
Range Encoding and Hash table based Packet Classification for Global View
Networking

Yeim-Kuan Chang, Yi-Hao Lai, and Che-Wei Li
Department of Computer Science and Information Engineering

National Cheng Kung University, Taiwan

Abstract—Packet classification is an important functionality of
the Internet router for many network applications. With the
emergence of software-defined networking (SDN), packet
classification for global view networking is used to search the
actions taken at multiple routers, not only at a single router. The
control plane provides a global view of the network, which
allows applications to identify the network-wide behavior of a
packet, defined as the combination of actions taken at all routers.
In this paper, we propose a two-layer scheme named range
encoding hash table (REHT) that can search the network-wide
behaviors of packets efficiently. In layer one, the header field
values of all fields are encoded separately. In layer two, hash
tables are used for the encoded values to achieve high
classification speed. Based on our experiments using real
network configurations, REHT performs much faster than
BDDs and MDD schemes.
Keywords- Packet classification; IP lookup; Encoding; Hash table

I. INTRODUCTION
A router forwards packets between networks. When a

packet comes in, the router uses packet headers to determine
the next hop obtained from routing table. Also, routers need
packet classification [2] to support many network applications
by classifying packets into flows. Flows are specified by
classifier. The packets classified as a flow are processed in the
same manner as defined in the action associated with the flow.
Each rule specifies a flow based on five header fields, source
and destination address IP fields, source and destination port
fields, and protocol field. Each field value may be formatted
as a prefix, a range, or a singleton value. Each rule also has a
priority. When a packet matches multiple rules, this packet is
classified as the flow with the highest priority.

With the development of Internet and emergence of SDN,
packet classification is no longer just to classify the packets at
a single router. The network behaviors for multiple routers
need to be considered at the same time. SDN architecture
decouples network control and forwarding function.
OpenFlow is the de facto standard for SDN where the control
plane operated as a centralized controller provides a global
view of the network to allow applications to identify network-
wide behaviors of packets. Network-wide behaviors are
defined by the routing tables and rulesets in all routers of the
network. Network-wide behavior can display how a packet
traverses in the network and whether a packet will be
discarded. Figure 1 shows the global view of a network with
3 routers. Each router maintains a routing table and one rule
table. Figure 1(h) shows the routing behavior table computed
from three routing tables. Figure 1(g) shows the network
topology. The 2-D header space of these rule tables consists
of six disjoint blocks for four distinct rule behaviors in Figure
1(j). Each rule behavior is represented by a three-action tuple

 Dst IP next port
R1 2:3 A1
R2 4:5 A2
R3 0:3 A4
R4 6:6 A3
R5 * drop

Figure 1. Example of a global view network.

 Dst IP next port
R1 2:3 B1
R2 6:7 B2
R3 5:5 B3
R4 4:7 B4
R5 * drop

 Dst IP next port
R1 0:1 C3
R2 6:7 C2
R3 2:3 C1
R4 * drop

 (b) Routing table B (c) Routing table C

(g) Network topology

A

C

B
A3

A4
A2

A1

B3 B4
B2

B1

C2 C3
C1

Field1 Field 2 Action
* 0:3 permit
* 6:7 permit

2:3 * permit
* * deny

Field1 Field2 Action
* 0:3 permit
* 4:5 permit

0:3 * permit
* * deny

Field1 Field2 Action
* 4:7 permit

1:1 2:3 permit
* * deny

 (d) Rule table A (e) Rule table B (f) Rule table C

(h) Routing behaviors

 A B C
1 P P P
2 P D P
3 D P P
4 P P D

(i) Dst IP header space.
1 0 3 2 5 4 6 7

I II III IV V VI

(a) Routing table A

(k) Rule behaviors

0

7

0 7
Field 1(Dst IP)

Fi
el

d
2

1

2
3

1

4

6
5

2 3 4

1 2

3

4
1

3

(j) two-field header space

Figure 2. Example of network-wide behaviors.

