
TCP on Large Scale Network Topologies: Performance Analysis
and Issues on Real Networks’ Topology Design

Konstantinos Paximadis, Vassilis Triantafillou
Anna Galanopoulou, and Pavlos Kalpakioris

Computer & Informatics Engineering Dept., Western Greece University of Applied Sciences, Antirio, 30020, Greece
email: kpaximadis@gmail.com

Abstract – The Transmission Control Protocol (TCP) is a
traffic carrier protocol and the only one that counts for
reliability. TCP incorporates a sliding window mechanism which
controls the traffic flow from source to destination. The behavior
of the window is of critical importance to TCP’s performance.
TCP operates on an end-to-end basis, based on routes provided
by a routing algorithm. Reliability issues dictate the need of
alternate routes serving either as backup routes or as load
balancing routes. The exact role of alternate routes is defined by
the network manager. We point out that large scale topologies
are more close to real networks in many aspects, and so they
deserve more attention. We study the TCP window’s behavior
for two major TCP versions and we address design issues,
constraints and tradeoffs for large scale, similar to real, network
topologies.

Keywords-Transmission Control Protocol (TCP); Congestion
avoidance and control; Sliding Window mechanism; Network
Simulator NS2; Network topology.

I. INTRODUCTION

Nowadays, billions of people are connected to each other,
usually via internet. There are two common used traffic
carriers used for carrying all this traffic. The Transmission
Control Protocol (TCP) and the User Datagram Protocol
(UDP). TCP main goal is to reliably carry users’ traffic from
source to destination. As no one can guarantee links’ integrity
and limit possible losses or packet delays, TCP’s reliability
feature lies on a mechanism that can check the received data
for errors and/or missing packets. TCP checks the received
packets, informs the source and, if needed, requests
retransmission of specific data packets.

TCP not only merits for reliable data transmission but also
tries to control the flow of data in order to avoid congestion,
by incorporating a sliding window mechanism. TCP’s sliding
window mechanism tries to serve as many users with as much
traffic as possible. Sometimes the total amount of traffic posed
by users may exceed networks’ capacity. If this happens, long
delays and high packet losses naturally occur, slowing down
the network and degrading its performance.

So, there is a trade off between throughput and delay-
losses which has to be judged carefully.

Last but not least, TCP counts for fairness, meaning that it
treats all users the same, thus ensuring that all users get a fair
share of bandwidth.

TCP operates on an end-to-end basis, transmitting on routes
provided by a routing algorithm. Generally, a routing
algorithm finds the best route from a source node to a

destination one. However, in an Internet provider’s core
network serving millions of clients, reliability issues dictate
the need of alternate routes. Alternate routes may be standing
by, to be used in case of a failure, or can be simultaneously
used with the best ones for load balancing. This is due to the
network manager to decide.

Alternate routes have to be defined prior to transmission,
because, when serving millions of connections and a link fails,
you do not have the luxury (of time) to wait for the routing
algorithm to calculate new routes. So, alternate routes must be
known before the network starts transmission and must be
used accordingly to the manager’s decisions. Other issues to
be taken care of are how to define alternate routes, how many
should they be and how different from the basic route and
from other alternate routes should, or can, be.

This work is organized as follows: Section II deals with
the congestion avoidance basics used in TCP networks.
Sections III presents some of the existing TCP versions.
Section IV describes the network topology. Section V
comments and discusses issues on topology design. Section VI
presents the simulation results. Finally in Section VII, we
present the conclusion and thoughts for future work.

II. CONGESTION AVOIDANCE BASICS

If users enter a network in an uncontrolled manner, the
amount of traffic to be carried may exceed the total network
capacity. In this case, the effective throughput (thus the
number of packets that manage to reach their destinations with
success) decreases and may approach zero. The phenomenon
during which throughput declines towards zero is called
congestion collapse [7].

The main goal of congestion avoidance and congestion
control algorithms is to prevent a network from congestion
collapse. The main mechanism evolved towards this goal is
the sliding window mechanism.

