance model described in the 
previous section is fitted to experimental data for each 
sample by Nonlinear Curve Fitting (NCF). This results in a 
low-dimensional feature representation for each individual 
experiment. In a second step, a Partial Least Squares 
Regression (PLS) is performed with the features as 
regression input and the welding spot diameter as regression 
output. 
    In NCF, the free model parameters are determined by 
nonlinear optimization. The objective function is formulated 
by means of the deviation between the model and the data, 
e.g., the Sum of Squared Errors (SSE) which is to be 
minimized. Then, the model represents the real process 
given by the experimental data in an optimal manner. 

PLS combines linear regression with dimension 
reduction in regression input and output. The dimension 
reduction is performed similarly as in Principal Component 
Analysis (PCA) which finds orthogonal directions of largest 
variance in the data and projects the data to a lower-
dimensional space of only the selected components. In PLS, 
the single steps of dimension reduction in input and output as 
well as the linear regression are interconnected by an 
iterative procedure, such that the covariance between the 
input and the output is maximized. As a result, PLS does not 
solely provide an efficient regression method to establish a 

model for the prediction of a target quantity. It additionally 
reveals the influences of the input on the target quantity.  
 

B.  Classical Regression Analysis and Symbolic 
Regression  

Regression analysis [10] is one of the basic tools of 
scientific investigation. It enables the identification of 
functional relationships between independent and dependent 
variables and the general task is defined as the estimation of 
a functional relationship between the independent variables x 
= [x1, x2, … , xn] and dependent variables y = [y1, y2, . . . , 
ym], where n is the number of independent variables in each 
observation and m is the number of dependent variables.  

The task is often reduced from the identification of an 
arbitrary functional relationship f to the estimation of the 
parameter values of a predefined (e.g., linear) function.  That 
means that the structure of the function is predefined by a 
human expert and only the free parameters are adjusted.  
From this point of view, Symbolic Regression goes much 
further. 

Like other statistical and machine learning regression 
techniques, Symbolic Regression also tries to fit 
experimental data. But unlike the well-known regression 
techniques in statistics and machine learning, Symbolic 
Regression is used to identify an analytical mathematical 
description and it has more degrees of freedom in building it. 
Therefore, a set of predefined (basic) operators is defined 
(e.g., add, multiply, sin, cos) and the algorithm is mostly free 
in concatenating them. In contrast to the classical regression 
approaches, which optimize only the parameters of a 
predefined structure, here also the structure of the function is 
free and the algorithm both optimizes the parameters and the 
structure of the basis functions. 

Since Symbolic Regression operates on discrete 
representations of mathematical formulas, non-standard 
optimization methods are needed to fit the data. The main 
idea of the algorithm is to focus the search on promising 
areas of the target space while abandoning unpromising 
solutions (see [11, 12] for more details). In order to achieve 
this, the Symbolic Regression algorithm uses the main 
mechanisms of Genetic and Evolutionary Algorithms. In 
particular, these are mutation, crossover and selection [12] 
which are applied to an algebraic mathematical 
representation.  

The representation is encoded in a tree [12] (see Fig. 6).  
Both the parameters and the form of the equation are subject 
to search in the target space of all possible mathematical 
expressions of the tree. The operations are nodes in the tree 
(Fig. 6 represents the formula 6x+2) and can be expressed by 
mathematical operations such as additions (add), 
multiplications (mul), abs, exp and others. The terminal 
values of the tree consist of the function's input variables and 
real numbers. The input variables are replaced by the values 
of the training dataset.  
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Figure 6.  Tree representation of the equation 6x+2. 

In Symbolic Regression, many initially random symbolic 
equations compete to model experimental data in the most 
promising way. Promising are those solutions, which are a 
good compromise between correct prediction quality of the 
predicted data and the length of the computed mathematical 
formula.  

Mutation in a symbolic expression can change the 
mathematical type of formula in different ways. For 
example, a div is changed to an add, the arguments of an 
operation are replaced (e.g., change 2*x to 3*x), an operation 
is deleted (e.g., change 2*x+1 to 2*x), or an operation is 
added (e.g., change 2*x to 2*x+1). 