1 (A4, Drop,C3)
2 (Drop, Drop,C3)
3 (A4, Drop, Drop)
4 (A1,B1,C1)
5 (A1,B1, Drop)
6 (A2, Drop, Drop)
7 (Drop,B4, Drop)
8 (A2,B4 Drop)
9 (Drop,B3, Drop)

10 (A2,B3, Drop)
11 (A3, Drop,C2)
12 (Drop,B2,C2)
13 (A3,B2, Drop)
14 (Drop, Drop,C2)
15 (Drop,B2, Drop)

13 8

0

7

0 7
Field 1(Dst. addr)

Fi
el

d
2

1

2
3

1

4

6
5

2 3 4 5 6

1

2

3

1

4

5

7

6 11 14

9 12

15 10

 A B C
I A4 drop C3
II A1 B1 C1
III A2 B4 drop
Ⅳ A2 B3 drop
V A3 B2 C2
Ⅵ drop B2 C2

1Copyright (c) IARIA, 2021. ISBN: 978-1-61208-900-3

INNOV 2021 : The Tenth International Conference on Communications, Computation, Networks and Technologies

(actionA, actionB, actionC) in Figure 1(k). After obtaining the
routing behavior and rule behavior, we obtain the network-
wide behavior of the packets as shown in Figure 2.

Our scheme allows SDN applications running on the
control plane to identify network-wide behaviors. If a packet
cannot reach its destination, then the border router can directly
drop it. The main task is to classify the incoming packets with
the classifiers of all routers. The methods designed for a single
router is not efficient for global networks since we have to
repeat the process until we get all flows. To classify a
network-wide behavior efficiently, we need to combine all
classifiers into one. However, conventional methods like
HiCuts [4] and HyperCuts [7], do not support network-wide
behaviors since the search space becomes too complicated.

In this paper, we propose a novel scheme named Range
Encoding Hash Table (REHT). REHT is a two-layer hash
table-based scheme for solving packet classification problem
for global view networking. In layer one, we construct five
range encoders for five fields by classifiers. In layer two, we
use hash tables to record rules. For an incoming packet, we
encode its five field values and access hash tables to obtain its
network-wide behavior.

The rest of this paper is organized as follows. Section II
briefly reviews related work. Section III shows the overview
and details of the proposed REHT scheme. Also, optimization
is proposed for ACL rule table. Grouping optimizations which
can be adopted by REHT to improve memory usage are
proposed in Section IV. The performance evaluation is shown
in Section V and conclusions are shown in the last Section.

II. RELATED WORK
In past years, numerous packet classification schemes

have been proposed in the literature. These schemes can be
categorized as software solutions and hardware solutions.
Software algorithms can also be divided into two categories,
decision-tree and field decomposition schemes. HiCuts [4],
HyperCuts [7], and EffiCuts [1] are well-known decision trees.
BDDs [10] and MDD [11], which can solve network-wide
behavior problem are also decision trees. Decision trees see
the packet classification problem in the geometric view to cut
the search space into smaller subspaces. Field decomposition
schemes include BV [5] and RFC [6]. They perform
independent searches on each field and combine the
intermediate results of all fields to obtain the final results.
Hardware schemes usually use parallel search engine, such as
Ternary content addressable memory (TCAM) and pipelined
design using FPGA. Other encoding schemes can be found in
[2][12][13].

Binary decision diagram [8] (BDD) is a decision tree that
is used to represent a Boolean function. BDDs can be
considered as a compressed representation of sets or relations.
In [10], they proposed a control plane tool for packet behavior
identification, as known as network-wide behaviors. They
first convert forwarding table and rule table to a list of
predicates. A predicate represents a discontinuous space for
an output port or action. Then, they compute separate sets of
atomic predicates for rule and forwarding predicates. An
atomic predicate can be represented by a BDD. For n atomic

predicates, it can be represented by n BDDs. Then, they build
the AP tree based on atomic predicates to reduce the number
of times to search BDDs.

Boolean functions can be merged into a single multi-
valued function to represent a whole classifier by itself. This
multi-valued function is represented by a data structure named
multi-value decision diagram [9] (MDD), a variant of BDD.
In [11], they proposed some optimized method for MDD to
update a new behavior. Also, they proposed an algorithm to
accelerate classification process by regarding a bunch of
header bits as a single variable to analyze time-space tradeoff.

III. PROPOSED SCHEME
The packet classification (PC) for global view networking

depends on multiple routing and rule tables. The address space
cutting procedure to get an action, or a network-wide behavior
is complicated. We can divide the PC problem of global view
network into problems of identifying the routing behavior and
rule behavior for the incoming packets. Then we can get the
final network-wide behavior by combining the identified
routing and rule behaviors. A routing behavior refers to the set
of next ports defined by all routing tables of the routers.
Similarly, a rule behavior refers to the set of actions defined
by all rule tables of the routers.

