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Abstract—The global data center and networking infrastruc-
ture is projected to become the largest energy consumer by 2025,
with high energy consumption contributing significantly to the
climate due to greenhouse gas emissions. The trend of increased
digitization accelerated this further, in particularly by Virtual
Private Network and Video Conferencing network traffic, leading
to higher CO2 emissions. In this paper, we address this challenge
by analyzing and reducing the energy consumption of a secure
remote working system. We propose a custom clock boosting
mechanism using Dynamic Voltage and Frequency Scaling. Our
two implementations, utilizing Extended Berkeley Packet Filter
and eXpress Data Path, passively listen for new Transmission
Control Protocol connections and adjust Central Processing Unit
frequency when new employees connect. During idle periods, the
frequency is minimized. Through this approach, we achieve up to
28% reduction in energy consumption during high load scenarios,
while maintaining virtually no impact on consumption during
idle phases. Additionally, the Quality of Service is improved,
validating the effectiveness of our strategy.
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I. INTRODUCTION

Due to an increase in remote working and learning since
2019 [1], [2], Virtual Private Network (VPN) connections
have been widely adopted, with VPN traffic experiencing
a >200% increase during 2020 lockdowns [2]. This high-
lights the importance of secure data transfer for businesses
and educational institutions. Shinoda et al. have developed
an Access Control List (ACL) management mechanism for
existing VPN software, which enhances the security of these
VPN environments [3], [4]. The system achieves this by
restricting access to critical files or servers for inexperienced
users, thereby reducing the potential for hacking incidents.

This increase in digitalization poses both a challenge and
an opportunity. On the one hand, the new demand of more
internet users must be met with larger and more data centers.
This also applies to company networks which were expanded
during the pandemic [5]. However, it is no news that large data
centers require high amounts of energy to operate [6]. Not only
is the energy consumption a huge factor in the operating bill,

but it also has a potentially high impact on the climate [7].
Liu et al. have estimated that data centers will be the largest
global energy consumer in 2025 [8].

On the other hand, digitalization can lead to a decrease in
greenhouse gas emissions [9]. In this paper, we deal with
this challenge by analyzing the power consumption of our
VPN system with dynamic ACL and attempting to minimize
its operational energy consumption. In doing so, we strive
to reduce energy costs and the environmental impact. To
achieve this, we implement an on-demand Dynamic Voltage
and Frequency Scaling (DVFS) controlling scheme for our
VPN system and measure the potential energy savings and
the impact on Quality of Service (QOS).

In Section II, related work is discussed and the optimized
system introduced. Section III designs the clock boosting
system and introduces two implementation ideas. The Section
IV discusses the two implementation ideas in more detail. In
Section V, the system is evaluated, followed by a conclusion
and further work in Section VI.

II. RELATED WORK

Because energy consumption is one of the primary cost
factors in data centers, there exists a considerable amount of
research focused on reducing it.

Krzywda et al. conducted experiments with DVFS schemes
for data centers demonstrating its potential to reduce maximal
energy consumption by up to 14% [10]. However, their ap-
proach involved setting a fixed frequency for a single exper-
iment, which did not allow for dynamic updates at runtime
based on application feedback. Additionally, the percent of
energy savings they achieved came at the expense of an
average performance reduction, which was at least twice as
high.

Kasture et al. developed and implemented Rubik, a sta-
tistical performance model that utilizes DVFS to reduce
the energy consumption in data centers hosting web search
functionality [11]. They adapted the frequency to the lowest
possible level while maintaining threshold latency. However,
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their implementation is not available online to reproduce and
evaluate against. Rebuilding this approach is out of scope for
this paper. To keep the power consumption low, our idea
can operate by keeping a counter of active Transmission
Control Protocol (TCP) connections, making the expensive
calculations of the paper needless.

The summary paper by Zhu et al. emphasizes the poten-
tial of DVFS schemes in conjunction with advancements in
AI-driven prediction algorithms [12]. At present, the main
disadvantages lie in the costs and computation difficulty of
the prediction algorithm. In our work, we aim for a simple
feedback solution with minimal calculation cost to reduce the
energy consumption impact on the system.

