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Abstract—Text annotation is used to mark up text using 

highlights, comments, footnotes, tags, and links. Manual 

annotation is a human intensive process and is not feasible for a 

large corpus of text. Classification is a technique that may be 

used to automate the annotation process. This paper develops a 

Classification-based Text Annotation Workbench (CLAW), an 

annotation assistance tool that incorporates automated 

classification to reduce the difficulty of manual annotation. 

There are several technical challenges posed by the practical 

nature of the text corpus and the annotation methodology. The 

text corpus, is large and consists of numerous reports, lessons 

learnt and best practices. Complexity is introduced due to the 

size of the documents, the variety of formats and the range of 

subject matter. The annotation taxonomy is extensive and 

unstructured and may be applied to the text body without 

constraints. Consequently, the search space for the label(s) 

become prohibitively large and it becomes necessary to adopt 

strategies that reduce the complexity of the classification 

process. We introduce a simplification technique to reduce the 

large classification search space. We improve precision by 

supplementing these predictive algorithms with similarity based 

measures and evaluate CLAW for performance using both 

prediction-based metrics and ranking-based metrics. It is shown 

that CLAW performs better than a competing algorithm on all 

evaluation metrics.   

Keywords-Text Annotation, Multi-label Classification, Bayes 

Theorem, Annotation Workbench.  

I.  INTRODUCTION 

Text annotation is the practice of marking up text using 
highlights, comments, footnotes, tags, and links. This may 
include notes written for a reader's private purposes, as well as 
shared annotations written for the purposes of collaborative 
writing, editing, commentary, social sharing, and learning. 
Annotation of these documents is the first step in the 
automation of the processing of such documents with 
applications such as identification of socio-cultural constructs, 
and improved methods of query and retrieval. 

Manual annotation is a human intensive process and is 

not feasible for a large corpus of text. Classification is a 

technique, well-researched in data mining and machine 

learning that may be used to automate the annotation process.  

Classification separates data into distinct classes 

characterized by some distinguishing features and rules relate 

class labels to these features. Automated classification has 

been used in a variety of domains including textual data such 

as e-mails, web pages, news articles; audio; images and 

video; medical data; or even annotated genes (Read, 2010). 

Each example is associated with an attribute vector, which 

represents data from its domain. Labels represent concepts 

from the problem domain such as subject categories, 

descriptive tags, genres, gene functions, and other forms of 

annotation. The training set is readily available in practical 

scenarios, usually in the form of human-annotation by a 

domain expert.  A supervised classifier trains its model on 

these examples and continues the labeling task thereafter 

automatically. Single-label classification is the task of 

associating each example with a single class label. Classes 

may also overlap, in which case, the same data may belong to 

all of the many classes that overlap. In such instances, it 

becomes necessary to collect the details or features of all the 

classes that the data belongs to in order to perform a 

complete classification that is also accurate.  When each 

example may be associated with multiple labels 

simultaneously, this is known as multi-label classification. In 

this paper, the terms class, label and tag are used 

interchangeably.  

This paper presents the Classification-Based Text 

Annotation Workbench (CLAW), an annotation assistance 

tool that reduces the difficulty of the annotation process. The 

area of application for the tool is a large corpus (~1G) 

supplied by the U.S. Army Corps of Engineers with the 

objective of annotating the text using a classification 

taxonomy provided.  The purpose of the annotation is to 

introduce common terminology in order to facilitate an 

understanding of the dominant themes within the corpus.  

The corpus consists of numerous reports, lessons learned, and 

best practices drawn from peace keeping and nation building 

operations. There are several technical challenges posed by 

this application domain.  The document set is complex with 

respect to size, variety of formats and range of subject matter.  

The subject matter in these documents is extensive and 

includes reports on social and cultural institutions, physical 

infrastructure, education, agriculture, etc. The annotation 

taxonomy is large and unstructured with the flexibility of 

labels being applied orthogonally.  Furthermore the 

annotation is required at the phrase level.  Consequently, the 

search space for the label(s) is large and it becomes necessary 
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to adopt strategies that reduce the complexity of the 

classification process.  The work reported in this paper is the 

development of a practical solution to this problem.  We 

investigate the applicability of the Naïve Bayes classification 

technique to the corpus and compare to a more complex text 

classification technique, the MLkNN.  It is found that the 

Naïve Bayes provides sufficient accuracy for automating the 

classification process for the target taxonomy, and text 

corpus. This evaluation is used to justify the incorporation of 

the algorithm into the automation workbench, CLAW.   