After obtaining routing and rule behaviors of a packet, we
have to combine the next ports and actions. If the rule action
of a router is permit, its next port of network-wide behavior
remains the same. Otherwise, it changes with rule action.
Assume the routing and rule behaviors of a packet with header
values (6, 2) are (A3, B2, C2) and (permit, permit, deny),
respectively, as shown in Figure 1. After combining
operations, the output port of router C becomes “drop”.

The proposed Range Encoding Hash Table (REHT) is a
two-layer field-independent based scheme that uses hash
tables to store the rule tables. For an incoming packet, REHT
encodes the five field values of the packet separately and
computes the routing behavior based on the destination IP
field encoded value in layer one. In layer two, REHT uses the
encoded values of layer one to access the hash tables and
compute rule behaviors. Finally, we can obtain the network-
wide behavior by combining the routing and rule behaviors.

We first combine all routing tables into a big integrated
routing table and all rule tables into a big integrated rule table.
Then, we divide the address space of each field into several
intervals based on the concept of elementary interval. For the
destination address field, we construct the destination address
elementary intervals by the destination IP field values of both
routing table and rule table. Then, we encode field values into
interval numbers call interval ID. Layer one contains five
range encoders where each range encoder inputs the
corresponding field values and outputs the interval IDs. We
call the encoded value of the source address field as source
address interval ID, the encoded value of the destination
address field as destination address interval ID, and so on. For
routing behaviors, we use the integrated routing table to
precompute the routing behavior where each destination
address interval ID corresponding to a routing behavior.

2Copyright (c) IARIA, 2021. ISBN: 978-1-61208-900-3

INNOV 2021 : The Tenth International Conference on Communications, Computation, Networks and Technologies

Based on encoded values of five dimensions, the rule behavior
can be easily stored in the hash tables and the queries of rule
behaviors from incoming packet headers can also be
computed efficiently.

We know that each field value in five-dimension rule set
is either exact value or wildcard (i.e., don’t care). Since we
cannot hash a rule containing a wildcard without serious
duplications, we simple divide the rules into groups based on
whether the value of a field is exact value or wildcard, and
each group is given a hash table. For each group, we can only
consider the field values that are exact values. After accessing
all the hash tables from incoming packet headers, we can
obtain rules behaviors by the priority encoder. Since we need
to access all hash tables to get the rule behavior and it takes a
lot of memory accesses, we use possibility bitmap to reduce
unneeded memory accesses, described in detail later.
A. Range Encoder

We first build the respective elementary intervals [3] for
each field by both integrated routing and rule tables. The
purpose of the encoder is to get the interval ID to which the
field value belongs. As the size of each field is different, we
use three different methods for the encoder to balance number
of memory accesses and memory usage as follows.
1)Direct entry mapping for port field (small size)

For the field of length m, we use an array of 2m entries to
directly map the address to the corresponding interval ID with
only one memory access.
2)Multiway range tree for IP address (large size)

Multiway range tree is similar to multiway tries, except for
building by endpoint not prefix. Multiway range tree consists
of internal nodes and leaf nodes. For the k-bit multiway range
tree, each internal node holds an array with 2𝑘𝑘 element
corresponding to the value of the k-bit chunk in the input key
and each element contains a vector and an index. Besides, it
holds a node base and an array pointer which points to an array
with n interval base where n depends on the max value of
index. The vector is configured so that bit-1 indicates there is
a descendant node where the node ID is the sum of base and
corresponding index, and the bit-0 indicates there is no
descendant node. Also, each leaf node holds an interval base
array with 2k elements. Figure 3 shows an example of the data
structure of 2-bit multiway range tree.

The searching process starts at the root node and the
interval ID is set to 0. Each traverse to a node, we use the
most-significant k-bit of the input address as the searching key,
and then we add the ith item of the interval base array to
interval ID which i is the index corresponding to the searching

key. If the corresponding vector is 1, we shift the input address
k bits to the left and go to the descendant node. Otherwise, we
output the interval ID and terminate the process.
3)Condition check for protocol (few distinct values)

For the field with few dissimilar values, such as the
protocol field which only consists of TCP, UDP and don’t care,
we can use condition check to get the interval ID. Specifically,
there are only three interval IDs that corresponds to TCP, UDP,
and others. So, we can easily to obtain the interval ID for a
protocol number by simply using if-else condition check.
B. Hash Table

