
Automated Annotation of Text Using the Classification-based Annotation Workbench

(CLAW)

R. George, H. Nair, K. A. Shujaee

Department of Computer and Information Science

Clark Atlanta University

Atlanta, GA, USA

Email: rgeorge@cau.edu

D. A. Krooks, C. M. Armstrong

Construction Engineering Research Laboratory

Champaign, IL, USA

Abstract—Text annotation is used to mark up text using

highlights, comments, footnotes, tags, and links. Manual

annotation is a human intensive process and is not feasible for a

large corpus of text. Classification is a technique that may be

used to automate the annotation process. This paper develops a

Classification-based Text Annotation Workbench (CLAW), an

annotation assistance tool that incorporates automated

classification to reduce the difficulty of manual annotation.

There are several technical challenges posed by the practical

nature of the text corpus and the annotation methodology. The

text corpus, is large and consists of numerous reports, lessons

learnt and best practices. Complexity is introduced due to the

size of the documents, the variety of formats and the range of

subject matter. The annotation taxonomy is extensive and

unstructured and may be applied to the text body without

constraints. Consequently, the search space for the label(s)

become prohibitively large and it becomes necessary to adopt

strategies that reduce the complexity of the classification

process. We introduce a simplification technique to reduce the

large classification search space. We improve precision by

supplementing these predictive algorithms with similarity based

measures and evaluate CLAW for performance using both

prediction-based metrics and ranking-based metrics. It is shown

that CLAW performs better than a competing algorithm on all

evaluation metrics.

Keywords-Text Annotation, Multi-label Classification, Bayes

Theorem, Annotation Workbench.

I. INTRODUCTION

Text annotation is the practice of marking up text using
highlights, comments, footnotes, tags, and links. This may
include notes written for a reader's private purposes, as well as
shared annotations written for the purposes of collaborative
writing, editing, commentary, social sharing, and learning.
Annotation of these documents is the first step in the
automation of the processing of such documents with
applications such as identification of socio-cultural constructs,
and improved methods of query and retrieval.

Manual annotation is a human intensive process and is

not feasible for a large corpus of text. Classification is a

technique, well-researched in data mining and machine

learning that may be used to automate the annotation process.

Classification separates data into distinct classes

characterized by some distinguishing features and rules relate

class labels to these features. Automated classification has

been used in a variety of domains including textual data such

as e-mails, web pages, news articles; audio; images and

video; medical data; or even annotated genes (Read, 2010).

Each example is associated with an attribute vector, which

represents data from its domain. Labels represent concepts

from the problem domain such as subject categories,

descriptive tags, genres, gene functions, and other forms of

annotation. The training set is readily available in practical

scenarios, usually in the form of human-annotation by a

domain expert. A supervised classifier trains its model on

these examples and continues the labeling task thereafter

automatically. Single-label classification is the task of

associating each example with a single class label. Classes

may also overlap, in which case, the same data may belong to

all of the many classes that overlap. In such instances, it

becomes necessary to collect the details or features of all the

classes that the data belongs to in order to perform a

complete classification that is also accurate. When each

example may be associated with multiple labels

simultaneously, this is known as multi-label classification. In

this paper, the terms class, label and tag are used

interchangeably.

This paper presents the Classification-Based Text

Annotation Workbench (CLAW), an annotation assistance

tool that reduces the difficulty of the annotation process. The

area of application for the tool is a large corpus (~1G)

supplied by the U.S. Army Corps of Engineers with the

objective of annotating the text using a classification

taxonomy provided. The purpose of the annotation is to

introduce common terminology in order to facilitate an

understanding of the dominant themes within the corpus.

The corpus consists of numerous reports, lessons learned, and

best practices drawn from peace keeping and nation building

operations. There are several technical challenges posed by

this application domain. The document set is complex with

respect to size, variety of formats and range of subject matter.