The paper is organized as follows. Section II reviews 

published literature on text processing and multi-label 

classification in text. Section III describes the approach to the 

problem and the architecture of CLAW. Section IV describes 

the results and compares them with a benchmark algorithm. 

Section V concludes this paper and points to directions of 

future research. 

II. RELATED WORK 

In document classification a large number of attributes are 

used to characterize the document.  The attributes of the 

examples to be classified are the words in the text phrases, 

and the number of different words can be quite large. 

McCallum and Nigam [8] clarify the two different first order 

probabilistic generative models that are used for text 

classification, both of which make the Naïve Bayes 

assumption. The first model is a multi-variate Bernoulli 

model, which is a Bayesian network with no dependencies 

between words and binary features.  The second model is the 

multinomial model, which specifies that a document is 

represented by the set of word occurrences in the document. 

The probability of a document is a product of the probability 

of each of the words that occur.   

Lauser et al. [6] propose an approach to automatically 

subject index full-text documents with multiple labels based 

on binary Support Vector Machines (SVMs). The authors 

incorporate multilingual background knowledge in the form 

of thesauri and ontologies in their text document 

representation. Godbole et al [2] present methods for 

enhancing and adapting discriminative classifiers for multi-

labeled predictions. Their approach exploits the relationship 

between classes, by combining text features and the features 

indicating relationship between classes. They also propose 

enhancements to the margin of SVMs for building better 

models in the event of overlapping classes.  In [3] the authors 

evaluate the preprocessing combination of feature reduction, 

feature subset selection, and term weighting is best suited to 

yield a document representation that optimizes the SVM 

classification of particular datasets. Ikonomakis et al. [4] 

describe the text classification process using the vector 

representation of documents, feature selection, and provide 

definitions of evaluation metrics.   
 Tsoumakas and Katakis [13] give a good introduction to 

multi-label classification using methods such as algorithm 
adaptation and problem transformation. The different 
techniques are compared and evaluated using metrics, after 

they are applied to classify some benchmarked data sets.  
Zhang et al. [17] present a multi-label lazy learning approach 
named MLkNN, which is derived from the traditional k-
Nearest Neighbor (kNN) algorithm. Using experiments on 
three different multi-label learning problems, i.e., yeast gene 
functional analysis, natural scene classification and automatic 
web page categorization, the authors show that MLkNN 
achieves better performance when compared to some well-
established multi-label learning algorithms.  

Younes et al. [15] describe an adaptation of MLkNN that 
takes into account dependencies between labels (DMLkNN). 
The authors use a Bayesian version of kNN. Experiments on 
simulated and benchmarked datasets show the efficiency of 
this approach compared to other existing approaches.   
Tsoumakas et al. [11] describe a new enhancement on   the 
multi-label algorithm called label powerset (LP) that 
considers each distinct combination of labels that exist in the 
training set as a different class value in a single-label 
classification task. 

Previous work in work benches for text annotation 
includes the Koivunen [5] system.  This work describes 
Annotea, a semantic web-based project. Metadata is generated 
in the form of objects such as web annotations, reply threads, 
bookmarks, topics etc.  Users can easily create RDF metadata 
that may be queried, merged and mixed with other metadata.  
In Zeni et al. [16], a software tool (Biblio) is described for 
automatically generating a list of references and an annotated 
bibliography, given a collection of published research articles.  
Finlayson [1] describes the Story Workbench, a software tool 
that facilitates semantic annotation of text documents. The 
tool uses Natural Language Processing tools to make a best 
guess as to the annotation, presenting that guess to the human 
annotator for approval, correction, or elaboration. This is a 
semi-automatic process.  Annotation is generalized into a 
“tagging” procedure with parts-of-speech tags as well as 
general tags for “tooltips” or “infotips” in a GUI. 