Given n-field rules, we divide them into 2𝑛𝑛 groups with n-
bit group IDs. The rule whose field-i value is wildcard must
belong to the group whose bit-i is 0. Each group is given a
hash table. Each entry of hash tables holds a key initialized to
0 and a rule behavior initialized to default. To distinguish the
rule behaviors of incoming packets and the rule behaviors
recorded in hash tables, we call the rule behaviors recorded in
hash tables group behaviors. The packets’ rule behaviors are
determined by the query results of group behaviors from
incoming packet headers in each hash table.
1)Insert Rules

To insert a rule into hash table, we first convert every
field value of the rule into interval IDs and combine them as
the inserting key. Given hash function h, the corresponding
index of this rule is h(inserting key). If the key of this entry is
0 or equal to the inserting key, we set the value of key to
inserting key and update the group behavior as shown in
Figure 4. If the key of this entry is neither 0 nor inserting key,
which means a collision, we increase the number of entries for
hash table until we can put all the rules into hash table without
collision.

If any field value of a rule covers multiple intervals, we
need to duplicate this rule m times where m is the product of
the number of intervals that each field covers. It is an
important issue that a rule may be duplicated hundreds of
times in the worst case. To solve this problem, we use two
optimized grouping schemes which will be introduced later.
In our experiment, we also use cuckoo hashing for layer two.
It has better memory usage, but it needs more memory
accesses since it has multiple hash functions.

Figure 3. Example node of 2-bit multiway range tree.

 00 01 10 11
vector 1 0 1 0
index 0 1 1 2

itv. base
node base 152

node 108

node 152 node 153 0 1 2
itv. base 0 2 3

 Router/Action F1 itv ID F2 itv ID F3 itv ID Group key Hash
R1 B/permit 0(000) 0(000) 6(110) 1 000000110 5
R2 A/permit 3(011) 5(101) 2(010) 7 011101010 13

Figure 4. Example of inserting a rule.

Hash table 1
Idx Key Behavior
5 000000110 DPD
6 000000000 DDD

Hash table 7
Idx Key Behavior
13 011101010 PDD
14 000000000 DDD

 Possibility bitmap
Itv field 1 field 2 field 3
2 01000000 01000000 00000000
3 01000000 01000000 00000000
4 01000000 01000000 00000000
5 01000000 01000000 00000000
6 01000000 01000000 01000000

Possibility bitmap
Itv field 1 field 2 field 3
2 01000000 01000000 00000001
3 01000001 01000000 00000000
4 01000000 01000000 00000000
5 01000000 01000001 00000000
6 01000000 01000000 01000000

 After inserting R1. After inserting R2.

3Copyright (c) IARIA, 2021. ISBN: 978-1-61208-900-3

INNOV 2021 : The Tenth International Conference on Communications, Computation, Networks and Technologies

2)Possibility Bitmap
 The possibility bitmap is used to confirm which hash

tables an interval ID may hit. Given n hash tables, we
configure a set of n-bit possibility bitmap for each interval ID,
and each bit corresponds to a hash table. The most significant
bit of the bitmap corresponds to hash table 0. If bit-i of
possibility bitmap for an interval ID is 1, the hash key with
this interval ID may hit hash table i. Otherwise, the hash key
with this interval ID will never hit hash table i. Figure 4
shows how to set possibility bitmaps when inserting two rules
R1 and R2, where non-relevant entries are not shown.
3)Searching Process

To find out the rule behavior of an incoming packet, we
use the interval IDs converted from the encoders of layer one
as the searching key, and we use and operation on the
possibility bitmaps of these intervals. Then, we use the
searching key to access the hash tables which the
corresponding bit of possibility bitmap is 1. To access a hash
table, we identify the key in the corresponding index with
searching key. If these two are identical, this group behavior
is matched. Otherwise, this hash table is missed. Finally, we
can obtain the rule behavior by combining all of matched
group behavior from priority encoder.

C. Optimized Scheme for ACL Rule
We propose an optimized scheme for the packet

classification with ACL rule, such as Stanford backbone
network. Based on the property of ACL rule and network-
wide behavior, we can improve the performance.

1)ACL Rule
As we known, ACL rule contains five fields and only two

kinds of actions, permit and deny. In the optimized scheme,
we replace the rules of deny action with the rules of permit
action in the case of maintaining the original property. Since
the actions of rules after replacement are all permit, for group
behaviors, we can use n bits to represent n actions of n routers
where bit 1 represents permit and bit 0 represent deny. Then,
we can use or operation to obtain the rule behaviors instead
of priority encoder.