The fitness objective in Symbolic Regression, like in 
other machine learning and data mining mechanisms, is to 
minimize the regression error on the training set. After an 
equation reaches a desired level of accuracy, the algorithm 
returns the best equation or a set of good solutions (the 
pareto front). In many cases, the solution reflects the 
underlying principles of the observed system. 
 

V. EXPERIMENTS AND RESULTS 

In this section we summarize the basic ideas of the used 
methods. For more details we refer to the literature. 

 
A. Support Vector Regression 
     In [13], we describe and evaluate the use of Support 
Vector Regression to determine a statistical model for a 
welding spot function associated with a resistance spot 
welding process (see section III). Based on the training data 
a Support Vector Regression is used to extract a welding 
spot diameter function (our goal function) of five variables: 
current, welding time, force, sheet thickness of material. 
According to this diameter function, we developed a 
description of our optimized method needed by an intelligent 
welding machine.   

The SVR represents a black box model (subsymbolic 
representation), which incorporates no prior domain 
knowledge. The results were very promising (see [13] for 
more details). A maximum error value of 0.29mm in the 
welding spot diameter in a typical range of 2.5 and 6.5mm 
indicates a good model quality. 

 
B. Nonlinear Curve Fitting + Partial Least Squares 

A model for the welding spot diameter based on the 
meaningful features of the dynamic resistance has been 
created in [7]. Domain knowledge is embedded through an 
analytical resistance model, which is fitted to experimental 
data by NCF. Then, the welding spot diameter is determined 

from the fitted model parameters as the features of the 
dynamic resistance by a PLS model. The prediction quality 
is characterized by a mean relative error value of 8%.  

C. Improving a Phenomonological Model by Symbolic 
Regression 

  In [6, 7] the process dynamics are modeled by a 
parameterized phenomenological base model with fixed 
structure (see Section III). Additionally, Symbolic 
Regression is used to add a flexible correction term [6], 
which reflects process effects not considered in the base 
model. The full model is formed by simultaneous parameter 
fitting and adding a correction term found by Symbolic 
Regression. While the phenomenological model covers the 
major effects that occur in the Resistance Spot Welding 
process, the correction term can explain further hidden 
procedures in the residuals of the former. The 
phenomenological model has been created by use of expert 
knowledge and the formation of a grey box model. The 
symbolic correction term found by Symbolic Regression 
might be interpretable by a human expert again. In the 
paper, it has been shown that the phenomenological model 
yields good results, which are further improved by the 
correction term added by Symbolic Regression.  
      
 

VI. CONCLUSIONS AND FUTURE WORK 

   Different approaches have been proposed in this paper that 
try to improve the quality of resistance spot welding by 
modeling the process dynamics. Throughout the last years 
different approaches have been evaluated. In this paper, we 
propose a scheme to select an adequate model based on the 
prior domain knowledge.  
   The different approaches have been successfully applied 
to the domain of resistance spot welding. Our next step is to 
demonstrate that this approach is general enough to be 
applied to other domains.  
    Future work includes modeling the system dynamics. 
That means, the described methods will utilize the measured 
process inputs and outputs to construct static process model 
components.  Therefore we use system information of time 
step t to predict time step t+1. In the future, we will use time 
series to model the system information as continuous 
process dynamics. Instead of using measured output data of 
the previous time step as input for the current time step, the 
output is represented as a function of the previous time step. 
Thus, the process output can be modeled as a function of the 
previous input and model output: 

 
where  is the previous model output and  the 
past values of the input. Hence, the output of the dynamic 
model is connected with the input in terms of recurrent 
structures. At the current stage of our project, one 
consideration is to use recurrent neural networks. The 
connections of a recurrent neural network form a directed 
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circle, allowing the modeling of dynamic behavior. 
Examples of recurrent networks are the Elman Network [14] 
or the Hopfield Network [15], these or extended versions of 
these architectures are often found in publications to 
identify dynamic systems. Our future research targets the 
creation of a dynamic model, integrating knowledge of 
structural features of the desired function (grey box) and 
minimizing the complexity of the model. Dimension 
reduction will be applied to realize an efficient process 
control (based on an observer, see Fig. 1) to improve the 
quality of the welding process.   
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