A. Secure Remote Work System Overview

In the following, we provide a brief introduction to the
secure remote work system that aim to optimize [3]. Figure
1 offers an overview of the key components for our paper,
found in the system. This setup involves simulating a com-
pany network constructed by a Software Defined Networking
(SDN). When an employee connects to the company network
via VPN, the system applies a fine grained ACL to the
SDN controller. The ACL’s parameters depend on the user’s
reliability, enabling the blocking of access to high-risk data
for unreliable users. The primary objective is to enhance the
system’s security by additional layers of security.
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Figure 1. The mock up company network of Shinoda et al. We focus on
the machine marked in orange, hosting the SDN-Controller because the CPU
bound ACL computations allow for power savings.

To achieve this, a miniature network with VPN server,
so-called VPN clients, active directories containing company
mock data, and other resources is built. While not all parts
of the network are relevant for our analysis, we have omitted
them here for the sake of simplicity. If a user is not considered
reliable enough, their access to files or servers will be blocked
through the ACL permissions.

The main objective of this paper, is to reduce the overall sys-
tem energy consumption by implementing a dedicated DVFS
mechanism. The method also tries to minimize any adverse

effects on performance. Given that the calculation of the ACL
requires some time and involves CPU-heavy computations,
our focus was mainly directed towards exploring potential
power savings in the SDN-Controller.

III. DESIGN OF ON-DEMAND CLOCK BOOSTING FOR
SECURE REMOTE WORK SYSTEM

Our SDN-Controller only operates at the beginning and
end of a VPN connection. One significant challenge for our
use-case lies in the uncertainty of when a new client will
connect. Acknowledging that we cannot know the future,
we opted for a reactive approach. Developing an extensive
network prediction algorithm or model was beyond the scope
of this work. Especially, as subsequent results revealed that the
system achieved satisfactory latency with on-demand boosting.
Nevertheless, we expect achieving better result by responding
swiftly to any networking event. In Linux terms, our aim was
to find a method positioned as low in the network stack as
possible. Linux kernel version 3.15 and later features Extended
Berkeley Packet Filter (eBPF) programs, which perfectly align
with our idea. These programs can be attached at a low level
in the network stack and have low overhead, making them an
ideal fit for our requirements.

A. Extended Berkeley Packet Filter (eBPF)

Extended Berkeley Packet Filters enable the execution of
special sandboxed programs within the kernel space, all with-
out requiring any kernel modifications or modules [13]. These
eBPF programs are coded in a C-like syntax and are compiled
into what is known as eBPF bytecode. Upon loading, this code
undergoes thorough verification and checks for potential errors
such as out-of-bounds memory accesses or potential infinite
runtime scenarios. The presence of these checks ensures that
eBPF programs cannot crash or cause deadlocks, making the
execution inherently safe [13]. Furthermore, the eBPF loader
provides the flexibility to switch the specific hook to which an
eBPF program is attached. For instance, one such hook could
be the Linux networking stack, while other attachment points
include kernel tracepoints or system calls.

B. eXpress Data Path (XDP)

Due of the flexibility and advantages of eBPF, the eXpress
Data Path (XDP) hook point was developed. It enables the
attachment of eBPF programs at the driver or hardware level,
bypassing most of the network stack. As a result, this approach
offers improved bandwidth and higher packet rates compared
to the default kernel [14]. Nonetheless, it is important to note
that not all devices and drivers support the XDP hook point.
To address this limitation, an emulation mode was introduced
after the Linux sockets module, allowing eBPF programs to
be attached at an XDP hook without offering the advantage
in speed.

For easy communication between the program running in
the kernel space and user space, eBPF maps are available [13].
These data structures are allocated in shared memory regions,
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facilitating read and write operations from both locations. Uti-
lizing these maps, both programs can effectively communicate
with each other, or the XDP program can maintain and store
state information.

It is worth mentioning that we deliberately chose not to use
the Data Plane Development Kit (DPDK). While DPDK’s
busy polling design might lead to even faster reaction times
than XDP, it would come at the cost of significantly increased
energy consumption. At least one CPU core would constantly
operate at 100% utilization [15], rendering any potential
energy savings irrelevant.

