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Abstract—Network intrusion detection system (NIDS) is 
mainly designed to monitor the malicious packets spreading on 
the Internet. With pre-defined virus signatures called patterns, 
NIDS can find out whether these pre-defined patterns exist in 
the packet’s payload. GPU can be useful to effectively 
accelerate pattern matching process due to abundant parallel 
hardware threads. In this paper, we propose a constrained 
NFA (CNFA) scheme to store complex regular expressions in 
limited memory of GPU effectively. CNFA is constructed from 
the original NFA based on the subset construction algorithm 
that converts NFA to DFA. Compared to original NFA and 
DFA, CNFA imposes a constraint that each state can only have 
at most two transitions (self-loop and non-self-loop) for each 
character. Based on our experimental results, CNFA can 
achieve the performance of about 100 Gbps for one of the 
tested rule sets on GPU. Also, CNFA only needs 18% of 
memory needed in iNFAnt. In addition, CNFA can be used for 
more complex rule sets that is not possible to be implemented 
in iNFAnt. 

Keywords- Deep Packet Inspection; DFA; NFA; GPU; 
Pattern Matching; Regular expression. 

I.  INTRODUCTION  
Due to the popularity of the Internet, Internet traffic 

increases exponentially. Network security has become a 
significant issue because more malicious attacks, such as 
malwares and viruses, have spread on the Internet. 
Traditional protections, such as firewalls, have been 
inadequate to protect our computers. Instead, Network 
Intrusion Detection System (NIDS) has been diffusely used 
to maintain the security of network activities. The main task 
of NIDS is to examine the payload of each input packet to 
find out whether or not the packet contains suspicious 
contents based on the pre-defined rules. If there are some 
suspicious contents contained in the input packet, NIDS 
reports all occurrences of these suspicious contents 
associated with the matched rules. 

In computer science, pattern matching algorithms are 
used to check a given text of tokens for the presence of the 
constituents of some patterns. In other words, we often 
utilize the idea of pattern matching to develop the NIDS. 
According to different forms of rules, pattern matching is 
divided into string and regular expression matching. For 
regular expression matching, most people implement finite 
state machine, such as non-deterministic (NFA) and 
deterministic (DFA) finite automata, to perform the 

matching operations. We can first translate a regular 
expression into a parse tree and use one of these algorithms, 
which contain Thompson [10] and Glushkov [3] algorithms, 
to build a NFA on the basis of the parse tree. We can even 
transform the NFA into an equivalent DFA. With the rapid 
expansion of networks, traditional software-based 
approaches are not able to satisfy these demands. A lot of 
researches attempt to improve the performance of pattern 
matching on different devices. For example, Baker and 
Prasanna [11] proposed variants version of KMP algorithm 
and implement on FPGA. Zha and Sahni [12] and Lin et al. 
[13] proposed a Parallel Failureless-AC (PFAC) algorithm 
that uses Computer Unified Device Architecture (CUDA) to 
implement modified version of AC algorithm on GPU which 
NVIDIA corporation produces. PFAC is the simple version 
of AC algorithm but suitable for GPU. PFAC effectively 
streamlines AC algorithm by utilizing massive threads of 
GPU. The main idea of PFAC is to assign each thread to 
process input stream at the corresponded position of stream. 
Each thread accesses the same goto function whose initial 
state has no self-loop. In the above hardware, GPU has high 
scalability and low overhead. When we choose CUDA as our 
programing language, implementing General-purpose 
computing on graphics processing units (GPGPU) becomes 
an easy work. 

In this paper, we propose our scheme which decreases 
memory consumption of the original NFA and utilizes SIMT 
(Single Instruction Multiple Thread) of GPU to accelerate 
NFA’s searching procedure to get the better performance. In 
our experiment, we can reach performance around 6 Gbps at 
worst case.  

The rest of the paper is organized as follows. Section II 
describes the related work. In Section III, gives a detailed 
description of the proposed scheme. Section IV outlines the 
implementation on GPU. Section V presents the 
experimental results that are compared to the existing GPU 
implementation called iNFAnt [1]. Finally, our conclusions 
are stated in Section VI. 

