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Abstract—Suppose that we are given two statistical model
structures given in graphs. We are interested in testing whether
they are from one source model or data. If the models share a
source, we say that the models are compatible. In the paper, we
present methods of testing compatibility of two model structures
provided that the two structures share at least two nodes. The
model structure represents causal or associative relationships
between random variables (or nodes in graphs). Two testing
methods will be proposed. One is by comparing structures of
the intersection part of the two models, and the other is by using
what we call union graphs. A union graph is obtained by merging
the given structures with some additions and deletions of edges
under a specified condition. We then check if the given structures
are possible from the union graph. The methods are illustrated
through examples. We aim to develop a method of structure
learning by using as many pieces of structure information as
possible. In this line of work, the pieces of information given
in graphs need be checked for compatibility among themselves.
This is the reason why this small piece of work is so crucial to
the success of our future work.

Keywords-combined model structure; Markovian subgraph;
structural discrepancy; union graphcombined model structure;
Markovian subgraph; structural discrepancy; union graph.

I. INTRODUCTION

Independence graphs have been extensively used in multi-
variate data analysis to understand the Markov properties un-
derlying joint distributions. In an independence graph, random
variables are represented as nodes, where edges are absent
between two nodes if the corresponding random variables are
conditionally independent. This study focuses on undirected
independence graphs, characterized by undirected edges and
no predefined node ordering. For comprehensive overviews of
independence graphs, see [1].

In scenarios involving two distinct data sources, where
only part of a whole multivariate system can be observed
from each source, it is necessary to combine models inferred
separately from each source to construct a unified model for
the entire system. We investigate the problem of combin-
ing two probabilistic graphical models, represented by their
respective graph structures, into a single, larger graphical
model. While substantial research has focused on combining
Bayesian networks [2]–[4], comparatively less attention has
been given to the combination of undirected graphical models.
Notable exceptions include works addressing the combination
of conditional log-linear model structures [5], studies on
Markovian subgraphs under undirected decomposable graph-
ical models [6], and strategies for combining decomposable

and non-decomposable undirected graphical model structures
[7]. Further, Massa and Lauritzen [8] explored the properties
of combined distribution families, applying their findings to
Gaussian graphical models.

The computational complexity associated with searching
for graphical model structures increases significantly with the
number of variables. Thus„ it is beneficial to check the fea-
sibility of a joint model prior to undertaking computationally
intensive procedures for combining marginal model structures.
Dawid and Studeny [9] introduced the concept of compatibility
for merging objects while preserving as much conditional
independence as possible. Kim [7] defined graphical compati-
bility, for sets of graphical model structures using Markovian
subgraphs.

This work proposes a novel methodology for testing the
structure compatibility of two undirected graphical model
structures, where the compatibility is defined in Definition 2.

The paper is organized in 4 sections. In Section 2, we
introduce some notation and terminologies along with a few
lemmas as preliminary to the main results. The relationship
between probability models and graphs is briefly described.
Section 3 is of main results proposed for testing structural
incompatibility. In Section 4, we conclude the paper with
remarks for summary and plans for future works.

II. PRELIMINARIES

The set of nodes in a graph G is denoted by V (G),
while the set of edges is denoted by E(G). For a graph
G = (V,E) and two nodes i, j ∈ V , a path be-
tween i and j is a sequence of edges in E that con-
nects i and j. For example, a path can be represented as
{(i, v1), (v1, v2), . . . , (vm−1, j)} ⊂ E. For subsets of nodes
A1, A2 ⊂ V , a path {(i, v1), (v1, v2), . . . , (vm−1, j)} is an
A2 \A1-path between i and j if v1, v2, . . . , vm−1 ∈ A2 \A1.

For a graph G = (V,E) and a subset of nodes A ⊂ V ,
the induced subgraph of G on A is defined as GA = (A,E ∩
(A × A)). Another type of subgraph, called the Markovian
subgraph, is defined as follows.

Definition 1 (Markovian subgraph [6]). For a graph G =
(V,E) and a subset of nodes A ⊂ V , the Markovian subgraph
of G upon A is defined as G_A = (A,E_A) such that

(i, j) ∈ E_A if and only if (i, j) ∈ E ∩ (A×A) or

there exists a V \A-path between i and j.
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If a graph G′ is a Markovian subgraph of a graph G, we
write as

G′ ⊂M G or G ⊃M G′.