C. On-Demand Clock Boosting Design

The basic idea behind the clock boosting service is simple:
we aim to provide the best available QOS while consuming as
little energy as possible. To achieve this, we focus on utilizing
the lowest feasible CPU frequency. In our test environment,
the SDN switch is the only entity that connects to the SDN
controller. No other connections are made to the machine.
Consequently, all incoming TCP connections to the SDN
controller originate from the SDN switch and are followed
by the ACL calculation. Due to this fact, we can employ
a straightforward check for new TCP connections directed
to our controller. Upon detecting a new connection, we can
boost the CPU frequency, thereby increasing the processing
speed of the ACL calculation. Once the connection is reset,
indicating that the processing is complete, we can then reduce
the frequency back to the energy-saving level. Given that the
system servers exclusively as an SDN-Controller, we have the
condition to aggressively switch the CPU frequency back to
power-saving mode without any performance implications. In
the following, we propose two ideas to realize this design. One
is based on the BPF Compiler Collection (BCC) [16] library
while the other idea uses XDP.

D. Idea 1: BCC and cpupower

In our first approach, we have devised a system that attaches
itself to the TCP/User Datagram Protocol (UDP) hook in the
network stack, as illustrated at label 2 (Trigger on packet)
in Figure 2. The process involves a new packet arriving on
the network interface (label 1 in Figure 2), passing through
the Linux network stack, and reaching the TCP/UDP module
(label 2). Each time a packet passes through this module,
it triggers the tcpaccept program which passively listens
here. The tcpaccept program then invokes a shell script
located in user space at label 3 in Figure 2. The shell
script, temporarily increases the system’s frequency for a
short duration of 0.7 seconds to accelerate the calculations.
We found this duration to be sufficiently long enough to
maintain an equal QOS level. After this duration elapses, the
performance governor is reverted to powersaving mode and
the CPU frequency set to the minimal achievable frequency.

E. Idea 2: XDP, eBPF Maps and C-based Frequency Switch

The second approach utilizes XDP and an architecture
overview is presented in Figure 3. Instead of employing

TCP/UDP

Sockets

Driver

tcpaccept
BCC tool

Hardware

Kernel
Network Stack

switch_frequency.sh
shell script

1

2

3

Packet Flow

Userspace Application

Packet arrives

Trigger
on packet

Figure 2. The eBPF BCC-based solution involves the tcpaccept program
passively listening for incoming connections. When a connection is detected,
it triggers a shell script to increase the frequency. After a set duration, the
frequency is lowered again.

tcpaccept at the TCP/UDP module, we attach an eBPF
program at the XDP hook, as shown in Figure 3 at label 1.

Sockets

Driver
tcpaccept

XDP basedHardware

Kernel
Network Stack

switch_frequency
C++ map listener

Property Value
TCP_count 1

ApplicationUserspace

1 Packet arrives

Packet flow

2 Update
counter

3 Read
counter

Figure 3. The XDP design involves an eBPF program that passively listens
for new TCP connections and communicates with the user space frequency
switch through shared memory maps. This communication also enables the
system to detect disconnects.

Every time a packet arrives, the eBPF program is triggered
and updates a counter variable in a shared memory map
(labeled 2 in Figure 3). At the user space level, marked
with label 3, we read the counter value and increase the
frequency when at least one client is connected. Conversely,
if all clients are disconnected, the frequency is decreased to
the powersaving level.

IV. IMPLEMENTATION

In the following section, we will discuss the implementation
details of the two solutions in greater detail and highlight
advantages and disadvantages of each.

For our first idea we built upon Brendan Gregg’s tcp-
accept program [16]. It was originally designed to print
statistics each time a new TCP connection is made. Since
the executed user space program can be easily modified, we
decided to base our implementation on this tool. For each new
connection, we execute a shell script that utilizes cpupower
frequency-set to switch to the highest available fre-
quency and change the power governor to the performance
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1: if packet is TCP then
2: if packet.f lags is SYN then
3: map[TCP count]← map[TCP count] + 1
4: else if packet.f lags is FIN then
5: map[TCP count]← map[TCP count]− 1
6: end if
7: end if

Figure 4. The XDP TCP packet listener program

1: prv count← 0
2: while true do
3: count← map[TCP count]
4: if count ≥ 1 and prv count = 0 then
5: boost frequency()
6: prv count← count
7: end if
8: if count = 0 and prv count ≥ 1 then
9: reset frequency()

10: prv count← count
11: end if
12: end while

Figure 5. The XDP program user space map listener

mode [17]. After a 0.7-second interval, the frequency is
reverted to the lowest possible value and the governor is reset
to powersave mode. To allow for changes to the frequency,
this script must be run as root. In total, the implementation
cost of this approach is less than 40 lines of code.

