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Abstract—Packet classification is an important functionality of 
the Internet router for many network applications. With the 
emergence of software-defined networking (SDN), packet 
classification for global view networking is used to search the 
actions taken at multiple routers, not only at a single router. The 
control plane provides a global view of the network, which 
allows applications to identify the network-wide behavior of a 
packet, defined as the combination of actions taken at all routers. 
In this paper, we propose a two-layer scheme named range 
encoding hash table (REHT) that can search the network-wide 
behaviors of packets efficiently. In layer one, the header field 
values of all fields are encoded separately. In layer two, hash 
tables are used for the encoded values to achieve high 
classification speed. Based on our experiments using real 
network configurations, REHT performs much faster than 
BDDs and MDD schemes. 
Keywords- Packet classification; IP lookup; Encoding; Hash table 

I.  INTRODUCTION 
A router forwards packets between networks. When a 

packet comes in, the router uses packet headers to determine 
the next hop obtained from routing table. Also, routers need 
packet classification [2] to support many network applications 
by classifying packets into flows. Flows are specified by 
classifier. The packets classified as a flow are processed in the 
same manner as defined in the action associated with the flow. 
Each rule specifies a flow based on five header fields, source 
and destination address IP fields, source and destination port 
fields, and protocol field. Each field value may be formatted 
as a prefix, a range, or a singleton value. Each rule also has a 
priority. When a packet matches multiple rules, this packet is 
classified as the flow with the highest priority.  

With the development of Internet and emergence of SDN, 
packet classification is no longer just to classify the packets at 
a single router. The network behaviors for multiple routers 
need to be considered at the same time. SDN architecture 
decouples network control and forwarding function. 
OpenFlow is the de facto standard for SDN where the control 
plane operated as a centralized controller provides a global 
view of the network to allow applications to identify network-
wide behaviors of packets. Network-wide behaviors are 
defined by the routing tables and rulesets in all routers of the 
network. Network-wide behavior can display how a packet 
traverses in the network and whether a packet will be 
discarded. Figure 1 shows the global view of a network with 
3 routers. Each router maintains a routing table and one rule 
table. Figure 1(h) shows the routing behavior table computed 
from three routing tables. Figure 1(g) shows the network 
topology. The 2-D header space of these rule tables consists 
of six disjoint blocks for four distinct rule behaviors in Figure 
1(j). Each rule behavior is represented by a three-action tuple 

 Dst IP next port 
R1 2:3 A1 
R2 4:5 A2 
R3 0:3 A4 
R4 6:6 A3 
R5 * drop 

 

Figure 1. Example of a global view network. 
 

 Dst IP next port 
R1 2:3 B1 
R2 6:7 B2 
R3 5:5 B3 
R4 4:7 B4 
R5 * drop 

 

 Dst IP next port 
R1 0:1 C3 
R2 6:7 C2 
R3 2:3 C1 
R4 * drop 

 (b) Routing table B (c) Routing table C 

(g) Network topology 
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* 0:3 permit 
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Field1 Field2 Action 
* 4:7 permit 

1:1 2:3 permit 
* * deny 

 (d) Rule table A (e) Rule table B (f) Rule table C 

(h) Routing behaviors 

 A B C 
1 P P P 
2 P D P 
3 D P P 
4 P P D 

 

(i) Dst IP header space. 
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Figure 2. Example of network-wide behaviors. 
 

1 (A4, Drop,C3) 
2 (Drop, Drop,C3) 
3 (A4, Drop, Drop) 
4 (A1,B1,C1) 
5 (A1,B1, Drop) 
6 (A2, Drop, Drop) 
7 (Drop,B4, Drop) 
8 (A2,B4 Drop) 
9 (Drop,B3, Drop) 
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14 (Drop, Drop,C2) 
15 (Drop,B2, Drop) 
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(actionA, actionB, actionC) in Figure 1(k). After obtaining the 
routing behavior and rule behavior, we obtain the network-
wide behavior of the packets as shown in Figure 2. 