The subject matter in these documents is extensive and

includes reports on social and cultural institutions, physical

infrastructure, education, agriculture, etc. The annotation

taxonomy is large and unstructured with the flexibility of

labels being applied orthogonally. Furthermore the

annotation is required at the phrase level. Consequently, the

search space for the label(s) is large and it becomes necessary

6Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

to adopt strategies that reduce the complexity of the

classification process. The work reported in this paper is the

development of a practical solution to this problem. We

investigate the applicability of the Naïve Bayes classification

technique to the corpus and compare to a more complex text

classification technique, the MLkNN. It is found that the

Naïve Bayes provides sufficient accuracy for automating the

classification process for the target taxonomy, and text

corpus. This evaluation is used to justify the incorporation of

the algorithm into the automation workbench, CLAW.

The paper is organized as follows. Section II reviews

published literature on text processing and multi-label

classification in text. Section III describes the approach to the

problem and the architecture of CLAW. Section IV describes

the results and compares them with a benchmark algorithm.

Section V concludes this paper and points to directions of

future research.

II. RELATED WORK

In document classification a large number of attributes are

used to characterize the document. The attributes of the

examples to be classified are the words in the text phrases,

and the number of different words can be quite large.

McCallum and Nigam [8] clarify the two different first order

probabilistic generative models that are used for text

classification, both of which make the Naïve Bayes

assumption. The first model is a multi-variate Bernoulli

model, which is a Bayesian network with no dependencies

between words and binary features. The second model is the

multinomial model, which specifies that a document is

represented by the set of word occurrences in the document.

The probability of a document is a product of the probability

of each of the words that occur.

Lauser et al. [6] propose an approach to automatically

subject index full-text documents with multiple labels based

on binary Support Vector Machines (SVMs). The authors

incorporate multilingual background knowledge in the form

of thesauri and ontologies in their text document

representation. Godbole et al [2] present methods for

enhancing and adapting discriminative classifiers for multi-

labeled predictions. Their approach exploits the relationship

between classes, by combining text features and the features

indicating relationship between classes. They also propose

enhancements to the margin of SVMs for building better

models in the event of overlapping classes. In [3] the authors

evaluate the preprocessing combination of feature reduction,

feature subset selection, and term weighting is best suited to

yield a document representation that optimizes the SVM

classification of particular datasets. Ikonomakis et al. [4]

describe the text classification process using the vector

representation of documents, feature selection, and provide

definitions of evaluation metrics.
 Tsoumakas and Katakis [13] give a good introduction to

multi-label classification using methods such as algorithm
adaptation and problem transformation. The different
techniques are compared and evaluated using metrics, after

they are applied to classify some benchmarked data sets.
Zhang et al. [17] present a multi-label lazy learning approach
named MLkNN, which is derived from the traditional k-
Nearest Neighbor (kNN) algorithm. Using experiments on
three different multi-label learning problems, i.e., yeast gene
functional analysis, natural scene classification and automatic
web page categorization, the authors show that MLkNN
achieves better performance when compared to some well-
established multi-label learning algorithms.

Younes et al. [15] describe an adaptation of MLkNN that
takes into account dependencies between labels (DMLkNN).
The authors use a Bayesian version of kNN. Experiments on
simulated and benchmarked datasets show the efficiency of
this approach compared to other existing approaches.
Tsoumakas et al. [11] describe a new enhancement on the
multi-label algorithm called label powerset (LP) that
considers each distinct combination of labels that exist in the
training set as a different class value in a single-label
classification task.

Previous work in work benches for text annotation
includes the Koivunen [5] system. This work describes
Annotea, a semantic web-based project. Metadata is generated
in the form of objects such as web annotations, reply threads,
bookmarks, topics etc. Users can easily create RDF metadata
that may be queried, merged and mixed with other metadata.
In Zeni et al. [16], a software tool (Biblio) is described for
automatically generating a list of references and an annotated
bibliography, given a collection of published research articles.
Finlayson [1] describes the Story Workbench, a software tool
that facilitates semantic annotation of text documents. The
tool uses Natural Language Processing tools to make a best
guess as to the annotation, presenting that guess to the human
annotator for approval, correction, or elaboration. This is a
semi-automatic process. Annotation is generalized into a
“tagging” procedure with parts-of-speech tags as well as
general tags for “tooltips” or “infotips” in a GUI.