As defined in [7], the congestion window is a TCP sender’s
estimate of the number of data packets which the network can
manage to transmit towards destination, without causing
congestion. In this case, we must note that flow control aims
to prevent the destination’s buffer from overflow and uses the
so-called receiver window. Since usually the end (receiving)
systems can process the delivered packets faster than the
network can transmit them, it is assumed that the congestion
window (and not the receiver window) is the main network
load limiting factor. So, one easily can understand that the

33Copyright (c) IARIA, 2017. ISBN: 978-1-61208-596-8

INNOV 2017 : The Sixth International Conference on Communications, Computation, Networks and Technologies

behavior of the congestion window is of critical importance to
TCP’s performance.

III. TCP VERSIONS

TCP as an end-to-end protocol relies on information
gathered at the two network ends. So the communication
subnet is viewed like a black box [7]. As mentioned earlier
TCP tries to avoid congestion in order to avoid congestion
collapse. Another TCP main objective is to maintain fairness
that is to equally divide the available network capacity among
the bandwidth competing users.

A table giving the main features of the various TCP
variants can be found in [7], where we also can found an
evolutionary graph of various TCP versions.

TCP versions can be categorized [7] as Reactive ones,
which base their decisions on detection of losses, and
Proactive ones, which base their decisions on delay
measurements.

A. TCP Tahoe
Proposed by V. Jacobson in [1], TCP Tahoe is based on

the original TCP specification RFC 793 [8]. It consists of two
mechanisms the Slow Start and the Congestion Avoidance.

The window’s increase policy is triggered by the in-time
reception of an ACK (acknowledgment) which probably
means that the network is coping well with the current traffic,
and so, naturally, traffic can be increased.

This congestion avoidance algorithm was found quite
effective [1] [7]. Its only drawback is its relatively slow
discovery and use of the network’s capacity due to the
conservative nature of the additive increase policy. Also, the
combination of Slow Start and Congestion Avoidance
mechanisms result in good behaviour regarding fairness [7].

B. TCP Reno
TCP Tahoe sets the congestion window equal to one upon

a packet loss, why? Because it “smells” congestion and feels
that the session must limit the amount of data that poses into
the network. However, this policy is rather strict and can
sometimes lead to major throughput degradation, punishing
the users for the lost packet they experienced.

So Jacobson et al. [8] renew the Slow Start and Congestion
Avoidance mechanisms to count for different congestion states
of the network.

A major congestion network state is defined as the state
where the network can hardly deliver any packets. In this case
a decrease mechanism should be strict in an effort to quickly
deal with this unwanted state.

A minor congestion network state is defined as the state
where the network can and does deliver some packets. This
case is triggered by a supposed loss packet, based on duplicate
ACKs evidence.

In this case we prefer a less strict decrease mechanism.
This less strict mechanism is used in TCP Reno and is

called Fast Recovery [7] [9].

Incorporating Slow Start, Congestion Avoidance, Fast
recovery and Fast retransmit TCP Reno shows a significantly
better performance and achieves higher throughputs. TCP
slow start approach is also discussed in [2].

C. TCP Vegas
TCP Vegas was presented by Brakmo and Peterson in [6].
As noted in [6], TCP Vegas aims to measure and

accurately control a “right” amount of extra traffic in the
network. Extra traffic would not otherwise have been accepted
in the network.

TCP Vegas uses a proactive mechanism in order to replace
the reactive Congestion Avoidance algorithm.

As shown in [7], TCP Vegas has the advantage of
achieving rate stabilization in a steady state. Rate stabilization
together with the absence of unwanted oscillations of the
window size, can lead to higher values of throughput.

Other TCP versions are TCP Africa [3] which is a delay-
sensitive congestion avoidance approach incorporated in
networks of high bandwidth delay product (BDP) and
Compound TCP (CTCP) [10] which a synergy of delay-based
and loss-based approach.

IV. LARGE SCALE NETWORK TOPOLOGY: WHY AND
WHERE?

TCP variants have been extensively simulated. However,
in many studies [3] [4] [6] [7] [10] [13], the topologies tested
are somewhat small (and sometimes trivial). In [4], a four-
node backbone network topology with numerous nodes
attached to the four nodes is used. In [11], a larger topology is
tested but with a relatively small network core, and in [13], a
fat-tree network topology is used with the question of how it
can be applied in data center networks.