II. RELATED WORK  
In this paper, we focus on regular expressions that can 

specify a finite set of strings mainly used in pattern matching. 
Traditional software-based approaches are unable to meet the 
performance requirement of the NIDS. Several researches 
have attempted to improve the performance by using GPU. 
There is a GPU-based parallel regular expression matching 
engine, iNFAnt [1]. iNFAnt adopts NFA to support a very 
large complex rule set that are otherwise hard to solve. 
iNFAnt is explicitly designed and developed for running on 
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GPU consisting of a large number of threads. This 
parallelism is exploited to handle NFA and to process 
multiple packets at once, thus get better performance. 

Compared to traditional NFA, iNFAnt adopts a 
character-first representation for state transition graph. The 
character-first representation keeps a list of transitions that 
will be triggered by each of the 256 characters. This list can 
grow very large so it must be stored in global memory of 
GPU, together with an ancillary data structure that records 
the index in character-first transition table for the first 
transition of each character in order to perform easy random 
lookups. Figure 1 illustrates an example of iNFAnt. 

III. PROPOSED SCHEME  
Pattern matching for regular expressions (RegEx) 

patterns is performed by searching a finite state automata  
(FSA) built from these patterns. Researchers are familiar 
with non-deterministic (NFA) and deterministic (DFA) finite 
automata. Automata theory confirms that both NFA and 
DFA are true in terms of expressiveness, but their practical 
properties like memory requirement and number of active 
states are much different. According to automata theory, 
each state in NFA may transit to zero or more states after 
processing an input character. Furthermore, each state in 
NFA may also transit to zero or more states without 
processing any input character, which we call ε-transition. 
Different from NFA, each state in DFA transits to only one 
state for an input symbol. DFA is faster than NFA because 
only one active state exists in any cycle. However, DFA is 
less memory-efficient than NFA because it requires a lot of 
memory to store the transition table. NFA suffers from a 
higher cost to traverse many states per input character but it 
requires much less memory than DFA. For some 
complicated regular expressions, it may not be possible to 
build the corresponding DFAs because the required memory 
may exceed the amount of memory that a computer can 
support. In order to store large RegEx sets in a scant amount 
of memory, we choose the architecture of NFA. 

Our proposed scheme is inspired by the subset 
construction algorithm that converts NFA to DFA. As we 
know that all NFAs can be converted into equivalent DFAs 
by using the subset construction algorithm [2]. It is well 

known that complex syntaxes like “.*” and “[^\r\n]*” in 
RegEx lead to so-called state space explosion in DFA 
because a state in DFA is associated with a subset of states in 
NFA and most subsets contain the NFA states that are 
originated from these complex syntaxes. One of the 
advantages of subset construction algorithm is that many 
different states generated from the same prefix of different 
rules are merged and so some different transitions labeled 
with the same character are merged into the same transition. 
Consider two rules “ABCD*E” and “ABC.*E” whose NFA 
and DFA are shown in Figure 2. Transitions (state 0  state 
1) and (state 0  state 5) in NFA are transformed into the 
transition (state {0}  state {0, 1, 5}) in DFA. The reason is 
that these two patterns have the same prefix “A” and thus 
reduces some redundant states and transitions in NFA. 
Obviously, the DFA in Figure 2(b) is more complex than the 
NFA in Figure 2(a). States 0 and 7 in NFA exist in most 
subsets of DFA due to “.*” syntax. This is the disadvantage 
that makes the number of DFA states blow up. Besides, we 
also observe that states 1 and 5 (or 2 and 6) in NFA exist in 
the same subsets of DFA. Reducing redundant states can 
mitigate the process of updating active states in NFA. And 
less transitions in NFA can lead to a better throughput. In 
order to utilize the observations described above, we propose 
a new NFA called constrained NFA (CNFA) that considers 
the regular expressions containing the syntax of “.*” and 
counters. 

To show the proposed CNFA and original NFA, we use a 
simple rule set example containing two rules, “ABCD*E” 
and “ABC.*E”, in Figure 2 and explain the difference 
between them. Assume that character set only includes A, B, 

(a) NFA transition graph. (b) Transition table with an 
ancillary table. 
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Figure 1. Character-first representation in iNFAnt for pattern 
 “(A+|B+C|C*D+)” and Σ = {A, B, C, D}. 
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Figure 2. Finite State Automata for {ABCD*E, ABC.*E}. 
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C, D and E. The proposed CNFA is shown in Figure 2(c). It 
is obvious that the proposed CNFA has fewer states than 
NFA. Because we merge some states in NFA, we can get 
multiple matched rules in final states of the proposed CNFA. 