The problem that we address in this research is unique to 
the domain in several respects- the need to annotate at an 
atomic level, i.e., the noun phrase and verb phrase level; the 
unstructured labeling taxonomy supplied to annotate text; and 
finally, the need to find a practical solution to automating a 
supplied corpus and taxonomy.  The taxonomy gives rise to a 
very large labeling search space, which makes accurate 
classification of text difficult. The algorithms discussed 
previously are developed for a much smaller set of 
classifications, and are applicable at a grosser level than that 
required here (paragraph or document).  The software tools in 
general with the exception of Annotea are not geared towards 
the annotation process.    

III. APPROACH 

The first phase of the process is to input previously 

classified text phrases to the Stanford Parts Of Speech (POS) 

Tagger [9]. The Text Preprocessor component performs pre-

processing on POS Tagged data.  Pre-processing includes 

steps such as the filtering of records that do not contain either 

noun phrases or verb phrases, and retaining only those 

features (words) that have appropriate parts-of-speech tags  
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Figure 1. Process Flow Diagram for CLAW 

 

for noun phrases and verb phrases. This component produces 

as output a delimited ASCII text file for next phase of 

lemmatizing. The lemmatizer uses WordNet® [14] database 

to extract synonyms or lemmas of input phrases to build an 

expanded input set for the next stage of classification. The 

Java API for WordNet Searching (JAWS, 2012) interface to 

WordNet is utilized in the lemmatizer. The lemmatized 

phrases are input into the Naïve Bayes classifier.  

Unclassified phrases are passed into a WordNet Lookup 

component to extract synonyms and returned to the Naïve 

Bayes Classifier for another attempt at classification.  The 

lexicon is stored in a SQLite database [10] that stores the 

data.  The process flow diagram for CLAW  is shown in 

Figure 1. 

Naïve Bayes is a standard algorithm for learning to 

classify text. Naïve Bayes classifiers are faster than other 

algorithms discussed in literature such as SVMs, since they 

learn a probabilistic generative model in just one pass of the 

training data even though they may sacrifice some 

classification accuracy. Bayes' Theorem finds the probability 

of an event occurring given the probability of another event 

that has already occurred. If B represents the dependent event 

and A represents the prior event, Bayes' theorem is stated as 

follows. 

Prob (B given A) = Prob (A and B)/Prob (A)    

i.e., the probability of classification, B, given a phrase A, is 

the probability of A classified as B in the training data, 

divided by the probability of A occurring in the training data. 

The Training data consists of text phrases classified 

/annotated by human annotator, which is input into the 

CLAW system as discussed previously.  

The labels or tags for this domain are verb phrase tags 

(task, state, role, and other) and noun phrase tags. Noun 

phrase tags are further subdivided into Level 1 (L1), and 

Level 2 (L2) tags shown in TABLE 1 and TABLE2 

respectively. L2
(i) 

denotes the i
th

 most frequent L2 tag. 
As previously noted, we have a very large search space of 

labels, which could be used to tag noun phrases,  since the L1  

TABLE 1. LEVEL 1 TAGS 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
and L2 tags may be orthogonally applied multiple number of 
times (depending on the context that we are annotating), with 
the only condition that every NP has at least one L1 tag.  In 
the case of the verb phrases the process is simpler since there 
are only four possible tags to be applied.  A simplification 
strategy is used to reduce the search space in the case of noun 
phrases. We calculate the frequency count of the labels to 
isolate and replace L1 labels with the most frequent ten 
classes and L2 labels in a particular instance with L2

 (i)
 where 

i=1..4, in the data set (if present in that string) to create 
particular models to be learnt by the Bayesian classifier.  This 
selection strategy transforms the multi-label learning problem 
to a single label learning problem.  Thus, based on frequency 
counts of labels, different models are learnt by the Naïve 
Bayes classifier. The instances that correspond to the top ten 
Level 1 Tags alone are also tested separately, and a model 
corresponding to L1 tags is learnt.   
 

There is only one learning model for Verb Phrases (VP) test 

data since there are only four possible VP tags. Rare classes 

with percentage frequency less than 1% in the data set are 

matched using simple string matching. In the final step the 

individually predicted labels are composed together.  This 

approach avoids the need to learn a combinatorial number of 

classes directly by simplifying the problem, however 

restoring the complexity of the labeling by composition in the 

final step. 