As mentioned in [3] several modern applications such as
supercomputer grids and large biological simulations often
have the need to transfer data between different continents. So,
naturally, data need to travel through several nodes, and,
apparently, large topologies.

Also, large telecommunication and internet regional
providers operate on their private networks which are usually
expanded all over the country. Other large institutions with
Wide Area Private Networks (such as banks) also operate over
a large area.

For all the above reasons we decided to simulate TCP
versions over a large scale network topology, which was first
introduced in [5] and also used in other studies [12]. By large
we mean a network that is close to a regional network
provider’s backbone network, for example, a provider
operating in a medium sized country (i.e. in Europe, not
China!) who can use these 19 nodes to locate a router (or a
Layer-3 switch) in each of the major country’s cities.

Large scale networks provide a realistic simulation
environment as they are close to real ones. They have real
world’s characteristics and if suitably modified can match
exactly real networks of providers and/or banks. Figure 1

34Copyright (c) IARIA, 2017. ISBN: 978-1-61208-596-8

INNOV 2017 : The Sixth International Conference on Communications, Computation, Networks and Technologies

shows the topology of the network used and Figure 2 shows
the 32 sessions simulated.

Fig. 1: The large scale network topology used

Fig. 2: Network’s traffic matrix

More specifically, if the topology is to be used for
simulating a real network, the sessions must be modified to
reflect the common case in such networks, where a central
node is always the capital of the country, and all other nodes
have a connection (direct or via other nodes) to it. Network
reliability issues dictate the need of alternative routes for every
communicating node pair.

So, a problem of defining the alternative routes arises. This
problem is rather complicated as the network manager need
not only to define the alternate routes but also guarantee that
the network will continue to transmit in the case of more than
one link failure. Moreover, the alternate routes must be chosen
in a manner that, in case of a failure, they will not pose more
traffic in certain links that are already heavy loaded.

V. ISSUES ON LARGE SCALE NETWORK TOPOLOGY
DESIGN

A network manager in a major communications provider
expanded over a whole country faces many problems. As in
real life, a manager cannot start designing from a white sheet,
because various constraints usually pre-exist and make the
design more complex.

For example, in a network expanded in a whole country
(i.e., internet provider network, bank network, universities
network), usually (if not always) the major cities are hosting
the major network nodes. Moreover, the country’s capital
usually hosts the central network node (or nodes). Although
nobody suggests not do, a manager usually do not pose a
network node in the middle of nowhere. So? So, there exists a
somewhat predefined network topology and the only design
freedom is designing the connections between the “existing”
cities-nodes.

One of the first questions to be answered is which type of
topology to use. To answer, one must first answer another
question: What exactly a network manager expects from a
topology?

As serving thousands or millions of customers and/or
connections, what one mostly wants from a topology is fault
tolerance. Speed and availability may wait a little. So, a large
scale network topology for a major communications provider
must have alternative routes assuring connectivity even in the
event of a failure. By “must have” we mean that the
alternative routes have to be specified and standing-by as the
network operates. Why? Because in case of a failure, with
millions of connections being served, the network does not
have time to waste and it would be a small disaster to wait for
a routing algorithm to run (again) and calculate new routes.

Another question is how many failures must the topology
be able to successively overcome?

As noted before, a common practice is that the network
central core node (or nodes) are usually placed in the
country’s capital, i.e., Athens for Greece, Rome for Italy and
so on, following the well known “All roads lead to Rome”.

So, usually the central network node is predefined and
there exist network nodes which have to connect to the central
node. How will the manager do that?

A. Geographical constraints
A known rule in backbone networks is that each network

node must have at least two connections, each one connected
to a different core node, obviously for reliability reasons.
However, sometimes this is not easily achievable. Suppose a
city is located high in the mountains or in a somehow isolated
island (i.e., Kastelorizo in Greece), having only one major city
in nearby distance and all others either far away or
geographically difficult to reach and connect.