In contrast, the second solution utilizes XDP to parse
incoming Ethernet packets and identify those carrying the TCP
protocol. If a TCP packet is found, it is further checked for the
SYN or FIN flags. When a SYN flag is detected, the number
of active TCP connection is increased, while a FIN flag results
in a decrease of active connections as shown in Figure 4.
We maintain a counter in the shared memory map between
XDP and user space which the XDP program updates (lines
3 and 5 in Figure 4). This counter informs the user space
program about the current active connections and enables it to
make decisions about the frequency to use. If there is one or
more TCP connection, we switch to the performance governor
and the highest frequency as shown by the if at line 4 in
Figure 5. However, if there are none, we reset the governor to
powersave mode and switch back to the lowest frequency (line
8 onward in Figure 5). Both of these actions are accomplished
by writing the frequency and governor directly into the sysfs.
This solution requires root privileges to load the XDP program
and roughly 600 lines of new implementation in total. The user
space listener can be loaded without root privileges required.

A. Disadvantages of Proposed Systems

One disadvantage of the first system is that in only reacts to
TCP connections and does not monitor disconnects. Addition-
ally, the solution introduces an extra of indirection through the
shell script instead of directly writing to the MSR registers.

This indirection adds time from the connection detection to the
actual frequency increase. On top, the user space handling of
the BCC tool is written in python which is an interpreted
language with a higher overhead than C. It requires more
resources than a C program and has a slower reaction time.

The major drawback of the XDP-based system, in our case,
lies in the lack of XDP driver support from our Ethernet card.
As a result, we have to rely on the emulation mode after the
Socket module in the Linux network stack. Unfortunately, this
leads to a reduction in reaction time instead of the desired
improvement.

B. Advantages of Proposed Systems

Both systems share the advantage of low impact during
idling since the programs are only triggered when an event
occurs and they do not execute otherwise. This idle-aware
design reduces the energy consumption making it an efficient
solution.

Additionally, the XDP solution provides the advantage that
it listens to disconnect events. This capability enables us to
determine the duration for which we need to increase the CPU
frequency. When multiple connections are active, we increase
the frequency further to help handling all clients. Given
that connections are only established when SDN-Controller
decisions need to be made, the higher frequency will accelerate
the processing enabling us to maintain a better QOS.

V. EVALUATION

This section is split into the evaluation setup and the testing
results.

A. Evaluation Setup

The SDN-Controller system runs on a HP ENVY x360
laptop with AMD Ryzen 3700U CPU with 4 cores, SMT
enabled, TDP of 15W and 16GB RAM. We tested both with
Turbo Core enabled and disabled to see the impact on the
power consumption and performance.

The driver (acpi-cpufreq) allows for 3 frequencies
with 1.4GHz, 1.7GHz and 2.4GHz. Furthermore, the per-
formance, powersave and ondemand governors are
available [18]. We are using RockyLinux running kernel
version 6.3.9-1. The ryu-manager version is 4.34. The Ethernet
card is a Buffalo LUA4-U3-AGTE-NBK USB3.1 Gigabit
Ethernet Card with driver version ax88179 178a. The VPN-
Server deploying the VPN functionality is a NEC IX2310
running firmware version 10.6.63. Energy Consumption is
measured via the Running Average Power Limit (RAPL)
interface using the turbostat tool. Different research has
shown that this interface is accurate enough for comparison
of benchmark runs on the same system [19]. We are using
9 clients that simulate employees wanting to connect to the
company internal network via VPN. All clients are using
Windows 10.

The benchmark consists of all clients running a powershell
script that uses rasclient to connect and disconnect to the
company network as fast as possible. The time measurement
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Figure 6. The VPN connection test total energy consumption. Both ideas can
reduce the consumption by more than 23% compared to the default case with
ondemand governor and Turbo Core enabled (named Boost in the Figure).

is done via the powershell internal Measure-Command.
With the VPN connection and disconnection time, we try to
measure a relevant QOS metric because users will notice a
delayed VPN connection time as soon as they start work-
ing. Furthermore, this test should show the impact on the
performance due to modified CPU frequency handling. File
transfers, however, are not impacted by the VPN-controller
and are therefore not tested.

Currently, the Ethernet network card of our SDN-Controller
does not support XDP driver offload. Therefore, the slower
SKB attachment mode was used during development and
evaluation. We would expect better results for the native XDP
mode because of a faster reaction time.