The problem that we address in this research is unique to
the domain in several respects- the need to annotate at an
atomic level, i.e., the noun phrase and verb phrase level; the
unstructured labeling taxonomy supplied to annotate text; and
finally, the need to find a practical solution to automating a
supplied corpus and taxonomy. The taxonomy gives rise to a
very large labeling search space, which makes accurate
classification of text difficult. The algorithms discussed
previously are developed for a much smaller set of
classifications, and are applicable at a grosser level than that
required here (paragraph or document). The software tools in
general with the exception of Annotea are not geared towards
the annotation process.

III. APPROACH

The first phase of the process is to input previously

classified text phrases to the Stanford Parts Of Speech (POS)

Tagger [9]. The Text Preprocessor component performs pre-

processing on POS Tagged data. Pre-processing includes

steps such as the filtering of records that do not contain either

noun phrases or verb phrases, and retaining only those

features (words) that have appropriate parts-of-speech tags

7Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

Figure 1. Process Flow Diagram for CLAW

for noun phrases and verb phrases. This component produces

as output a delimited ASCII text file for next phase of

lemmatizing. The lemmatizer uses WordNet® [14] database

to extract synonyms or lemmas of input phrases to build an

expanded input set for the next stage of classification. The

Java API for WordNet Searching (JAWS, 2012) interface to

WordNet is utilized in the lemmatizer. The lemmatized

phrases are input into the Naïve Bayes classifier.

Unclassified phrases are passed into a WordNet Lookup

component to extract synonyms and returned to the Naïve

Bayes Classifier for another attempt at classification. The

lexicon is stored in a SQLite database [10] that stores the

data. The process flow diagram for CLAW is shown in

Figure 1.

Naïve Bayes is a standard algorithm for learning to

classify text. Naïve Bayes classifiers are faster than other

algorithms discussed in literature such as SVMs, since they

learn a probabilistic generative model in just one pass of the

training data even though they may sacrifice some

classification accuracy. Bayes' Theorem finds the probability

of an event occurring given the probability of another event

that has already occurred. If B represents the dependent event

and A represents the prior event, Bayes' theorem is stated as

follows.

Prob (B given A) = Prob (A and B)/Prob (A)

i.e., the probability of classification, B, given a phrase A, is

the probability of A classified as B in the training data,

divided by the probability of A occurring in the training data.

The Training data consists of text phrases classified

/annotated by human annotator, which is input into the

CLAW system as discussed previously.

The labels or tags for this domain are verb phrase tags

(task, state, role, and other) and noun phrase tags. Noun

phrase tags are further subdivided into Level 1 (L1), and

Level 2 (L2) tags shown in TABLE 1 and TABLE2

respectively. L2
(i)

denotes the i
th

 most frequent L2 tag.
As previously noted, we have a very large search space of

labels, which could be used to tag noun phrases, since the L1

TABLE 1. LEVEL 1 TAGS

and L2 tags may be orthogonally applied multiple number of
times (depending on the context that we are annotating), with
the only condition that every NP has at least one L1 tag. In
the case of the verb phrases the process is simpler since there
are only four possible tags to be applied. A simplification
strategy is used to reduce the search space in the case of noun
phrases. We calculate the frequency count of the labels to
isolate and replace L1 labels with the most frequent ten
classes and L2 labels in a particular instance with L2

 (i)
 where

i=1..4, in the data set (if present in that string) to create
particular models to be learnt by the Bayesian classifier. This
selection strategy transforms the multi-label learning problem
to a single label learning problem. Thus, based on frequency
counts of labels, different models are learnt by the Naïve
Bayes classifier. The instances that correspond to the top ten
Level 1 Tags alone are also tested separately, and a model
corresponding to L1 tags is learnt.