Our scheme allows SDN applications running on the 
control plane to identify network-wide behaviors. If a packet 
cannot reach its destination, then the border router can directly 
drop it. The main task is to classify the incoming packets with 
the classifiers of all routers. The methods designed for a single 
router is not efficient for global networks since we have to 
repeat the process until we get all flows. To classify a 
network-wide behavior efficiently, we need to combine all 
classifiers into one. However, conventional methods like 
HiCuts [4] and HyperCuts [7], do not support network-wide 
behaviors since the search space becomes too complicated. 

In this paper, we propose a novel scheme named Range 
Encoding Hash Table (REHT). REHT is a two-layer hash 
table-based scheme for solving packet classification problem 
for global view networking. In layer one, we construct five 
range encoders for five fields by classifiers. In layer two, we 
use hash tables to record rules. For an incoming packet, we 
encode its five field values and access hash tables to obtain its 
network-wide behavior. 

The rest of this paper is organized as follows. Section II 
briefly reviews related work. Section III shows the overview 
and details of the proposed REHT scheme. Also, optimization 
is proposed for ACL rule table. Grouping optimizations which 
can be adopted by REHT to improve memory usage are 
proposed in Section IV. The performance evaluation is shown 
in Section V and conclusions are shown in the last Section. 

II. RELATED WORK 
In past years, numerous packet classification schemes 

have been proposed in the literature. These schemes can be 
categorized as software solutions and hardware solutions. 
Software algorithms can also be divided into two categories, 
decision-tree and field decomposition schemes. HiCuts [4], 
HyperCuts [7], and EffiCuts [1] are well-known decision trees. 
BDDs [10] and MDD [11], which can solve network-wide 
behavior problem are also decision trees. Decision trees see 
the packet classification problem in the geometric view to cut 
the search space into smaller subspaces. Field decomposition 
schemes include BV [5] and RFC [6]. They perform 
independent searches on each field and combine the 
intermediate results of all fields to obtain the final results. 
Hardware schemes usually use parallel search engine, such as 
Ternary content addressable memory (TCAM) and pipelined 
design using FPGA. Other encoding schemes can be found in 
[2][12][13]. 

Binary decision diagram [8] (BDD) is a decision tree that 
is used to represent a Boolean function. BDDs can be 
considered as a compressed representation of sets or relations. 
In [10], they proposed a control plane tool for packet behavior 
identification, as known as network-wide behaviors. They 
first convert forwarding table and rule table to a list of 
predicates. A predicate represents a discontinuous space for 
an output port or action. Then, they compute separate sets of 
atomic predicates for rule and forwarding predicates. An 
atomic predicate can be represented by a BDD. For n atomic 

predicates, it can be represented by n BDDs. Then, they build 
the AP tree based on atomic predicates to reduce the number 
of times to search BDDs. 

Boolean functions can be merged into a single multi-
valued function to represent a whole classifier by itself. This 
multi-valued function is represented by a data structure named 
multi-value decision diagram [9] (MDD), a variant of BDD. 
In [11], they proposed some optimized method for MDD to 
update a new behavior. Also, they proposed an algorithm to 
accelerate classification process by regarding a bunch of 
header bits as a single variable to analyze time-space tradeoff. 

III. PROPOSED SCHEME 
The packet classification (PC) for global view networking 

depends on multiple routing and rule tables. The address space 
cutting procedure to get an action, or a network-wide behavior 
is complicated. We can divide the PC problem of global view 
network into problems of identifying the routing behavior and 
rule behavior for the incoming packets. Then we can get the 
final network-wide behavior by combining the identified 
routing and rule behaviors. A routing behavior refers to the set 
of next ports defined by all routing tables of the routers. 
Similarly, a rule behavior refers to the set of actions defined 
by all rule tables of the routers.  