B. Evaluation Results

The accumulated power consumption of our benchmark runs
for different frequency configurations is plotted in Figure 6.
Both the BCC and XDP version of our proposed system can
reduce the energy consumption during the high load scenario
by more than 23% compared to the ondemand governor
with Turbo Core enabled. We consider this the default version
because this configuration is loaded on start up without any
modifications to the system. The XDP version is less resource
demanding than the python implementation, decreasing the
consumption further by 5%. We make two noticeable obser-
vations. First, the performance mode only increases the power
consumption by 5% hinting a very aggressive CPU frequency
selection by the Operating System (OS). Secondly, disabling
the frequency boosting technology saves 2% more energy than
our XDP implementation. Krzywda et al. [10] approach would
likely achieve results similar to the ondemand governor with
Turbo Core disabled in Figure 6.

When looking at the idle consumption in Table I the
proposed system does not increase the total consumption. Due
to the event based triggers of eBPF and XDP the impact on
energy consumption is only during high load phases. There are
no energy savings during the idle periods but also no additional
costs. This is important because most of the time the system

TABLE I
THE IDLE POWER CONSUMPTION (120S IDLE)

Mode Default XDP BCC

Energy Consumption 256.62 J 262.02 J 266.62 J

Relative Consumption 100% 102% 104%
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Figure 7. The VPN-Connection test connection time. Outliers larger than 4s
and smaller than 0.5s were excluded. The + denotes mean, the horizontal bar
median. The whiskers show the 95th percentile.

will stay in an idle phase. An increase in the consumption
during this phase would therefore outweigh savings during
high load.

Switching the CPU frequency has an impact on the time it
takes to calculate the ACL rules and inform the SDN-Switch
about the final decision, which determines whether access is
allowed or blocked. Figure 7 presents the mean connection and
disconnection times in seconds, accumulated from all 9 clients,
in a boxplot. The x-axis displays the different configuration
modes, while outliers greater than 4 s or smaller than 0.5 s are
excluded from the analysis as they indicate errors. The mean
value is indicated by the + marker, the horizontal line indicates
the median value. Interestingly, the results show that there
are no significant differences in connection and disconnection
times among the various configuration modes. However, our
first implementation idea increases the connection times by
2.4% while achieve less power savings than the powersave
and no boost configuration, as evidenced in Figure 7. For the
default powersaving mechanisms a 1-3% increase in mean
connection time can be observed. For the XDP version,
the mean connection time is 1.87 s compared to 1.90 s in
the default no boost case and 1.97 s in the powersaving
configuration. The difference in median and mean value for the
XDP configuration seem to come from slower outliers which
degrade the median connection time of 1.55 s. Effectively,
we spend 5% more energy for a 3% mean connection time
decrease compared to the no boost configuration. For the XDP
implementation we would expect better results when switching
to the driver offloaded eBPF program. This could decrease the
reaction time and lead to faster connection times.
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The chosen benchmark marks a best case scenario for our
proposed system. Because the CPU frequency in idle phases
is automatically reduced by the operating system itself we
improve due to the more aggressive frequency switching.
Furthermore, we benefit from the knowledge, that the CPU
is not required in the intervals between connections allowing
for the fast frequency reduction. Because the system is solely
used as a SDN-Controller the power saving is not impacting
performance of any other program.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented two implementations aimed at
reducing the energy consumption of a secure remote work
system. The BCC-based design, along with the cpupower
tool, achieved a decrease in energy consumption compared
to the default power governor, but better results were ob-
tained by disabling Turbo Core. The XDP version, due to
its lower resource impact in user space, further reduced power
consumption. Compared to the default configuration, a 1.5%
decrease in connection time was achieved, and compared to
the disabled Turbo Core configuration, connection times were
5% faster. However, this required approximately 3% more
energy compared to the ondemand governor with disabled
Turbo Core.

Future work in the system could involve migrating the
SDN-Controller into a virtualized environment to reduce re-
quired components and idle power consumption, while still
meeting QOS requirements under high workload scenarios.
Additionally, we expect the frequency switch to work on
the SDN-Switch, further reducing consumption during file
transfers by throttling the frequency to match maximum net-
work bandwidth. Another potential method of power reduction
would be to adapt devices to workday patterns and implement
high power-saving sleep modes for infrequently used comput-
ers.
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