Before moving further, we need more notations. For a given
graph G′ = (V ′, E′) and a set of nodes W ⊃ V ′, we define
two sets of graphs as follows:

IW (G′) = {G |W ⊃ V (G) ⊃ V (G′) such that, for {i, j} ⊆
V (G′), (i, j) /∈ E(G′) implies that (i, j) /∈ E(G)

and that there is no V (G) \ V (G′)-path between
i and j in G}.

DW (G′) = {G |W ⊃ V (G) ⊃ V (G′) such that, for {i, j} ⊆
V (G′), (i, j) ∈ E(G′) implies that (i, j) ∈ E(G)

or that there is at least one V (G) \ V (G′)-path
between i and j in G}.

The superset W is required only to set an upper bound on
the node set so that the sets IW (G′) and DW (G′) are well-
defined. The following lemma is immediate from Definition 1.

Lemma 1. For graphs G and G′ with W ⊃ V (G) ⊃ V (G′),
G ⊃M G′ if and only if G ∈ IW (G′) ∩DW (G′).

We can now show that the Markovian subgraph relation is
transitive as in

Lemma 2. If G ⊃M G′ ⊃M G′′, then G ⊃M G′′.

Proof of Lemma 2. Assume that G ⊃M G′ ⊃M G′′. Let
W be a set such that W ⊃ V (G). Then we have from
the assumption and Lemma 1 that G ∈ IW (G′) ∩ DW (G′)
and that G′ ∈ IW (G′′) ∩ DW (G′′). It suffices to show that
G ∈ IW (G′′) ∩DW (G′′).

Since G′ ∈ IW (G′′), for nodes i and j in V (G′′), (i, j) ̸∈
E(G′′) implies that (i, j) ̸∈ E(G′) and that there is no V (G′)\
V (G′′)-path between i and j in G′. Since G ∈ IW (G′), we
can further derive that (i, j) ̸∈ E(G′′) implies that (i, j) ̸∈
E(G) and that

there does not exist any V (G′) \ V (G′′)-path
between i and j in G′ nor any V (G) \ V (G′)-path
between i and j in G.

(1)

Statement (1) implies that there does not exist any V (G) \
V (G′′)-path between i and j in G: if the latter path exists,
at least one of the two paths in statement (1) must exist by
the definition of Markovian subgraph. Thus, we have G ∈
IW (G′′).

From the condition of the lemma, we also have G ∈
DW (G′) and G′ ∈ DW (G′′). It follows that (i, j) ∈ E(G′′)
implies one of the following: either (i, j) ∈ E(G), there
exists a V (G′) \ V (G′′)-path between i and j in G′, or
there exists a V (G) \ V (G′)-path between i and j in G.
Since V (G) ⊃ V (G′) ⊃ V (G′′), we can regard each of
V (G′)\V (G′′)-path between i and j in G′ and V (G)\V (G′)-
path between i and j in G as a V (G) \ V (G′′)-path between
i and j in G. , we have G ∈ DW (G′′).

Therefore, it follows that G ∈ IW (G′′) ∩DW (G′′), which
completes the proof.

Since Markovian subgraphs are determined uniquely, we
have

Lemma 3. For a graph G = (V,E) and two subsets of nodes
A and B such that A ⊂ B ⊂ V , the following relationship
holds:

G_A = (G_B)_A.

We will briefly look into the relationship between proba-
bility models and graphs. For a given probability distribution
P with its independence graph G, the relationship between a
marginal probability distribution and a Markovian subgraph
can be described as follows. A probability distribution P
is said to be Markov with respect to G if P satisfies all
the conditional independences (i.e., Markov properties) rep-
resented by G. The set of all probability distributions that are
Markov with respect to G is denoted by M(G). If the joint
distribution P satisfies the Markov properties associated with
a graph G, then for any subset of nodes A ⊂ V , the marginal
distribution PA must satisfy the Markov properties expressed
by the Markovian subgraph G_A [7]. This relationship can be
formally stated as follows.