After obtaining routing and rule behaviors of a packet, we 
have to combine the next ports and actions. If the rule action 
of a router is permit, its next port of network-wide behavior 
remains the same. Otherwise, it changes with rule action. 
Assume the routing and rule behaviors of a packet with header 
values (6, 2) are (A3, B2, C2) and (permit, permit, deny), 
respectively, as shown in Figure 1. After combining 
operations, the output port of router C becomes “drop”. 

The proposed Range Encoding Hash Table (REHT) is a 
two-layer field-independent based scheme that uses hash 
tables to store the rule tables. For an incoming packet, REHT 
encodes the five field values of the packet separately and 
computes the routing behavior based on the destination IP 
field encoded value in layer one. In layer two, REHT uses the 
encoded values of layer one to access the hash tables and 
compute rule behaviors. Finally, we can obtain the network-
wide behavior by combining the routing and rule behaviors. 

We first combine all routing tables into a big integrated 
routing table and all rule tables into a big integrated rule table. 
Then, we divide the address space of each field into several 
intervals based on the concept of elementary interval. For the 
destination address field, we construct the destination address 
elementary intervals by the destination IP field values of both 
routing table and rule table. Then, we encode field values into 
interval numbers call interval ID. Layer one contains five 
range encoders where each range encoder inputs the 
corresponding field values and outputs the interval IDs. We 
call the encoded value of the source address field as source 
address interval ID, the encoded value of the destination 
address field as destination address interval ID, and so on. For 
routing behaviors, we use the integrated routing table to 
precompute the routing behavior where each destination 
address interval ID corresponding to a routing behavior. 
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Based on encoded values of five dimensions, the rule behavior 
can be easily stored in the hash tables and the queries of rule 
behaviors from incoming packet headers can also be 
computed efficiently. 

We know that each field value in five-dimension rule set 
is either exact value or wildcard (i.e., don’t care). Since we 
cannot hash a rule containing a wildcard without serious 
duplications, we simple divide the rules into groups based on 
whether the value of a field is exact value or wildcard, and 
each group is given a hash table. For each group, we can only 
consider the field values that are exact values. After accessing 
all the hash tables from incoming packet headers, we can 
obtain rules behaviors by the priority encoder. Since we need 
to access all hash tables to get the rule behavior and it takes a 
lot of memory accesses, we use possibility bitmap to reduce 
unneeded memory accesses, described in detail later. 
A. Range Encoder 

We first build the respective elementary intervals [3] for 
each field by both integrated routing and rule tables. The 
purpose of the encoder is to get the interval ID to which the 
field value belongs. As the size of each field is different, we 
use three different methods for the encoder to balance number 
of memory accesses and memory usage as follows. 
1)Direct entry mapping for port field (small size) 

For the field of length m, we use an array of 2m entries to 
directly map the address to the corresponding interval ID with 
only one memory access. 
2)Multiway range tree for IP address (large size) 

Multiway range tree is similar to multiway tries, except for 
building by endpoint not prefix. Multiway range tree consists 
of internal nodes and leaf nodes. For the k-bit multiway range 
tree, each internal node holds an array with 2𝑘𝑘  element 
corresponding to the value of the k-bit chunk in the input key 
and each element contains a vector and an index. Besides, it 
holds a node base and an array pointer which points to an array 
with n interval base where n depends on the max value of 
index. The vector is configured so that bit-1 indicates there is 
a descendant node where the node ID is the sum of base and 
corresponding index, and the bit-0 indicates there is no 
descendant node. Also, each leaf node holds an interval base 
array with 2k elements. Figure 3 shows an example of the data 
structure of 2-bit multiway range tree. 