An alternative to this difficult situation is to use two
separate links from city to city. These separate links must
preferably follow a totally different route. Why? Because if
placed side-by-side they are both vulnerable to the same
failure if something goes wrong at their common route. So,

From node To nodes

n1 n9, n19
n2 n18
n3 n4, n11, n17
n4 n3, n10, n13
n5 n12
n6 n14
n7 n16
n8 n15
n9 n1, n19
n10 n4, n13
n11 n3
n12 n5
n13 n4, n10, n17
n14 n6
n15 n8
n16 n7, n18
n17 n3, n13
n18 n2, n16
n19 n1, n9

Traffic Matrix 32 sessions
Source/Destination

35Copyright (c) IARIA, 2017. ISBN: 978-1-61208-596-8

INNOV 2017 : The Sixth International Conference on Communications, Computation, Networks and Technologies

one have to connect cities which cannot (due to geographical
or economical restraints) have duplicate links with other
cities/nodes, with dual or triple links with the same city/node,
providing that these links follow different routes. How
different? Surface morphology, distance, accessibility and cost
will decide.

This technique can “save lives”, meaning that can make
the ring topology tolerant to single, double or even triple link
failures, as it acts like a whole backup network.

B. Ring Topology
Classical ring topology offers a reliability feature over a

single failure. If a single link failure occurs, communication
between all nodes is still achievable through the remaining
active part of the ring. Figure 3 notes that, although for clarity
reasons the ring network is shown as a rectangular one.

Fig. 3: A ring network experiencing a single link failure
can still transmit packets.

But what if two link failures occur? Then you have a big
problem, as your ring is separated in two parts, as in Figure 4.

Fig. 4: A ring network experiencing a double link failure
is separated in two parts.

This problem can be solved by adding a network node in
the middle of the ring. This node, if connected by two other
nodes, as shown in Figure 5, technically divides the original
ring into two sub-rings. This topology can tolerate two
simultaneous network link failures, if each one of them is in
different sub-ring. If the two link failures occur in the same
sub-ring, the nodes between failures are isolated from the
other nodes.

Also, if one (of the two) link failure occurs on the common
part of the two sub-rings, communication from every node to
every other node will be still achievable.

Fig. 5: A ring network divided in two internal rings.

C. Star topology
Naturally, capital’s central node is the center of a star

topology and all other cities-nodes are directly connected with
it. Again, the only freedom one has is to choose the link
connections. Fault tolerance reasons dictate the need of at least
two links connecting each node with the central node. Also, as
noted earlier in the ring topology analysis, it is a safer
technique (although obviously more expensive) to use
different routes for the links connecting each city-node to the
central node.

So, one has to install two or more links between peripheral
cities-nodes and the central node/nodes, each one of them
preferably following different physical route.

D. Final decisions
So, finally, the topology is chosen and network links are

installed. After that, the routing algorithm specifies the
optimal and the alternative routes from all sources to all
destinations. One big dilemma is whether the alternative
routes should be used concurrently with the optimal ones, or
should be used only as backup, thus stand-by and be used only
in case of a failure.

The concept of using multiple routes to split traffic more
efficiently over the available network capacity has been
extensively explored by many researchers. One of the most
analytical design called mTCP, is presented by Zhang et al in
[14] and efficiently faces all problems raised.

Nowadays networks’ response and speed are not a major
problem. However, if it becomes (not temporarily, but for a
long time), adding some high bandwidth links is generally a
fair and cheap, in the long run, solution. A network manager
except from failures (the frequency of which have to be
examined), speed and availability must also merit for
simplicity of protocols and algorithms used. So, an easy and
“clean” solution would be to choose the second alternative to
the big dilemma, which is to let the alternative routes standing
by and send traffic to them only in case of a failure.

In this case it would helpful the alternative routes to be as
“different” as possible from the optimal ones and, at the same

36Copyright (c) IARIA, 2017. ISBN: 978-1-61208-596-8

INNOV 2017 : The Sixth International Conference on Communications, Computation, Networks and Technologies

time, do not use links used by other active routes. An
interesting and relatively simple approach for finding non-
overlapping and disjointed routes is presented at [14].