Corollary 1 ([7]). Let G = (V,E) be an undirected graph,
and suppose the distribution P of a random vector XV satis-
fies P ∈ M(G). For a subset A ⊂ V , let XV = (XA, XV \A),
and let PA denote the marginal distribution of the random
vector XA. Then, the following holds:

PA ∈ M(G_A).

For two probability distributions P1 ∈ M(G1) and P2 ∈
M(G2), the P1 and P2 are said to be (strongly) compatible
if there exists a joint probability distribution P ∈ M(G)
for some undirected graph G, such that P1 and P2 are the
marginal distributions of P [9]. Using Corollary 1, the concept
of compatibility for probability distributions can be extended
to the compatibility of graph structures as follows.

Definition 2 (Structure Compatibility). Two undirected graphs
G1 and G2 are said to be compatible if there exists a graph
G such that G1 and G2 are Markovian subgraphs of G.

Further terminologies related to combined models are intro-
duced below.

Definition 3 (Combined Model Structure (CMS) [7]). A graph
G = (V,E) is referred to as a combined model structure
(CMS) of two graphs G1 = (V1, E1) and G2 = (V2, E2) if
V = V1 ∪V2 and G1 and G2 are Markovian subgraphs of G.
A CMS is called maximal if adding any additional edge results
in a graph that is no longer a CMS. The set of all maximal
CMSs of G1 and G2 is denoted by G1 ⊕G2.

It is obvious that the concepts of structure compatibility and
existence of a CMS are equivalent.
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III. MAIN RESULTS

In this section, we devise rules for testing incompatibility
between graphs by applying graph theory and Markov proper-
ties. To avoid trivial cases, we assume that two graphs share
at least two nodes. Consider two graphs, G1 = (V1, E1) and
G2 = (V2, E2), for which C = V1 ∩ V2 and |C| ≥ 2.

A. Checking Discrepancy in intersection part

The first of our methods of compatibility test is by compar-
ing (G1)C and (G2)C . It is intuitive that, if the two Markovian
subgraphs G1 and G2 on C are not the same, G1 and G2 are
not from the same model structure. This observation is stated
formally as follows.

Theorem 1. For graphs G1 and G2 with C = V1 ∩ V2, if
(G1)_C ̸= (G2)_C , then G1

⊕
G2 = ∅.

Proof of Theorem 1. Suppose there exists a graph G = (V,E)
such that G1 and G2 are Markovian subgraphs of G. Then, by
Lemma 3, we have (G1)_C = G_C = (G2)_C . This contradicts
the condition of the theorem, implying that G1 and G2 cannot
have a Markovian supergraph such as G. From this follows
the desired result that G1

⊕
G2 = ∅.

An example of the two graphs that satisfy the condition of
this theorem is given in Figure 1. We can easily check that the
Markovian subgraphs G1 and G2 of G in the figure satisfy the
equality (G1)_C = (G2)_C for C = {3, 4, 5, 6, 7}. However,
the other two graphs G′

1 and G′
2, which were obtained by

removing the edges (4, 5) from G1 and (6, 8) from G2, are
not compatible according to Theorem 1.
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Figure 1. Two graphs, G′
1 and G′

2, satisfying the condition of Theorem 1.
For a graph G, its Markovian subgraphs G1 and G2 are obtained upon the
node sets A = {1, 2, · · · , 7} and B = {3, 4, · · · , 8} respectively. Edge
(4, 5) is removed from G1 into G′

1 and edge (6, 8) is removed from G2 into
G′

2. The removed edges are dashed in G′
1 and G′

2. For the set C = A ∩B,
(G′

1)_C ̸= (G′
2)_C .
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Figure 2. An example where a Markovian subgraph of union(G1, G2) does
contain none of G1 and G2 as a subgraph. G′

1 and G′
2 are carried over from

Figure 1 with dashed edges erased. G′u
_A and G′u

_B are Markovian subgraphs
of G′u upon A and B respectively. Note that G′??1 ̸⊆ G′u

_A.