IV. RESULTS AND COMPARISONS 

Prediction-based metrics and Ranking-based metrics are 

standard measures used to evaluate performance of text 

classification. Ranking based metrics (TABLE 3) evaluate 

the label ranking quality depending on the ranking or scoring 

function. Hamming Loss is used as the basis for Ranking 

Function in our classification. Lower Hamming Loss implies 
 
 
 

L1 Tags  

entity/agents 

entity/events 

entity/info 

entity/institutions 

entity/materials 

entity/organizations 

entity/physical_behaviors 

entity/physical_infrastructures 

entity/places 

entity/services 

entity/social_behaviors 

entity/social_infrastructures 

entity/technical_capabilities 

entity/time 

POS 
Tagger Preprocessing 

Lemmatizer 

Classifier 

Unclassified  
Phrases 

Classified  
Phrases 

Lexicon WordNet 
Lookup 
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TABLE 2. LEVEL 2 TAGS 
 

L2 Tags 

administrative 

agreement 

agriculture 

authority 

civilian 

communication 

conditions 

conflicting 

contractor 

criminal 

definition 

dislocated 

economy 

education 

environment 

extremism 

food 

 

global 

governance 

health 

Illicit 

indigenous 

labor 

language 

liaison 

licit 

local_governance 

military 

negotiation 

oversight 

perspective 

pets 

political 

 

private  

psychological 

public 

public opinion 

purpose 

relationships 

relief 

religion 

requirements 

return 

routine 

security 

social 

transition 

transportation 

utilities 

 

 

 
TABLE 3. DEFINITIONS OF RANKING-BASED 

METRICS 

 
Hamming Loss = # of misclassified records in Test 

Data/(# of records of Test Data* Size of Label Set) 

Subset Accuracy = (No. of Exact Matched records with 

True Predicted Classes)/(No. of Test Records)  

Average Precision: Average fraction of labels ranked 

above a particular label (Best value is 1) 

Coverage: Average # of steps needed to move down the 

ranked label list in order to cover all the labels assigned to a 

test instance. Smaller value of this metric is desirable.  

One-Error: Calculates how many times the top-ranked 

label i.e., the label with highest ranking score, is not in the 

set of labels for the appropriate instance. Smaller value of 

this metric is desirable. 

Ranking loss: Average fraction of label pairs that are 

reversely ordered i.e., number of times irrelevant labels are 

ranked higher than relevant labels for an instance.  This 

does not happen in our case. Smaller value of this metric is 

desirable. 

 

higher rank for a label. The most relevant label has highest 

rank of 1.  

The MULAN [12] package has implemented the MLkNN 

(Multi-label lazy learning k-NN) and provides a good 

comparison metric for the approach taken in this paper.  The 

software generates classification metrics automatically when 

supplied with train-test data. 

TABLE 4.  RANKING METRICS FOR NOUN AND VERB 

PHRASES. 

 
Classification 

Algorithm 

Ranking 

Metrics 

L1 Tags 

only for 

Noun 

Phrases 

Verb 

Phrase 

Tags 

only 

  
N

aï
v

e 
B

ay
es

 

Hamming 

Loss 

0.03 0.05 

Subset 

Accuracy 

0.7 0.8 

Average 

Precision 

0.78 0.5 

Coverage 2 1 

One Error 0.0023 0.005 

Ranking 

Loss 

0 0 

   

M
U

L
A

N
 M

L
k

N
N

 

Hamming 

Loss 
0.1 0.25 

Subset 

Accuracy 
< 0.01 < 0.01 

Avg. 

Precision 
0.53 0.5454 

Coverage 2.1336 1.255 

One Error 0.6889 0.76 

Ranking 

Loss 
0.2371 0.4183 

 
 

For the experiments we used a training set of approximately 

1000 classified phrases, with 200 phrases as the test set.  In 

the first part of the experiments, we consider L1 Noun Phrase 

(NP) tags alone and in a separate experiment Verb Phrases 

alone.  The results of this experiment are shown in TABLE 4.  
From TABLE 4 it may be seen that, while the MLkNN 

has marginally better Average Precision for Verb Phase test 
data, all other evaluation metrics are considerably better for 
the Naïve Bayes classifier used in this work.  TABLE 5 
establishes this for a series of L1L2(i) models tested.  It should 
be noted that these conclusions are specific to the annotation 
taxonomy and the domain of application used here. 