The searching process starts at the root node and the 
interval ID is set to 0. Each traverse to a node, we use the 
most-significant k-bit of the input address as the searching key, 
and then we add the ith item of the interval base array to 
interval ID which i is the index corresponding to the searching 

key. If the corresponding vector is 1, we shift the input address 
k bits to the left and go to the descendant node. Otherwise, we 
output the interval ID and terminate the process. 
3)Condition check for protocol (few distinct values) 

For the field with few dissimilar values, such as the 
protocol field which only consists of TCP, UDP and don’t care, 
we can use condition check to get the interval ID. Specifically, 
there are only three interval IDs that corresponds to TCP, UDP, 
and others. So, we can easily to obtain the interval ID for a 
protocol number by simply using if-else condition check. 
B. Hash Table 

Given n-field rules, we divide them into 2𝑛𝑛 groups with n-
bit group IDs. The rule whose field-i value is wildcard must 
belong to the group whose bit-i is 0. Each group is given a 
hash table. Each entry of hash tables holds a key initialized to 
0 and a rule behavior initialized to default. To distinguish the 
rule behaviors of incoming packets and the rule behaviors 
recorded in hash tables, we call the rule behaviors recorded in 
hash tables group behaviors. The packets’ rule behaviors are 
determined by the query results of group behaviors from 
incoming packet headers in each hash table. 
1)Insert Rules  

To insert a rule into hash table, we first convert every 
field value of the rule into interval IDs and combine them as 
the inserting key. Given hash function h, the corresponding 
index of this rule is h(inserting key). If the key of this entry is 
0 or equal to the inserting key, we set the value of key to 
inserting key and update the group behavior as shown in 
Figure 4. If the key of this entry is neither 0 nor inserting key, 
which means a collision, we increase the number of entries for 
hash table until we can put all the rules into hash table without 
collision. 

If any field value of a rule covers multiple intervals, we 
need to duplicate this rule m times where m is the product of 
the number of intervals that each field covers. It is an 
important issue that a rule may be duplicated hundreds of 
times in the worst case. To solve this problem, we use two 
optimized grouping schemes which will be introduced later. 
In our experiment, we also use cuckoo hashing for layer two. 
It has better memory usage, but it needs more memory 
accesses since it has multiple hash functions. 

Figure 3. Example node of 2-bit multiway range tree. 
 

  
  

 00 01 10 11 
vector 1 0 1 0 
index 0 1 1 2 

 

itv. base  
node base 152 

 

  

node 108 

node 152 node 153  0 1 2 
itv. base 0 2 3 

 

 Router/Action F1 itv ID F2 itv ID F3 itv ID Group key Hash 
R1 B/permit 0(000) 0(000) 6(110) 1 000000110 5 
R2 A/permit 3(011) 5(101) 2(010) 7 011101010 13 

 

Figure 4. Example of inserting a rule. 
 

Hash table 1 
Idx Key Behavior 
5 000000110 DPD 
6 000000000 DDD 

 

Hash table 7  
Idx Key Behavior  
13 011101010 PDD  
14 000000000 DDD  

 Possibility bitmap  
Itv field 1 field 2 field 3 
2 01000000 01000000 00000000 
3 01000000 01000000 00000000 
4 01000000 01000000 00000000 
5 01000000 01000000 00000000 
6 01000000 01000000 01000000 

 

Possibility bitmap  
Itv field 1 field 2 field 3 
2 01000000 01000000 00000001 
3 01000001 01000000 00000000 
4 01000000 01000000 00000000 
5 01000000 01000001 00000000 
6 01000000 01000000 01000000 

 After inserting R1. After inserting R2. 
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2)Possibility Bitmap 
 The possibility bitmap is used to confirm which hash 

tables an interval ID may hit. Given n hash tables, we 
configure a set of n-bit possibility bitmap for each interval ID, 
and each bit corresponds to a hash table. The most significant 
bit of the bitmap corresponds to hash table 0. If bit-i of 
possibility bitmap for an interval ID is 1, the hash key with 
this interval ID may hit hash table i. Otherwise, the hash key 
with this interval ID will never hit hash table i. Figure 4 
shows how to set possibility bitmaps when inserting two rules 
R1 and R2, where non-relevant entries are not shown. 
3)Searching Process 

To find out the rule behavior of an incoming packet, we 
use the interval IDs converted from the encoders of layer one 
as the searching key, and we use and operation on the 
possibility bitmaps of these intervals. Then, we use the 
searching key to access the hash tables which the 
corresponding bit of possibility bitmap is 1. To access a hash 
table, we identify the key in the corresponding index with 
searching key. If these two are identical, this group behavior 
is matched. Otherwise, this hash table is missed. Finally, we 
can obtain the rule behavior by combining all of matched 
group behavior from priority encoder. 