We will first illustrate the procedure of converting NFA 
to CNFA. Table 1 lists some definitions of our CNFA 
constructing algorithm to help us understand the converting 
procedure. Figure 3 shows the pseudo code of the proposed 
CNFA construction algorithm. Figure 4 show the NFA and 
CNFA for rule set {ABCD*E, ABC.*E, CDEA+C, CDE.*C} 
and Σ = {A, B, C, D, E}. Table 2 shows the complete list of 
Si’ and the associated Φ(i') Figure 4(b). For example, S0 is 
the initial state in NFA, S5’ denotes that the state 5 in CNFA 
is equivalent to a set of corresponding NFA states where 
Φ(5') = {S3, S7}. According to line 1 of the pseudo code, we 
add the initial state of the proposed CNFA. Because NFA 
has no ɛ-transitions, Φ(0') is set to {S0}. From lines 2-15, we 
process each CNFA state Si’ and add accessible transitions 
labeled with the character α from Si’ to Stmp’ that is the 
temporary state of CNFA during the conversion. Unlike the 
subset construction algorithm [2], we divided the process of 
computing accessible transitions from a state to its next state 
into two parts, the self-loop transition and the non-self-loop 
transition for each state in Φ(i'). In lines 4-8, we add an 
accessible non-self-loop transition Si’ to Stmp’ labeled with 
character α. In lines 9-13, the same codes are performed for 
self-loop transition. In line 4, function Extract-NonSelfLoop-
States(Φ(i'), α) collects all the states j from non-self-loop 
transitions i  j with label α in the original NFA for i ∊ Φ(i'). 
In other words, it computes a set of NFA states that can be 
reached from one of the NFA states in Φ(i') by a non-self-
loop transition with label α. Similarly, function Extract-
SelfLoop-States(Φ(i'), α) collects all the states j (i.e., Φ(tmp')) 
from self-loop transitions i  j with label α in the original 
NFA for i ∊ Φ(i'). As a result, we obtain the full table of the 
proposed CNFA except the information of final states. 
Therefore, in line 16-20, we mark the final states of CNFA 
based the information of final states in the original NFA. 
Here we will give a graphic example of converting NFA to 
CNFA in Figure 4 by using rule set containing rules 
“ABCD*E”, “ABC.*E”, “CDEA+C” and “CDE.*C”. Notice 
that NFA is constructed according to Glushkov algorithm [3]. 
In this paper, we will also use the character-first format to 
store the transition table of the proposed CNFA. 

A. Compression by Default State 
Before describing the details of the proposed 

compression schemes, we analyze the number of transitions 
for the NFA states based on Snort534 [4]. We observe that 

most characters have a large constant number of transitions. 
Every character appears to be the transition symbol for at 
least 200 transitions. In other words, a source state has more 
different transitions to the same destination state. This 
appearance takes place due to overlapping syntaxes such as 
“.” and “[^\r\n]”. As a result, based on character-first data 
structure for transition table, more memory is required. In 
order to reduce the number of transitions per symbol for 
character-first for transition table, we record default 
transition for each state by using a simple traditional state-
first transition table. Take the CNFA in Figure 4(b) as an 
example. The character-first transition table is shown in 
Figure 5(a). We build a default state table (DST) in Figure 
5(b) including four fields, the default next state of each state, 
default character and don’t care character of the default 
transition, and the compliment flag. If don’t-care character 
bit is 0, the default transition follows the default character. 
Otherwise, the default transition is unconditional, i.e., the 
default transition is taken no matter what the input character 
is. If the complement flag is set to 1 and the default character 
is C, the default transition will follow the symbol ^C (i.e., 
any character other than C). 