B. Using Union Graphs

A union graph, Gu = union(G1, G2), of two graphs G1

and G2 is defined as Gu = (V u, Eu) where V u = V1 ∪ V2

and (i, j) ∈ Eu if and only if either (i, j) ∈ E1 ∩ E2 or
i ∈ V1 \ V2 and j ∈ V2 \ V1. That is, a union graph is formed
by adding edges between nodes in V1 \V2 and those in V2 \V1

[7].
The following lemma provides a theoretical basis for testing

incompatibility using union graphs.

Lemma 4. For a graph G = (V,E), let A and B be subsets
of V such that A ∪B = V . Then

G ⊆ union(G_A, G_B).

Proof of Lemma 4. GA ⊆ G_A and GB ⊆ G_B . Thus, it
follows that G ⊆ union(GA, GB) ⊆ union(G_A, G_B).

Theorem 2. Let Gu = union(G1, G2) and Vi = V (Gi) for
i = 1, 2. If there exists i such that Gi ̸⊆ (Gu)_Vi

, then
G1

⊕
G2 = ∅.

Proof of Theorem 2. Suppose that G1

⊕
G2 ̸= ∅ and let H

be a graph in G1

⊕
G2. Then, by Lemma 4, H ⊆ Gu =

union(G1, G2). Since Gi ⊆ H_Vi
for i = 1, 2, we have Gi ⊆

(Gu)_Vi
for i = 1, 2, which contradicts the condition of the

theorem.
Therefore, under the condition of the theorem, it must hold

that G1

⊕
G2 = ∅.

An example of this theorem is given in Figure 2 where
G′

1 and G′
2 are carried over from Figure 1 with dashed edges

erased. After constructing the union graph G′u of G′
1 and G′

2,
we checked if G′

i ⊆ G′u
_Vi

holds and found that G′
1 ̸⊆ G′u

_A
and G′

2 ⊆ G′u
_B .

For any two graphs G1 and G2 with V (Gi) = Vi, i =
1, 2, and C = V1 ∩ V2, the discrepancy, (G1)_C ̸= (G2)_C ,
does not necessarily imply existence of i ∈ {1, 2} such that
Gi ̸⊆ union(G1, G2)_Vi

. For G1 and G2 in Figure 3 with
C = {1, 2, 3}, we have (G1)_C ̸= (G2)_C but

Gi ⊆ union(G1, G2)_Vi for i = 1, 2. (2)
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(b) G2

Figure 3. An incompatible pair of graphs. The incompatibility of this pair is
confirmed by Theorem 1 but not by Theorem 2.
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Figure 4. Two graphs G1 and G2, the Markovian subgraph G1_{2,3} on the
common nodes 2 and 3, and the union graph Gu.

However, (G1)_C = (G2)_C has much to do with (2) as shown
below.

Theorem 3. For two graphs Gi, i = 1, 2, let Vi = V (Gi) and
C = V1 ∩ V2. If (G1)_C = (G2)_C , then (2) holds true.

Proof of Theorem 3. Let E∗ be the set of the edges whose
nodes are in C only and each of which appears in only one
of G1 or G2. We will denote by G+ the graph whose node
and edge sets are given respectively by V + = V1 ∪ V2 and
E+ = E(G1)∪E(G2) \E∗. Then, under the condition of the
theorem, we have

G+
_Vi

= Gi, for i = 1, 2. (3)

Note that G+
_Vi

is obtained by adding to the induced subgraph
G+

Vi
of G+ all the edges in E((Gi)C) \E(G+

C). This is why
we have the above equation.

By definition, G+ ⊆ union(G1, G2), since union(G1, G2)
is obtained by adding to G+ all the edges between the nodes
in V1 \ C and those in V2 \ C. From this follows the desired
result (2).

We can see an example of this theorem in Figure 4. In the
figure, V1 = {1, 2, 3}, V2 = {2, 3, 4, 5}, and C = {2, 3}.
We have (G1)_C = (G2)_C and Gi ⊆ Gu

_Vi
, i = 1, 2. Note

however in the figure that G1 and G2 are not compatible. This
simple example indicates that the conditions of Theorems 1
and 2 are sufficient for incompatibility of a pair of graphs but
not necessary.