C. Optimized Scheme for ACL Rule 
We propose an optimized scheme for the packet 

classification with ACL rule, such as Stanford backbone 
network. Based on the property of ACL rule and network-
wide behavior, we can improve the performance. 

1)ACL Rule 
As we known, ACL rule contains five fields and only two 

kinds of actions, permit and deny. In the optimized scheme, 
we replace the rules of deny action with the rules of permit 
action in the case of maintaining the original property. Since 
the actions of rules after replacement are all permit, for group 
behaviors, we can use n bits to represent n actions of n routers 
where bit 1 represents permit and bit 0 represent deny. Then, 
we can use or operation to obtain the rule behaviors instead 
of priority encoder. 

Furthermore, the source port field of ACL rule is always 
wildcard, so we can use 24 hash tables to record the group 
behaviors. Also, based on the analysis of ACL rule, some 

groups may be empty. For ACL rule in Stanford backbone 
network, the number of hash tables is ten. 

We know that some hash tables only contain one exact 
field like source or destination address, which means we can 
obtain group behavior from this field interval ID instead of 
hash procedure. So, we can remove these two hash tables and 
put the rules of these tables into the source and destination 
address information table which use the same interval index 
as possibility bitmap. In other words, each interval i = 1 to S 
is associated with a possibility bitmap and a group behavior. 
Moreover, since the protocol field only contains three values, 
TCP, UDP, and don’t care, we can merge the two hash tables 
of which exact fields and wildcard fields are the same except 
for the protocol field by using three group behaviors to record 
the case of TCP, UDP and don’t care, respectively, denoted 
by (BT, BU, BO). We then can reduce the number of hash 
tables to five.  
2)Network-wide Behavior 

We know that we can get the network-wide behavior by 
combining the routing behavior and rule behavior, but there 
are two cases that we can get the network-wide behavior 
without complete procedure. In the first case, if the routing 
behavior of an incoming packet will eventually drop the 
packet, then we do not have to get its exact rule behavior. 
Since no matter what its rule behavior is, the packet will drop. 
In the second case, since all the actions of rules are permit, 
for an incoming packet, if one of matched group behaviors 
for switch k is permit, the action of rule behavior for switch k 
is permit. If the rule behavior of an incoming packet is all 
permit, its network-wide behavior is its routing behavior. So, 
in the optimized scheme, we can access to the hash table one 
by one and use or operation to record the matched group 
behavior. Once all the actions of the rule behavior are permit, 
the query process can be terminated. 

3)Permit Bitmap 
In the searching process, we use a set of permit bitmap 

to record the current rule behavior of the packet. The length 
of permit bitmap is same as the rule behavior, and it is 
initialized to all false (not permit). Every time accessing to a 

Figure 5. Data structure of the field encoder in layer one. 

Input pro_ID, field value, prm_bmp, psb_bmp 

field value 

Multiway range tree 
Direct entry mapping 

interval ID 

and 

or 

Information table 
Itv PB BO BT BU 

     
     

 

pro_ID psb_bmp 

prm_bmp 

possibility bitmap 
permit bitmap 

Figure 6. Searching process in optimized scheme. 
 