Furthermore, the source port field of ACL rule is always
wildcard, so we can use 24 hash tables to record the group
behaviors. Also, based on the analysis of ACL rule, some

groups may be empty. For ACL rule in Stanford backbone
network, the number of hash tables is ten.

We know that some hash tables only contain one exact
field like source or destination address, which means we can
obtain group behavior from this field interval ID instead of
hash procedure. So, we can remove these two hash tables and
put the rules of these tables into the source and destination
address information table which use the same interval index
as possibility bitmap. In other words, each interval i = 1 to S
is associated with a possibility bitmap and a group behavior.
Moreover, since the protocol field only contains three values,
TCP, UDP, and don’t care, we can merge the two hash tables
of which exact fields and wildcard fields are the same except
for the protocol field by using three group behaviors to record
the case of TCP, UDP and don’t care, respectively, denoted
by (BT, BU, BO). We then can reduce the number of hash
tables to five.
2)Network-wide Behavior

We know that we can get the network-wide behavior by
combining the routing behavior and rule behavior, but there
are two cases that we can get the network-wide behavior
without complete procedure. In the first case, if the routing
behavior of an incoming packet will eventually drop the
packet, then we do not have to get its exact rule behavior.
Since no matter what its rule behavior is, the packet will drop.
In the second case, since all the actions of rules are permit,
for an incoming packet, if one of matched group behaviors
for switch k is permit, the action of rule behavior for switch k
is permit. If the rule behavior of an incoming packet is all
permit, its network-wide behavior is its routing behavior. So,
in the optimized scheme, we can access to the hash table one
by one and use or operation to record the matched group
behavior. Once all the actions of the rule behavior are permit,
the query process can be terminated.

3)Permit Bitmap
In the searching process, we use a set of permit bitmap

to record the current rule behavior of the packet. The length
of permit bitmap is same as the rule behavior, and it is
initialized to all false (not permit). Every time accessing to a

Figure 5. Data structure of the field encoder in layer one.

Input pro_ID, field value, prm_bmp, psb_bmp

field value

Multiway range tree
Direct entry mapping

interval ID

and

or

Information table
Itv PB BO BT BU

pro_ID psb_bmp

prm_bmp

possibility bitmap
permit bitmap

Figure 6. Searching process in optimized scheme.

Input Header H, the input header;
Initial pmb = (all false), permit bitmap;
Initial pbb = (all true), possibility bitmap;
pro_ID = pro_enc(H.protocol);
dstIP_ID = dstIP_enc(H.dstIP, pro_ID, &pmb, &pbb);
srcIP_ID = srcIP_enc(H.srcIP, pro_ID, &pmb, &pbb);
dstPort_ID = dstPort_enc(H.dstPort, pro_ID, &pmb, &pbb);
rout_b = routing _behavior_table[dstIP_ID];
key = key_combiner(srcIP_ID, dstIP_ID, dstPort_ID, pro_ID);
HT = 1;
For i = 0 to 4
START

If(pmb == all true) Return rout_b;
If(pbb & HT) hash_table(i, key, &pmb);
HT = HT << 1;

END

4Copyright (c) IARIA, 2021. ISBN: 978-1-61208-900-3

INNOV 2021 : The Tenth International Conference on Communications, Computation, Networks and Technologies

field encoder or a hash table, the permit bitmap is updated if
a group behavior is matched. Once the permit bitmap is all
true (permit), the query process can be terminated. If the
permit bitmap is not all true at the end of query process, the
rule behavior is represented by permit bitmap. Figure 5 shows
the complete field encoder in layer one. Figure 6 shows the
pseudo code of searching process in optimized scheme.

IV. GROUPING OPTIMIZATIONS
As described earlier, duplication is an important issue of

packet classification that a rule may be duplicated hundreds of
times in the worst case. To solve this problem, we propose
another two grouping methods for hash tables. In our
experiment, we can improve the performance by more than
ten times. In other words, we can reduce the total number of
duplications to less than one tenth.