VI. SIMULATION RESULTS

We conducted various simulations to observe and verify
the behavior of the congestion window, the packet loss
probability and the total throughput. We used NS2 and the 19
node network topology described in section 4. All links was
set to 20 Mbps, links’ propagation time was set to 10ms, and
drop-tail type of queue was used. Standard NS2 packet size of
1000 bytes was used. As a means to avoid starting the window
size from one in a lightly loaded network and the algorithm
being slow in gaining bandwidth, we set the initial window
size advertised by the receiver to various predefined values at
the range from 10 to 100 packets.

Figures 6 and 7 show the window size versus time for TCP
Reno and TCP Vegas respectively for initial window size of
twenty (20) packets, for six (6), (2, 14, 18, 19, 24, 32) more
representative of the topology, sessions. We observe that for
TCP Reno the congestion window can reach large values in
some flows. Which are these flows? Obviously these are flows
that are not using same links with others, or in other words
flows operating at a less crowded part of the network.

Fig. 6: The congestion window in time, 6/32 flows (TCP Reno)

Let’s now focus on Flow 14 (blue colour at Figures 6, 7)
which has mode n9 as source node and node n1 as destination.
Thus Flow 14 transmits from a “central” node to a peripheral
one. If it was a real internet provider’s network, node n9 as the
central node, would represent the capital of the country, and
node n1 a nearby city. As Flow 14 is close to the central node,
uses common routes with other sessions, and so, it cannot
reach high window values. Why? Because TCP counts for
fairness, and so, it divides equally the available bandwidth to
the competing users on Flow’s 14 links.

Fig. 7: The congestion window in time, 6/32 flows (TCP Vegas)

Total network statistics for TCP Reno and TCP Vegas, for
all tested initial advertised window sizes follow, Tables 1 & 2.

Both TCP Reno and Vegas manage to send approximately
the same amount of data packets all over the network. TCP
Vegas due to its higher sensitivity manages to keep packet
losses lower and so results to lower packet loss probabilities,
as shown in Figure 8. One special characteristic of TCP Vegas
is that it is hardly affected by the initial window size
advertised by the receiver as because of its delay based
mechanism it immediately senses network’s capacity and
adjusts the window size accordingly. TCP Vegas ends with
lower packet loss probabilities for the same throughput, and,
so, seems a better choice.

We observe that rising the initial advertised (by the
receiver) window size beyond a mid-range value (at about 50-
60) does not bring any benefits, because in this case we
practically pose big loads at the beginning of network’s
operation. TCP congestion control reacts to these big loads
and limits them quickly. So, we end up with higher packet loss
probabilities, while the total gain in throughput is marginal.

Fig. 8: Packet Loss Probability vs Initial window size

for TCP Reno and TCP Vegas.

37Copyright (c) IARIA, 2017. ISBN: 978-1-61208-596-8

INNOV 2017 : The Sixth International Conference on Communications, Computation, Networks and Technologies

TABLE 1: TOTAL NETWORK STATISTICS, TCP RENO

TCP Reno

Init
WS

Sent
packets

Received_
packets

Lost
packets

Packet
Loss

Prob*10-3

Average
Throug
hput[kb

ps]
10 3114834 3114834 0 0 124585

20 5635813 5633828 1985 0,352212 225473

30 6904954 6899838 5116 0,740917 276289

40 7801538 7793820 7718 0,989292 311092

50 8368958 8359581 9377 1,12045 333815

60 8810732 8799548 11184 1,269361 351547

70 9016960 9003685 13275 1,472226 359587

80 9264323 9250711 13612 1,469292 370031

90 9304494 9291314 13180 1,41652 371485

100 9291425 9277248 14177 1,525815 371886

TABLE 2: TOTAL NETWORK STATISTICS, TCP VEGAS

TCP Vegas

Init
WS

Sent
packets

Received_
packets

Lost
packets

Packet
Loss

Prob*10-3

Average
Throug
hput[kb

ps]
10 3116546 3116546 0 0 124610

20 5730241 5729683 558 0,097378 229124

30 7177305 7176492 813 0,113274 287016

40 8093051 8092230 821 0,101445 323621

50 8717150 8716294 856 0,098197 348557

60 8883430 8882725 705 0,079361 355232

70 9070137 9069304 833 0,09184 362268

80 9237489 9236605 884 0,095697 369345

90 9220422 9219505 917 0,099453 368156

100 9240714 9239887 827 0,089495 369496

Generally speaking, it is not a good idea to let critical
factors take large values in order to gain some benefits in a
specific performance measure (with Higher is Better
relationship). This policy, due to trade-offs, will probably lead
to an equal (if not higher) degradation of another contradicting
performance measure and the final result will be worse. This is
a “rule” that comes true not only in computer networks but
also in many aspects of engineering and life.