Input Header H, the input header; 
Initial pmb = (all false), permit bitmap; 
Initial pbb = (all true), possibility bitmap; 
pro_ID = pro_enc(H.protocol); 
dstIP_ID = dstIP_enc(H.dstIP, pro_ID, &pmb, &pbb); 
srcIP_ID = srcIP_enc(H.srcIP, pro_ID, &pmb, &pbb); 
dstPort_ID = dstPort_enc(H.dstPort, pro_ID, &pmb, &pbb); 
rout_b = routing _behavior_table[dstIP_ID]; 
key = key_combiner(srcIP_ID, dstIP_ID, dstPort_ID, pro_ID); 
HT = 1; 
For i = 0 to 4 
START 

If(pmb == all true) Return rout_b; 
If(pbb & HT) hash_table(i, key, &pmb); 
HT = HT << 1; 

END 
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field encoder or a hash table, the permit bitmap is updated if 
a group behavior is matched. Once the permit bitmap is all 
true (permit), the query process can be terminated. If the 
permit bitmap is not all true at the end of query process, the 
rule behavior is represented by permit bitmap. Figure 5 shows 
the complete field encoder in layer one. Figure 6 shows the 
pseudo code of searching process in optimized scheme. 

IV. GROUPING OPTIMIZATIONS 
As described earlier, duplication is an important issue of 

packet classification that a rule may be duplicated hundreds of 
times in the worst case. To solve this problem, we propose 
another two grouping methods for hash tables. In our 
experiment, we can improve the performance by more than 
ten times. In other words, we can reduce the total number of 
duplications to less than one tenth. 

The normal grouping is based on whether each field is 
exact field or wildcard field. However, in some rules, the 
length of the source and destination address field may be short, 
or the field value may cover many intervals. We call these 
heavy rules that duplicate many times. Our goal is to reduce 
this kind of rules. In the first grouping method, grouping by 
prefix length, we define the field with length less than or equal 
to k as wildcard. For example, given k = 2, the field value 
128.0.0.0/1 is a wildcard field. In our experiment, this method 
can probably reduce the total number of duplications to less 
than half. In the second grouping method, grouping by the 
number of duplications, we decide whether a field value is 
wildcard or exact field according to the number of intervals it 
covers. Then, we construct respective elementary interval for 
wildcard field and exact field. For incoming packets, each 
encoder output two interval IDs, one used for wildcard field, 
and another used for exact field. In our experiment, the second 
grouping method can reduce the total number of duplications 
to less than one tenth. 

V. PERFORMANCE EVALUATION 
Our scheme is evaluated with two real networks: Internet2 

and Stanford backbone networks [11]. The network statistics 
of Internet2 and Stanford backbone network are shown in 
Table I.  

A. Experimental Analysis 
For our proposed scheme, the performance depends on an 

important factor, the number of intervals in each dimension. 
If the number of intervals is large, the data structure for 
encoder is large. Also, the duplications in hash tables may be    
large. Furthermore, the number of intervals in destination 
address field is larger than other fields, so the most important 
factor is the number of intervals in destination address field. 
The average number of intervals in Internet2 integrated 
routing table is 14383, and the number of routing behaviors is 
457.  The number of intervals in Stanford integrate routing 
table is 2086, and the number of routing behaviors is 507. As 
a result, the multiway range tree for Stanford is better than 
Internet2. Table II shows the statistic of Stanford integrate 
ACL rule   table. In optimized scheme, there are probably 37% 
of the rules that can be recorded in the information tables. 
B. Experimental Results 

We show the performance results of the proposed scheme 
in two parts, range encoding and hash procedure. In range   
encoding, the multiway range trees for the IP address fields  
are implemented in three different configurations, denoted by 
8-8-8-8, 16-8-8, 12-10-10. Notation 8-8-8-8 means that the 
multiway range tree is organized as a four-level data structure 
and each level takes 8 bits of the 32-bit address space. 
Notations 16-8-8 and 12-10-10 mean that the multiway range  
tree is organized as a three-level data structure such that the  
first level takes 16 and 12 bits; the next two levels take 8 and 
10 bits each, respectively. Table III shows the statistics of 
multiway range tree. The number of nodes is associcated with 
the number of intervals. By comparing  three-level and four-
level data structure, three-level needs more memory 
consumption but less memory accesses. By comparing 

 Internet2 Stanford 
# of routers 9 16 
# of prefixes (FIB) 126,017 757,170 
# of rules (ACL) 0 1,584 
# of header bits of interest 32 88 

 

TABLE I. STATISTICS OF NETWORK CONFIGURATION. 
  