The normal grouping is based on whether each field is
exact field or wildcard field. However, in some rules, the
length of the source and destination address field may be short,
or the field value may cover many intervals. We call these
heavy rules that duplicate many times. Our goal is to reduce
this kind of rules. In the first grouping method, grouping by
prefix length, we define the field with length less than or equal
to k as wildcard. For example, given k = 2, the field value
128.0.0.0/1 is a wildcard field. In our experiment, this method
can probably reduce the total number of duplications to less
than half. In the second grouping method, grouping by the
number of duplications, we decide whether a field value is
wildcard or exact field according to the number of intervals it
covers. Then, we construct respective elementary interval for
wildcard field and exact field. For incoming packets, each
encoder output two interval IDs, one used for wildcard field,
and another used for exact field. In our experiment, the second
grouping method can reduce the total number of duplications
to less than one tenth.

V. PERFORMANCE EVALUATION
Our scheme is evaluated with two real networks: Internet2

and Stanford backbone networks [11]. The network statistics
of Internet2 and Stanford backbone network are shown in
Table I.

A. Experimental Analysis
For our proposed scheme, the performance depends on an

important factor, the number of intervals in each dimension.
If the number of intervals is large, the data structure for
encoder is large. Also, the duplications in hash tables may be
large. Furthermore, the number of intervals in destination
address field is larger than other fields, so the most important
factor is the number of intervals in destination address field.
The average number of intervals in Internet2 integrated
routing table is 14383, and the number of routing behaviors is
457. The number of intervals in Stanford integrate routing
table is 2086, and the number of routing behaviors is 507. As
a result, the multiway range tree for Stanford is better than
Internet2. Table II shows the statistic of Stanford integrate
ACL rule table. In optimized scheme, there are probably 37%
of the rules that can be recorded in the information tables.
B. Experimental Results

We show the performance results of the proposed scheme
in two parts, range encoding and hash procedure. In range
encoding, the multiway range trees for the IP address fields
are implemented in three different configurations, denoted by
8-8-8-8, 16-8-8, 12-10-10. Notation 8-8-8-8 means that the
multiway range tree is organized as a four-level data structure
and each level takes 8 bits of the 32-bit address space.
Notations 16-8-8 and 12-10-10 mean that the multiway range
tree is organized as a three-level data structure such that the
first level takes 16 and 12 bits; the next two levels take 8 and
10 bits each, respectively. Table III shows the statistics of
multiway range tree. The number of nodes is associcated with
the number of intervals. By comparing three-level and four-
level data structure, three-level needs more memory
consumption but less memory accesses. By comparing

 Internet2 Stanford
of routers 9 16
of prefixes (FIB) 126,017 757,170
of rules (ACL) 0 1,584
of header bits of interest 32 88

TABLE I. STATISTICS OF NETWORK CONFIGURATION.

Grouping # of items in hash tables
Original 17,034

Optimization 1 7,307
Optimization 2 1,092

TABLE V. RESUTLS OF THREE GROUPING.

Header field # of nodes Memory (KB)

Internet2
Dst. address

8-8-8-8 18,416 898.5
16-8-8 18,241 985.1

12-10-10 11,849 1,974.5

Stanford
Src. address

8-8-8-8 244 11.7
16-8-8 230 66.3

12-10-10 151 27.5

Stanford
Dst. address

8-8-8-8 1,052 46.5
16-8-8 1,033 108.7

12-10-10 547 87.5

TABLE III. STATISTICS OF MULTIWAY RANGE TREE.

 Src. addr Dst. addr Dst. port Protocol
of intervals 418 226 55 3

 Group 0 1 2 3 4 5 6 7
of rules 0 0 0 8 16 35 0 57

Group 8 9 10 11 12 13 14 15
of rules 77 31 0 23 161 11 0 29

 Information table Hash table
of rules 167 281

TABLE II. STATISTICS OF STANFORD ACL TABLE.

 Traditional hashing Cuckoo hashing
Memory(KB) 767.33 255.77

 Routing Src. addr Dst. addr Dst. port

Memory(KB) 5.44 2.71 1.46 0.36

TABLE IV. MEMORY USAGE.

5Copyright (c) IARIA, 2021. ISBN: 978-1-61208-900-3

INNOV 2021 : The Tenth International Conference on Communications, Computation, Networks and Technologies

configurations 16-8-8 and 12-10-10, configuration 16-8-8 is
more suitable for Internet2 and configuration 12-10-10 is
more suitable for Stanford backbone network.

Hash procedure is implemented by two hashing methods,
traditional hashing and cuckoo hashing. Traditional hashing
in REHT is implemented as follows. We set the size of the
hash table as (3 * # of hash items) and each hash entry can
hold three items. According to our experiment, it is the
smallest hash table size that can record all rules without
collision. Table IV shows the memory consumption of two
hashing method for Stanford. The memory consumption of
cuckoo hashing is smaller, but traditional hashing needs less
memory accesses.