There is only one learning model for Verb Phrases (VP) test

data since there are only four possible VP tags. Rare classes

with percentage frequency less than 1% in the data set are

matched using simple string matching. In the final step the

individually predicted labels are composed together. This

approach avoids the need to learn a combinatorial number of

classes directly by simplifying the problem, however

restoring the complexity of the labeling by composition in the

final step.

IV. RESULTS AND COMPARISONS

Prediction-based metrics and Ranking-based metrics are

standard measures used to evaluate performance of text

classification. Ranking based metrics (TABLE 3) evaluate

the label ranking quality depending on the ranking or scoring

function. Hamming Loss is used as the basis for Ranking

Function in our classification. Lower Hamming Loss implies

L1 Tags

entity/agents

entity/events

entity/info

entity/institutions

entity/materials

entity/organizations

entity/physical_behaviors

entity/physical_infrastructures

entity/places

entity/services

entity/social_behaviors

entity/social_infrastructures

entity/technical_capabilities

entity/time

POS
Tagger Preprocessing

Lemmatizer

Classifier

Unclassified
Phrases

Classified
Phrases

Lexicon WordNet
Lookup

8Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

TABLE 2. LEVEL 2 TAGS

L2 Tags

administrative

agreement

agriculture

authority

civilian

communication

conditions

conflicting

contractor

criminal

definition

dislocated

economy

education

environment

extremism

food

global

governance

health

Illicit

indigenous

labor

language

liaison

licit

local_governance

military

negotiation

oversight

perspective

pets

political

private

psychological

public

public opinion

purpose

relationships

relief

religion

requirements

return

routine

security

social

transition

transportation

utilities

TABLE 3. DEFINITIONS OF RANKING-BASED

METRICS

Hamming Loss = # of misclassified records in Test

Data/(# of records of Test Data* Size of Label Set)

Subset Accuracy = (No. of Exact Matched records with

True Predicted Classes)/(No. of Test Records)

Average Precision: Average fraction of labels ranked

above a particular label (Best value is 1)

Coverage: Average # of steps needed to move down the

ranked label list in order to cover all the labels assigned to a

test instance. Smaller value of this metric is desirable.

One-Error: Calculates how many times the top-ranked

label i.e., the label with highest ranking score, is not in the

set of labels for the appropriate instance. Smaller value of

this metric is desirable.

Ranking loss: Average fraction of label pairs that are

reversely ordered i.e., number of times irrelevant labels are

ranked higher than relevant labels for an instance. This

does not happen in our case. Smaller value of this metric is

desirable.

higher rank for a label. The most relevant label has highest

rank of 1.

The MULAN [12] package has implemented the MLkNN

(Multi-label lazy learning k-NN) and provides a good

comparison metric for the approach taken in this paper. The

software generates classification metrics automatically when

supplied with train-test data.

TABLE 4. RANKING METRICS FOR NOUN AND VERB

PHRASES.

Classification

Algorithm

Ranking

Metrics

L1 Tags

only for

Noun

Phrases

Verb

Phrase

Tags

only

N

aï
v

e
B

ay
es

Hamming

Loss

0.03 0.05

Subset

Accuracy

0.7 0.8

Average

Precision

0.78 0.5

Coverage 2 1

One Error 0.0023 0.005

Ranking

Loss

0 0

M
U

L
A

N
 M

L
k

N
N

Hamming

Loss
0.1 0.25

Subset

Accuracy
< 0.01 < 0.01

Avg.

Precision
0.53 0.5454

Coverage 2.1336 1.255

One Error 0.6889 0.76

Ranking

Loss
0.2371 0.4183

For the experiments we used a training set of approximately

1000 classified phrases, with 200 phrases as the test set. In

the first part of the experiments, we consider L1 Noun Phrase

(NP) tags alone and in a separate experiment Verb Phrases

alone. The results of this experiment are shown in TABLE 4.
From TABLE 4 it may be seen that, while the MLkNN

has marginally better Average Precision for Verb Phase test
data, all other evaluation metrics are considerably better for
the Naïve Bayes classifier used in this work. TABLE 5
establishes this for a series of L1L2(i) models tested. It should
be noted that these conclusions are specific to the annotation
taxonomy and the domain of application used here.