Grouping # of items in hash tables 
Original 17,034 

Optimization 1 7,307 
Optimization 2 1,092 

 

TABLE V. RESUTLS OF THREE GROUPING. 
 

Header field  # of nodes Memory (KB) 

Internet2 
Dst. address 

8-8-8-8 18,416 898.5 
16-8-8 18,241 985.1 

12-10-10 11,849 1,974.5 

Stanford 
Src. address 

8-8-8-8 244 11.7 
16-8-8 230 66.3 

12-10-10 151 27.5 

Stanford 
Dst. address 

8-8-8-8 1,052 46.5 
16-8-8 1,033 108.7 

12-10-10 547 87.5 
 

TABLE III. STATISTICS OF MULTIWAY RANGE TREE. 
  

 Src. addr Dst. addr Dst. port Protocol 
# of intervals 418 226 55 3 

 Group 0 1 2 3 4 5 6 7 
# of rules 0 0 0 8 16 35 0 57 

Group 8 9 10 11 12 13 14 15 
# of rules 77 31 0 23 161 11 0 29 

    Information table Hash table 
# of rules 167 281 

 

TABLE II. STATISTICS OF STANFORD ACL TABLE. 
  

 Traditional hashing  Cuckoo hashing  
Memory(KB) 767.33 255.77 

 
 Routing  Src. addr Dst. addr Dst. port 

Memory(KB) 5.44 2.71 1.46 0.36 

 

TABLE IV.  MEMORY USAGE. 
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configurations 16-8-8 and 12-10-10, configuration 16-8-8 is 
more suitable for Internet2 and configuration 12-10-10 is 
more suitable for Stanford backbone network. 

Hash procedure is implemented by two hashing methods, 
traditional hashing and cuckoo hashing. Traditional hashing 
in REHT is implemented as follows. We set the size of the 
hash table as (3 * # of hash items) and each hash entry can 
hold three items. According to our experiment, it is the 
smallest hash table size that can record all rules without 
collision. Table IV shows  the memory consumption of two 
hashing method for Stanford. The memory consumption of 
cuckoo hashing is smaller, but traditional hashing needs less 
memory accesses. 

 Table IV also shows the memory consumption of    
information table. Routing information table contains the 
routing behaviors. Other information tables contain the  
possibility bitmaps and group behaviors. TABLE V shows the 
results of three grouping method. Optimization 1 is divide the 
rules by field length, and optimization 2 is divide the rules by 
number of intervals that a field value covers. Optimization 2 
can reduce the number of items to less than 10%. 

We compare our proposed scheme with BDDs and MDD  
schemes by the same network configurations, Internet2 and 
Stanford backbone networks. We use instruction 'rdstc' (read 
time stamp counter) to measure the CPU clock ticks of the 

searching process and compute the average throughput that is 
defined as CPU cycles per search. The performance results are 
shown in Figure 7 and Figure 8. REHT3 is constructed by 
range encoding configuration 16-8-8 (Internet2) or 12-10-10  
(Stanford), and REHT4 is constructed by range encoding 
configuration 8-8-8-8. Both REHT3 and REHT4 use 
traditional hashing since it has better classification speed. 
MDD2/4/8 represents 2/4/8-bit multiway MDD. Since the 
REHT3 and REHT4 for one dimensional lookup just consist 
of multiway range tree, the number of memory accesses of 
REHT3/4 is equal to or less than 3/4. The number of memory 
accesses of MDD2/4/8 for Internet2 is 16/8/4. So, the 
throughput of REHT is much better than BDDs and MDD (k 
= 2/4). For Stanford backbone network, REHT3 has the 
highest throughput and REHT4 has the smallest memory 
usage. REHT4 also has second high throughput. The worst 
case number of memory accesses of REHT for Stanford is 
sum of the accesses in range encoders and hash tables. The 
worst case of REHT3 is 12, and the worst case of REHT4 is 
14. The number of memory accesses of MDD8 for Stanford is 
always 11. However, REHT can avoid unnecessary memory 
accesses, so the throughput of REHT is better than MDD8. 
For five-dimension header, the memory usage of decision-tree 
based schemes increase. On the other hand, the memory usage  
of REHT do not increase too much. Also, REHT can reach 