B. Counter 
As far as we know, counter is used to solve repetitions of 

RegEx. In terms of data structure, we store the information 
of repetition in a table which keeps a list of counter pairs 
(min, max) for every state. Therefore, the proposed CNFA 
construction algorithm has to be modified. As shown in 
Figure 6(a), the reachable NFA states, Φ(tmp'), from any 
state in Φ(i') returned by functions Extract-SelfLoop-States() 
and Extract-NonSelfLoop-States() need further process to 
consider the repetition conditions. What we do is to divide 
Φ(tmp') into several groups based on the repetition 
conditions performed by function UpdateCNFA(). Lines 2-5 
of UpdateCNFA() in Figure 6(b) are responsible for 
grouping based on the repetition conditions. GroupRepState() 
function divides Φ(tmp') into several groups when Φ(i') of 
current Si’ does not contain a repetition state of NFA. 
IdentifyLeaveRep() function that is similar to 
GroupRepState() divides Φ(tmp') into two groups, one for 
the CNFA state leaving the repetition and the other for the 
CNFA state continuing the repetition when current Si is a 
repetition state. 

TABLE 1. DEFINITIONS OF CNFA CONSTRUCTING ALGORITHM. 
notation Description 

Si (Si') State i in NFA (State i' in CNFA) 
Φ(i') NFA states associated with state i' in CNFA 

Σ The character set 
GroupNum # of tuples in StateClosureGroup 

StateClosureGroup 
NFA states reachable from one of the NFA states in 
Φ(i') are divided into GroupNum subsets based on 
repetitions. These GroupNum subsets are put into 
StateClosureGroup which is a GroupNum-tuple list.  

 

Figure 3. Pseudo code of constructing CNFA. 

Convert_NFA_to_CNFA (NFA) 
01 CNFA = {0'} and Φ(0') = {S0}; tmp' = 1; 
02 for each non-processed state i' in CNFA { 
03     for each α in Σ { 
04          Φ(tmp') = Extract-NonSelfLoop-States(Φ(i'), α); 
05          if (Stmp’ ∉ CNFA) CNFA = CNFA + Stmp’; tmp'++; 
06          add a transition Si’ to Stmp’ labeled with α; 
07          Φ(tmp') = Extract-SelfLoop-States(Φ(i'), α); 
08          if (Stmp’ ∉ CNFA) CNFA = CNFA + Stmp’; tmp'++; 
09          add a transition Si’ to Stmp’ labeled with α;   }  
10  }  
11  for each state i' in CNFA  
12       if (any Si ∊ Φ(i') is a final state in the NFA)  
13         Set Si’ as final state in CNFA; 
14  return CNFA; 
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IV. GPU IMPLEMENTATIONG 
In this section, we will emphasize how to parallelize the 

general purpose procedure. First, all threads in the same 
block initialize and update the active state list together. 
Second, we also exploit parallelism that GPU offers to 
accelerate. We select valid transitions for the current symbol 
and all threads in the same block averagely sharing the 
workloads. Similarly, we use parallelism to speed up the 
process that access Default State Table when the design 
architecture contains Default State. 

According to different requirements, we first consider 
that transition table, the default state table and then counters 
should be stored in suitable type of memory space. Because 
these tables need larger memory space and every task reads 
the same data structure, we choose global memory and 
texture memory that can be read by all threads on GPU. How 
large is texture memory is dependent on the size of global 
memory and texture memory is cached on chip. In some 
situations, texture memory will provide higher effective 
bandwidth by reducing memory requests to off-chip DRAM. 
So we store our tables in texture memory. 

Furthermore, we have to find out memory space suitable 
for input streams. If input streams assigned in a block can be 
stored in enough shared memory, we will choose this storing 
mode. Because shared memory is faster than other memory 
spaces except register. And the famous problem of using 
shared memory is bank conflict. In order to get higher 
bandwidth, shared memory is divided into memory modules 
which are the same memory size when parallelizing memory 
accesses. The memory module is named as bank and 

different banks can be accessed at the same time. When all 
16 threads of half-warp access the same memory address in 
the same bank, shared memory adopt the broadcast mode to 
respond requirements of half-warp. So we don’t have bank 
conflict because all threads on the GPU read a character of 
the input stream from shared memory at every cycle.  