A. Integrating the Learning Component into CLAW 

The learning component described in the previous section 
is integrated into the software tool, to develop the 
Classification-based Text Annotation Workbench (CLAW).  
CLAW uses the learning component, and the corpus database 
to provide hints for annotation to the user.  SQLite is chosen 
as the database for the work bench because of its light weight 
footprint.  The workbench is developed using the .NET 
framework, with the learning components constructed as Java 
services.   
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TABLE 5.  RANKING METRICS FOR L1L2
(I)

 MODELS 

 

 Ranking 

Metrics 

L1L2
(1)

 L1L2
(2)

 L1L2
(3)

 L1L2
(4)

 

N
aï

v
e 

B
ay

es
 

Hamming 

Loss 

0.026 0.027 0.0236 0.05 

Subset 

Accuracy 

0.59 0.65 0.72 0.55 

Average 

Precision 

0.91 0.92 0.75 0.89 

Coverage 4 3 3 2 

One Error 0.0043 0.0055 0.0024 0 

Ranking 

Loss 

0 0 0 0 

M
U

L
A

N
 M

L
k

N
N

 

Hamming 

Loss 

0.0625 0.0769 0.1 0.1111 

Subset 

Accuracy 

< 0.01 <0.01 <0.01 <0.01 

Average 

Precision 

0.4448 0.4863 0.4883 0.5208 

Coverage 4.2735 3.1209 2.4633 2.2038 

One Error 0.6795 0.7005 0.7267 0.6943 

Ranking 

Loss 

0.2849 0.2601 0.2737 0.2755 

 

V. CONCLUSIONS AND FUTURE WORK 

This work approached the problem of text annotation in two 

phases.  In the first phase we annotated the text manually 

based on a taxonomy provided, and in the second phase we 

used the annotations to develop algorithms to perform 

automated annotation.  There were several challenges to 

developing the automated annotation component- the text 

corpus is wide ranging encompassing a broad range of topics; 

the taxonomy is unstructured and large; and finally the 

annotations may be applied combinatorially.  We introduced 

a multi-modal approach that reduces the combinatorial nature 

of the problem, making the automation feasible.  The 

resulting model was validated against a benchmark algorithm 

for text classification.  Finally, we integrated the approach 

into a novel system, Classification-based Text Annotation 

Workbench (CLAW) that facilitates both manual annotation 

and incorporates supervised annotation (based on automated 

classification) to reduce the complexity of annotating text.  

CLAW provides a flexible environment with the ability to 

change the taxonomy depending on the domain of 

application.   The CLAW tool also has the capability to 

ensure a consistent basis to annotation, since it generates 

annotations based on the deterministic learning component.   

Processing times within the tool are fairly reasonable, but this 

could change as the repository gets larger.   

While the CLAW tool provides a good infrastructure for 

annotation of text, there are several possible enhancements to 

the tool that can improve the quality and repeatability of the 

annotation process. 

 Automated generation of learning models.  The 

quality of the automated annotations provided by 

CLAW depends on the learning model used (refer 

the CLAW user guide).  While the learning model is 

generated manually, the corpus database could 

provide a mechanism for the automated creation of 

models.  Multiple models may be created and used 

within CLAW.  The use of multiple models would 

improve the recall of the classification process.  A 

further possibility might be the application of active 

learning into this component.  

 Qualitative evaluation of model outputs.  In the 

current version of CLAW every model output is 

treated identically.  A quantitative approach that 

evaluates each model independently, and ranks the 

outputs could provide the user with greater 

confidence in the results.  This would also help the 

user select annotation suggestions based on 

quantitative measures. 

 Traceability of CLAW suggestions.  In the current 

version of CLAW, the annotation suggestions are 

provided to the user, however there is no mechanism 

that informs the user as to how the suggestion was 

being made.  Providing traceability of the model 

outputs would improve confidence in the system. 
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