Figure 8. Performance comparison of Stanford. 

Stanford 

Figure 7. Performance comparison of Internet2. 

Stanford 
 REHT3 REHT4 BDDs MDD2 MDD4 MDD8 AP classifier 

Memory 0.962 0.877 0.454 0.26 0.51 3.2 4.79 
Throughput 82.05 53.33 0.085 11.3 18.95 42.6 3.4 

 

 REHT3 REHT4 BDDs MDD2 MDD4 MDD8 AP classifier 
Memory 1.23 0.753 6.568 0.9 1.35 8.89 2.15 

Throughput 28.828 26.6 0.006 4.95 7.86 20.02 1.8 
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fast classification speed due to hash procedure. Since AP 
classifier [10] optimized BDD by reducing the number of 
searched BDDs, its throughput is only better than original 
BDD and its memory usage is higher than original BDD.   

For throughput, as our single operation is simple enough 
like BDDs and MDD, the number of memory accesses of 
REHT is less than or equal to BDDs and MDD. This is why 
the throughput of the proposed scheme is better than BDDs 
and MDD. For memory usage, as described in the grouping 
optimization, duplication is an important issue in our encoding 
scheme. It may cause serious rule duplication when the IP/port 
fields have more wildcard (but actually not). For the limitation 
of REHT, the rule table configuration can't consist of a deny 
rule that has a higher priority than any permit rule since we 
only consider the permit action in our method. It can be 
extended to the configuration with more than one action, 
which is our future work. 

To allow the proposed scheme working with switches, we 
only need to find another way to efficiently encode the mac 
address which is a singleton value field. Also, we have add 
another field VLAN ID in the rules to make sure to which 
VLAN the classified network behaviors are related. 
Classbench is a suite of tools for benchmarking packet 
classification algorithms to produce synthetic filter or rule sets 
that accurately model the characteristics of various types of 
networks. We need such tool to support that REHT is suitable 
for some kinds of network configuration. For the future work,  
we try to develop a rule generator for different network 
configurations. The difference from ClassBench is that the 
rule generator for global view networking has to identify the 
correctness for packet routing. Also, the rules gererated for 
different routers should have some common prefixes. Other 
than generating the tables to model the characteristics of real 
networks, we have to do research to identify that every route 
and rule action in the global network is reasonable. 

VI. CONCLUSIONS 
 In this paper, we proposed the Range Encoding Hash 

Table (REHT) packet classification scheme for global view 
networking. For multiple routing tables and rule tables, we 
first build five encoders for 5 fields and convert the 
corresponding field values into interval IDs. The destination 
address interval IDs can correspond to the matched routing 
behaviors and possibility bitmaps. Other fields interval IDs 
can correspond to the associated possibility bitmap. By using 
these interval IDs, we can record and query the rule behaviors 
efficiently in hash tables. Also, the possibility bitmap can 
reduce the unneeded hash table accesses. Finally, we can 
obtain the network-wide behaviors by combining the routing 
behaviors and rule behaviors. 

As we encode the field values of packet headers 
separately, we can avoid the memory explosion that decision-
tree based schemes may happen. Also, we use hashing 
method to record the rules instead of cross-products so that 
the memory consumption of REHT can be small while the 
classification speed can be fast. 
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