V. EXPERIMENT RESULTS 
Our experiments are based on three rule sets and we 

compare throughput and memory consumption with iNFAnt 
[1]. Moreover, we show the comparison of throughput and 
memory consumption with different compressed schemes. 
And also we show that the influence on throughput by 
workload per block.  

All experiments were performed using a 4-core Intel 
Core i5-650 machine running at 3.2 GHz with 8 GB of RAM. 
GPU tests were implemented on the same platform equipped 
with one graphic card which is NVIDIA GeForce GTX 770. 
The GPU has 2 GB of RAM and 8 multiprocessors clocked 
at 1.11 GHz, and its compute capability is version 3.0. 
Though the GPU supports PCI-E 3.0, the motherboard on 
our PC supports only PCI-E 2.0. Finally, we install Ubuntu 
12.04.4 LTS x64 on the PC. 

In our experiments, we use 2 rule sets which is taken 
from iNFAnt [1] and an additional rule set to finish our 
experiments. The first rule set, Snort534, taken from [4] is 
composed of 534 regular expressions. Snort534 can be 
partitioned into subsets that share an initial part while the 
tails differ. The second rule set, L7-filter, is from the L7 
traffic classifier [5] and consists of 115 regular expressions. 
L7-filter is a very complex and irregular rule set where no 
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Figure 4. NFA and CNFA for Rule Set = {ABCD*E, ABC.*E, CDEA+C, CDE.*C} and Σ = {A, B, C, D, E}. 
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Figure 5. The complete data structure for Figure 4(b). 

(a) The character-first transition table. 

(b) The character-first transition table enhanced by default state table. 
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special properties or common prefixes can be exploited. 
Because of these same rule sets, these comparisons between 
iNFAnt and the proposed CNFA deserve to be a reference. 
Finally, we also take an additional rule set which is 
Emerging Threats [6] Open optimized for Suricata [7] 
because previous two rule sets don’t have complex regular 
expressions with repetitions. Table 4 shows feature of these 
rule sets. 

We compare the memory consumption of the proposed 
CNFA with iNFAnt [1] by using different rule sets. In 
addition, we also show the difference between these 
compressed schemes we proposed. Table 5 shows the 
comparison results for Snort534, L7-filter, and Suricata. 
Because there is no syntax of repetition in Snort534, L7-filter, 
the comparison has no experimental data of Counter scheme. 
We find out that CNFA decreases around 60% of memory 
consumption needed by iNFAnt for Snort534, but less than 
1% of memory needed by iNFAnt for L7-filter. The reason is 
that Snort534 has many common prefixes between different 
rules but L7-filter is a complex and irregular rule set where 
no special properties or common prefixes can be utilized. 
Compared to Snort534 and L7-filter, rule set Suricata has 
complex repetitions. Due to complex repetition conditions, 
the complete data structures of iNFAnt [1], as well as CNFA 
without Counter scheme cannot be built for Suricata. So 
Table 5(c) shows only experimental data of CNFA with 
Counter scheme and CNFA with Counter scheme and the 
default state table. 

In Figure 7, we show the throughputs of iNFAnt 
compared with CNFA and CNFA with Default State Table. 
The difference between these two figures is that one uses 
our ClamAV-based [8] synthesis and the other utilizes eth0 
taken from Defcon [9]. In Figure 7(c), we use Suricata to 
build our finite state machine, but the data structure of 
iNFAnt can’t be built due to insufficient memory on the 
device. So we only show the performance of CNFA with 
counter scheme. 

Finally, we test iNFAnt [1] and our proposed CNFA by 
controlling the number of tasks per block. We test the two 
input traces with rule set Snort534. Figure 8 shows the 
throughputs. We discover that increasing the number of tasks 
doesn’t evidently accelerate the searching speed of iNFAnt  
[1]. The proposed CNFA gets most performance gain when 
the number of tasks is four. 

Figure 6. Pseudo code of the proposed CNFA construction. 