VII. CONCLUSION AND FUTURE WORK

We studied TCP Reno and TCP Vegas in a large scale
network topology. Both versions prevented severe congestion,
while TCP Vegas showed better performance.

Also, we commented on large scale network topologies. A
big dilemma faced is whether to use the alternative routes
concurrently with the optimal ones, or let them standing-by
and use them only in case of a failure. Both options are well
used in Greece major telecommunication networks. In either
case, algorithms for defining the alternative routes, like the
one proposed in [14], must be investigated.

If one chooses to concurrently transmit on alternative-
backup routes except from the obvious overhead added, will
also, most probably, face packet re-ordering problems. Packet
re-ordering in TCP results in major performance degradation
[13], and is another area of interest.

We are currently working on the problem of efficiently
choosing, using and administrating the alternative non-
overlapping backup routes in a large, close to real, network
topology.

REFERENCES
[1] V. Jacobson and M. Karels, “Congestion avoidance and control,” ACM

SIGCOMM 88, 1988.
[2] K. Oyeyinka, et al. "TCP Window Based Congestion Control -Slow-

Start Approach," Communications and Network, Vol. 3 No.2, pp 85-98,
2011.

[3] R. King, R. Baraniuk, and R. Riedi, “TCP-Africa: An Adaptive and Fair
Rapid Increase Rule for Scalable TCP”, Proc. IEEE 24th Annual Joint
Conference of the IEEE Computer and Communications Societies, 13-
17 March 2005.

[4] H. Jamal and K. Sultan, “Performance Analysis of TCP Congestion
Control Algorithms”, International Journal of Computer and
Communicaitons, Issue 1, Volume 2, 2008.

[5] G. Thaker and J. Cain, “Interactions Between Routing and Flow Control
Algorithm” , IEEE Transactions on Communications, March 1986.

[6] L.S.Brakmo and L.L.Peterson, “TCP Vegas: End to End Congestion
Avoidance on a Global Internet”, IEEE Journal on Selected Areas in
Communications, col.13, no 8, Oct. 1995.

[7] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-to-Host
Congestion Control for TCP”, IEEE Communications Surveys &
Tutotrials, vol.12, no 3, 3rd quarter 2010.

[8] V. Jacobson, “Modified TCP congestion avoidance algorithm”, email to
the end2end list, April 1990.

[9] M. Allman, V. Paxson, and W. Stevens, “ RFC2581 – TCP congestion
control”, RFC, 1999.

[10] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A Compound TCP
Approach for High-speed and long Distance Networks”, the 4th
International Workshop on Protocols for Fast Long-Distance Networks
(PFLDNet), 2006.

[11] H.Jamal and K. Sultan, “Performance Analysis of TCP Congestion
Control Algorithms”, Int. Journal of Computers and Communications,
Issue. 1, vol.2, 2008.

[12] K. Paximadis and A. Vasilakos, “A Dynamic Congestion Avoidance
Scheme Incorporating A-priori Information for Computer Networks”, in
Proc. of the 10th International Conference on Computer Communication,
ICCC’90, New Delhi, India, 1990.

[13] N. Farrington, “Multipath TCP under Massive packet reording”,
Technical Report, University of California, San Diego.
M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and R. Wang, “A
transport Layer Approach for Improving End-to-End Performance and
Robustness Using Redyndant Paths”, in ATEC ’04: Proceedings of the
annual conference on USENIX Annual Technical Conference, pp.8-8,
Berkely, CA, USA, 2004 Usenix Association.

38Copyright (c) IARIA, 2017. ISBN: 978-1-61208-596-8

INNOV 2017 : The Sixth International Conference on Communications, Computation, Networks and Technologies