 Table IV also shows the memory consumption of
information table. Routing information table contains the
routing behaviors. Other information tables contain the
possibility bitmaps and group behaviors. TABLE V shows the
results of three grouping method. Optimization 1 is divide the
rules by field length, and optimization 2 is divide the rules by
number of intervals that a field value covers. Optimization 2
can reduce the number of items to less than 10%.

We compare our proposed scheme with BDDs and MDD
schemes by the same network configurations, Internet2 and
Stanford backbone networks. We use instruction 'rdstc' (read
time stamp counter) to measure the CPU clock ticks of the

searching process and compute the average throughput that is
defined as CPU cycles per search. The performance results are
shown in Figure 7 and Figure 8. REHT3 is constructed by
range encoding configuration 16-8-8 (Internet2) or 12-10-10
(Stanford), and REHT4 is constructed by range encoding
configuration 8-8-8-8. Both REHT3 and REHT4 use
traditional hashing since it has better classification speed.
MDD2/4/8 represents 2/4/8-bit multiway MDD. Since the
REHT3 and REHT4 for one dimensional lookup just consist
of multiway range tree, the number of memory accesses of
REHT3/4 is equal to or less than 3/4. The number of memory
accesses of MDD2/4/8 for Internet2 is 16/8/4. So, the
throughput of REHT is much better than BDDs and MDD (k
= 2/4). For Stanford backbone network, REHT3 has the
highest throughput and REHT4 has the smallest memory
usage. REHT4 also has second high throughput. The worst
case number of memory accesses of REHT for Stanford is
sum of the accesses in range encoders and hash tables. The
worst case of REHT3 is 12, and the worst case of REHT4 is
14. The number of memory accesses of MDD8 for Stanford is
always 11. However, REHT can avoid unnecessary memory
accesses, so the throughput of REHT is better than MDD8.
For five-dimension header, the memory usage of decision-tree
based schemes increase. On the other hand, the memory usage
of REHT do not increase too much. Also, REHT can reach

Figure 8. Performance comparison of Stanford.

Stanford

Figure 7. Performance comparison of Internet2.

Stanford
 REHT3 REHT4 BDDs MDD2 MDD4 MDD8 AP classifier

Memory 0.962 0.877 0.454 0.26 0.51 3.2 4.79
Throughput 82.05 53.33 0.085 11.3 18.95 42.6 3.4

 REHT3 REHT4 BDDs MDD2 MDD4 MDD8 AP classifier
Memory 1.23 0.753 6.568 0.9 1.35 8.89 2.15

Throughput 28.828 26.6 0.006 4.95 7.86 20.02 1.8

6Copyright (c) IARIA, 2021. ISBN: 978-1-61208-900-3

INNOV 2021 : The Tenth International Conference on Communications, Computation, Networks and Technologies

fast classification speed due to hash procedure. Since AP
classifier [10] optimized BDD by reducing the number of
searched BDDs, its throughput is only better than original
BDD and its memory usage is higher than original BDD.

For throughput, as our single operation is simple enough
like BDDs and MDD, the number of memory accesses of
REHT is less than or equal to BDDs and MDD. This is why
the throughput of the proposed scheme is better than BDDs
and MDD. For memory usage, as described in the grouping
optimization, duplication is an important issue in our encoding
scheme. It may cause serious rule duplication when the IP/port
fields have more wildcard (but actually not). For the limitation
of REHT, the rule table configuration can't consist of a deny
rule that has a higher priority than any permit rule since we
only consider the permit action in our method. It can be
extended to the configuration with more than one action,
which is our future work.

To allow the proposed scheme working with switches, we
only need to find another way to efficiently encode the mac
address which is a singleton value field. Also, we have add
another field VLAN ID in the rules to make sure to which
VLAN the classified network behaviors are related.
Classbench is a suite of tools for benchmarking packet
classification algorithms to produce synthetic filter or rule sets
that accurately model the characteristics of various types of
networks. We need such tool to support that REHT is suitable
for some kinds of network configuration. For the future work,
we try to develop a rule generator for different network
configurations. The difference from ClassBench is that the
rule generator for global view networking has to identify the
correctness for packet routing. Also, the rules gererated for
different routers should have some common prefixes. Other
than generating the tables to model the characteristics of real
networks, we have to do research to identify that every route
and rule action in the global network is reasonable.