A. Integrating the Learning Component into CLAW

The learning component described in the previous section
is integrated into the software tool, to develop the
Classification-based Text Annotation Workbench (CLAW).
CLAW uses the learning component, and the corpus database
to provide hints for annotation to the user. SQLite is chosen
as the database for the work bench because of its light weight
footprint. The workbench is developed using the .NET
framework, with the learning components constructed as Java
services.

9Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

TABLE 5. RANKING METRICS FOR L1L2
(I)

 MODELS

 Ranking

Metrics

L1L2
(1)

 L1L2
(2)

 L1L2
(3)

 L1L2
(4)

N
aï

v
e

B
ay

es

Hamming

Loss

0.026 0.027 0.0236 0.05

Subset

Accuracy

0.59 0.65 0.72 0.55

Average

Precision

0.91 0.92 0.75 0.89

Coverage 4 3 3 2

One Error 0.0043 0.0055 0.0024 0

Ranking

Loss

0 0 0 0

M
U

L
A

N
 M

L
k

N
N

Hamming

Loss

0.0625 0.0769 0.1 0.1111

Subset

Accuracy

< 0.01 <0.01 <0.01 <0.01

Average

Precision

0.4448 0.4863 0.4883 0.5208

Coverage 4.2735 3.1209 2.4633 2.2038

One Error 0.6795 0.7005 0.7267 0.6943

Ranking

Loss

0.2849 0.2601 0.2737 0.2755

V. CONCLUSIONS AND FUTURE WORK

This work approached the problem of text annotation in two

phases. In the first phase we annotated the text manually

based on a taxonomy provided, and in the second phase we

used the annotations to develop algorithms to perform

automated annotation. There were several challenges to

developing the automated annotation component- the text

corpus is wide ranging encompassing a broad range of topics;

the taxonomy is unstructured and large; and finally the

annotations may be applied combinatorially. We introduced

a multi-modal approach that reduces the combinatorial nature

of the problem, making the automation feasible. The

resulting model was validated against a benchmark algorithm

for text classification. Finally, we integrated the approach

into a novel system, Classification-based Text Annotation

Workbench (CLAW) that facilitates both manual annotation

and incorporates supervised annotation (based on automated

classification) to reduce the complexity of annotating text.

CLAW provides a flexible environment with the ability to

change the taxonomy depending on the domain of

application. The CLAW tool also has the capability to

ensure a consistent basis to annotation, since it generates

annotations based on the deterministic learning component.

Processing times within the tool are fairly reasonable, but this

could change as the repository gets larger.

While the CLAW tool provides a good infrastructure for

annotation of text, there are several possible enhancements to

the tool that can improve the quality and repeatability of the

annotation process.

 Automated generation of learning models. The

quality of the automated annotations provided by

CLAW depends on the learning model used (refer

the CLAW user guide). While the learning model is

generated manually, the corpus database could

provide a mechanism for the automated creation of

models. Multiple models may be created and used

within CLAW. The use of multiple models would

improve the recall of the classification process. A

further possibility might be the application of active

learning into this component.

 Qualitative evaluation of model outputs. In the

current version of CLAW every model output is

treated identically. A quantitative approach that

evaluates each model independently, and ranks the

outputs could provide the user with greater

confidence in the results. This would also help the

user select annotation suggestions based on

quantitative measures.

 Traceability of CLAW suggestions. In the current

version of CLAW, the annotation suggestions are

provided to the user, however there is no mechanism

that informs the user as to how the suggestion was

being made. Providing traceability of the model

outputs would improve confidence in the system.

ACKNOWLEDGMENT

This research is funded in part by the Construction

Engineering Research Laboratory, Engineering Research and

Development Center (ERDC-CERL) under Contract No:

W913T-12-C-007, ARL under Grant No: W911NF-12-2-

0067 and ARO under Grant Number W911NF-11-1-0168.