IV. CONCLUSION AND FUTURE WORK

In this work, we presented two methods for incompatibility
test. One of them is by checking structural discrepancy in the
intersection part of two model structures and the other is by
using union graphs. If any of the given graphs is not contained
in the corresponding Markovian subgraph of the union graph,
we may conclude that the graphs are not compatible.

The methods are devised based on graph and statistical
theories. If the graphs are incompatible, it means that they
are not from a unified graph. If we regard the graphs as

model structures, the incompatibility implies that the models
are not from a source of data. Experiments show that these
testing methods are very useful in large scale structure learning
since we can save our time in structure learning by avoiding
incompatible model structures at the early stage of structure
learning.

This work is yet an early stage of large scale statistical
(structure) learning from big data. We will search for more
methods for incompatibility test, then we will develop meth-
ods for using pieces of structure information obtained from
different sets of data towards the large scale learning.

Kim and Kim[4] used pieces of structural information for
structure learning and improved preceding learning methods.
We aim to develop a method of structure learning by using as
many pieces of structure information as possible. In this line
of work, the pieces of information given in graphs need be
checked for compatibility among themselves. In this way we
could keep the quality of the structure information at a high
level.

ACKNOWLEDGEMENTS

This work was supported by National Research Foundation
of Korea (NRF) grants funded by the Korea government
(MSIT) (No. RS-2024-00358572, No. RS-2024-00336424).

REFERENCES

[1] S. L. Lauritzen, Graphical Models. Oxford, UK: Clarendon
Press, 1996.

[2] D. Danks, C. Glymour, and R. Tillman, “Integrating locally
learned causal structures with overlapping variables,” in Ad-
vances in Neural Information Processing Systems, D. Koller,
D. Schuurmans, Y. Bengio, and L. Bottou, Eds., vol. 21, Curran
Associates, Inc., 2008.

[3] S. Triantafillou and I. Tsamardinos, “Constraint-based causal
discovery from multiple interventions over overlapping variable
sets,” Journal of Machine Learning Research, vol. 16, no. 66,
pp. 2147–2205, 2015.

[4] G. Kim and S. Kim, “Marginal information for structure learn-
ing,” Statistics and Computing, vol. 430, no. 30, pp. 331–349,
2020. DOI: 10.1007/s11222-019-09877-x.

[5] S. E. Fienberg and S.-H. Kim, “Combining conditional log-
linear structures,” Journal of the American Statistical Associ-
ation, vol. 94, no. 445, pp. 229–239, 1999. DOI: 10 . 1080 /
01621459.1999.10473838.

[6] S.-H. Kim, “Properties of Markovian subgraphs of a decompos-
able graph,” in MICAI 2006: Advances in Artificial Intelligence,
A. Gelbukh and C. A. Reyes-Garcia, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 15–26. DOI: 10 .1007/
11925231\_2.

[7] S.-H. Kim, “Learning model structures based on marginal
model structures of undirected graphs,” KAIST, BK21 Research
Report 09-04, Mar. 2009.

[8] M. S. Massa and S. L. Lauritzen, “Combining statistical mod-
els,” in Algebraic methods in statistics and probability II,
ser. Contemporary Mathematics, M. A. G. Viana and H. P.
Wynn, Eds., Providence, RI: American Mathematical Society,
2010, pp. 239–259.

[9] A. P. Dawid and M. Studený, “Conditional products: An alter-
native approach to conditional independence,” in Proceedings
of the Seventh International Workshop on Artificial Intelligence
and Statistics, D. Heckerman and J. Whittaker, Eds., ser. Pro-
ceedings of Machine Learning Research, vol. R2, PMLR, 1999,
pp. 27–35.

4Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-302-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

INNOV 2025 : The Fourteenth International Conference on Communications, Computation, Networks and Technologies

https://doi.org/10.1007/s11222-019-09877-x
https://doi.org/10.1080/01621459.1999.10473838
https://doi.org/10.1080/01621459.1999.10473838
https://doi.org/10.1007/11925231\_2
https://doi.org/10.1007/11925231\_2

	Introduction
	Preliminaries
	Main Results
	Checking Discrepancy in intersection part
	Using Union Graphs

	Conclusion and future work