VI. CONCLUSIONS
 In this paper, we proposed the Range Encoding Hash

Table (REHT) packet classification scheme for global view
networking. For multiple routing tables and rule tables, we
first build five encoders for 5 fields and convert the
corresponding field values into interval IDs. The destination
address interval IDs can correspond to the matched routing
behaviors and possibility bitmaps. Other fields interval IDs
can correspond to the associated possibility bitmap. By using
these interval IDs, we can record and query the rule behaviors
efficiently in hash tables. Also, the possibility bitmap can
reduce the unneeded hash table accesses. Finally, we can
obtain the network-wide behaviors by combining the routing
behaviors and rule behaviors.

As we encode the field values of packet headers
separately, we can avoid the memory explosion that decision-
tree based schemes may happen. Also, we use hashing
method to record the rules instead of cross-products so that
the memory consumption of REHT can be small while the
classification speed can be fast.

REFERENCES
[1] B. Vamanan, G.Voskuilen, and T. Vijaykumar, “EffiCuts: Optimizing

Packet Classification for Memory and Throughput,” in ACM
SIGCOMM, pp. 207-218, 2010.

[2] D. E. Taylor, “Survey and Taxonomy of Packet Classification
Techniques,” in ACM Computing Surveys, vol. 37, no. 3, pp. 238-275,
Sep. 2005.

[3] Y.-K. Chang and Y.-C. Lin, "Dynamic Segment Trees for Ranges and
Prefixes," IEEE Transactions on Computers, VOL. 56, NO. 6, pp. 769-
784, June 2007.

[4] P. Gupta and N. McKeown, “Packet Classification Using Hierarchical
Intelligent Cuttings,” in Proceedings of IEEE High-Performance
Interconnects, pp. 34-41, 1999.

[5] T. V. Lakshman and D. Stiliadis, “High-Speed Policy-based Packet
Forwarding Using Efficient Multi-dimensional Range Matching,” in
Proceedings of the ACM SIGCOMM '98 conference on Applications,
technologies, architectures, and protocols for computer
communication, pp. 203-214, 1998.

[6] P. Gupta, and N. McKeown, “Packet Classification on Multiple Fields,”
in Proceedings of the conference on Applications, technologies,
architectures, and protocols for computer communication, pp. 147-160,
1999.

[7] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet
Classification Using Multidimensional Cutting,” in Proceedings of
ACM Special Interest Group on Data Communication, pp. 213-224,
2003.

[8] R.E. Bryant, “Graph-based algorithms for boolean function
manipulation,” IEEE Transactions on Computers, pp.677–691, 1986.

[9] A. Srinivasan, T. Ham, S. Malik, and R.K. Brayton, “Algorithms for
discrete function manipulation,” in IEEE ICCAD, pages 92–95, 1990.

[10] H. Z. Wang, C. Qian, Ye Yu, H. K. Yang and Simon S. Lam, “Practical
network-wide packet behavior identification by AP classifier,” in
IEEE/ACM Transactions on Networking, vol. 25, pp. 2886-2899, 2017.

[11] T. Inoue, T. Mano, K. Mizutani, S. Minato, and O. Akashi, “Fast packet
classification algorithm for network-wide forwarding behaviors,” in
2018 Computer Communications, vol. 116, pp. 101-117.

[12] Y. K. Chang, C. C. Su, Y. C. Lin, and S. Y. Hsieh, “Efficient Gray
Code Based Range Encoding Schemes for Packet Classification in
TCAM”, IEEE/ACM Transactions on Networking, pp. 1201-1214,
2013.

[13] Y. K. Chang, Y. S. Lin, and C. C. Su, “A High-Speed and Memory
Efficient Pipeline Architecture for Packet Classification,” Proc. the
International IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), pp.215 - 218, 2010.

7Copyright (c) IARIA, 2021. ISBN: 978-1-61208-900-3

INNOV 2021 : The Tenth International Conference on Communications, Computation, Networks and Technologies

	I. Introduction
	II. Related Work
	III. Proposed Scheme
	A. Range Encoder
	B. Hash Table
	1)Insert Rules
	2)Possibility Bitmap
	3)Searching Process

	C. Optimized Scheme for ACL Rule
	1)ACL Rule
	2)Network-wide Behavior

	IV. Grouping Optimizations
	V. Performance Evaluation
	A. Experimental Analysis
	B. Experimental Results

	VI. Conclusions
	References