Any opinions, findings, conclusions or

recommendations expressed here are those of the author(s)

and do not necessarily reflect the views of the sponsor.

REFERENCES

[1] M.A. Finlayson. “The Story Workbench: An Extensible
Semi-Automatic Text Annotation Tool,” AAAI Technical
Report WS-11-18. Copyright 2011.

[2] S. Godbole and S.Sarawagi. “Discriminative Methods for
Multi-labeled Classification,” PAKDD 2004, LNAI 3056, pp.
22–30.

[3] T. Gonçalves and P. Quaresma. “Evaluating preprocessing
techniques in a text classification problem,” XXV Congresso da
Sociedade Brasileira de Computação, July 2005, pp. 841-850

[4] M. Ikonomakis, S. Kotsiantis, and V. Tampakas. “Text
Classification: A Recent Overview,”. ICCOMP’05.
Proceedings of the 9th WSEAS International Conference on
Computers. Article no: 125. In ESWC 2005, UserSWeb
workshop

[5] M.R. Koivunen. “Annotea and semantic web supported
collaboration,” Downloaded from http://ceur-ws.org/Vol-
137/01_koivunen_final.pdf, November 2012.

[6] B., Lauser, A. Hotho, T. Koch, and I.T. Solvberg, (Eds.).
“Automatic Multi-label Subject Indexing in a Multilingual
Environment,” ECDL 2003, LNCS 2769, pp. 140–151.

[7] Machine Learning Group at University of Waikato, 2012.
http://www.cs.waikato.ac.nz/ml/weka/

10Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

http://www.citeulike.org/group/4310/author/Quaresma:P
http://ceur-ws.org/Vol-137/01_koivunen_final.pdf
http://ceur-ws.org/Vol-137/01_koivunen_final.pdf
http://www.cs.waikato.ac.nz/ml/weka/

[8] A. McCallum, and K. A. Nigam. “Comparison of Event
Models for Naive Bayes Text Classification,” In AAAI-98
Workshop on 'Learning for Text Categorization', 1998, 41-48,
WS-98-05

[9] POSTagger, http://nlp.stanford.edu/software/tagger.shtml

[10] SQLite. http://www.sqlite.org/

[11] G. Tsoumakas, I. Katakis, and I. Vlahavas. “Random k-
Labelsets for Multilabel classification,” IEEE Transactions on
Knowledge and Data Engineering, July 2011, Vol 23, No. 7.

[12] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I.
Vlahavas. “MULAN: A Java library for Multi-Label
Learning,” Journal of Machine Learning Research, 12, 2411-
2414.

[13] G. Tsoumakas and I. Katakis. “Multi-Label Classification:
An Overview,” International Journal of Data Warehousing
and Mining, 3(3), July-Sept 2007, p.1-13.

[14] WordNet. http://wordnet.princeton.edu/

[15] Z. Younes, F. Abdallah, T. Denoeux, and H. Snoussi. “A
Dependent Multilabel Classification Method Derived from the
k-Nearest Neighbor Rule,” In Proceedings of EURASIP J. Adv.
Sig. Proc. 2011.

[16] N. Zeni, N. Kiyavitskaya, L. Mich, J. Mylopoulos, and J. R.
Cordy. “A Lightweight Approach to Semantic Annotation of
Research Papers,” In Proceedings of NLDB. 2007, 61-72.

[17] M.L. Zhang and Z. H. Zhou. “Ml-knn: A lazy learning
approach to multi-label learning,” Pattern Recognition, 40,
2038-2048.

11Copyright (c) IARIA, 2013. ISBN: 978-1-61208-269-1

INTELLI 2013 : The Second International Conference on Intelligent Systems and Applications

http://nlp.stanford.edu/software/tagger.shtml
http://nlp.stanford.edu/software/tagger.shtml
http://nlp.stanford.edu/software/tagger.shtml
http://nlp.stanford.edu/software/tagger.shtml
http://nlp.stanford.edu/software/tagger.shtml
http://www.sqlite.org/
http://wordnet.princeton.edu/