NFA_to_CNFA(NFAin) 
01 NFAout = {} 
02 Set the initial state S0' in NFAout and let Φ(0') = {S0}; 
03 for each non-processed state i' in NFAout { 
04    for each α in Σ { 
05           Φ(tmp') = ExtractSelfLoopStates(Φ(i'), α); 
06           UpdateNFAout(NFAout, i', Φ(tmp'), α); 
07           Φ(tmp') = ExtractNonSelfLoopStates(Φ(i'), α); 
08           UpdateNFAout(NFAout, Φ(tmp'), α); } 
09 } 
10 for each state i' in NFAout  
12     if (any Si ∊ Φ(i') is a final state in the NFAin) 
13          Set Si’,Φ(i') as one final state of the NFAout; 
14 return NFAout; 

 
UpdateNFAout(NFAout, i', Φ(tmp'), α)  
01 StateClosureGroup ={}; 
02 if (Si',Φ(i') is a repetition state) 
03    StateClosureGroup = IdentifyLeaveRep(Φ(tmp')); 
04 else  
05    StateClosureGroup = GroupRepState(Φ(tmp')); 
06 for each set j in StateClosureGroup { 
07      set temp state Stmp',Φ(tmp'), where Φ(tmp') = set j; 
08      if (Si’,Φ(i') is a repetition state ) 
09          for each state Sx in Φ(tmp') { 
10              find state Sy' in NFAout such that Sx ∈Φ(y') { 
11                   add a α-transition from Si' to Sy' ; 
12                   Φ(tmp') =Φ(tmp')-{Sx};} 
13          if Φ(tmp')is not empty { 
14              create a new state Stmp’,Φ(tmp') in NFAout; 
15              add a α-transition from Si' to Stmp'; } 
16      else  
17          if (Stmp',Φ(tmp') does not exust in NFAout) 
18              create a new state Stmp’,Φ(tmp') in NFAout 
19         add a α-transition from Si' to Stmp'; 
20 } 

 

(a) Algorithm Convert_NFA_to_CNFA_counter. 

(b) Algorithm UpdateNFAout. 

(a) The synthesis trace. 

(b) The eth0-Hex trace. 

(c) Performance of Suricata with different input traces. 
Figure 7. Performance with different input traces. 
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VI. CONCLUSION 
In this paper, we proposed a scheme on GPU with 

efficient utilization of memory space to avoid the so-called 
state space explosion. The main for searching is that we 
assign each block on GPU to process appropriate amount of 
tasks. And we utilize massive amount of threads to accelerate 
the process of finding possible transitions to next states. 
Compared to iNFAnt [1], our scheme does not increase the 
complexity of NFA searching but accelerate the searching 
procedure because it can decrease the number of states for 
most rule sets. And we assign each thread to be responsible 
for number of tasks and avoid latency of block switch. 

By utilizing the same rule set, our method can reach 
101.94 Gbps for one of the tested rule sets. With our 
compression scheme, we need 18% of iNFAnt’s memory 
usage with the same rule set. Besides, we proposed the 
architecture for counters to slow down state space explosion 
which is caused by repetitions. The proposed CNFA scheme 
obviously slows down our performance and we can construct 
the complete search data structure for more complex rule sets 
that is not possible for iNFAnt. 
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TABLE 4. DETAILS OF RULE SETS 
Snort534 [4] L7-filter [5] Suricata [6] 

534 115 1195 

common prefixes complex, irregular, 
and no common prefixes 

similar to snort and 
complex repetition 

 

Figure 8. Performances of different number of tasks. 

(a) The synthesis trace. 

(b) The eth0-Hex trace. 

TABLE 5. MEMORY (KB) CONSUMED by iNFANT, CNFA, AND 
CNFA WITH DEFAULT STATE (denoted by CNFAde). 

 iNFAnt CNFA CNFAde 
# of states 14,566 9,696 9,696 

# of transitions 160,657 59,869 3,225 
TT 627.6 233.9 12.6 

DST N/A N/A 74 
Match Table 56.9  2.1  2.1  

Match List Flag N/A 37.9  37  
Total 685.5 274.9  125.7  

Ratio over iNFAnt x1.0 x0.40 x0.18 
 

 iNFAnt CNFA CNFAde 
# of states 6,123 6,006 6,006 

# of transitions 1,400,594 1,397,104 1,397,104 
TT 5471.1 5427.2 914.4 

DST N/A N/A 295.8 
Matched Table 23.9 23.5  23.5  

Matched List Flag N/A 3.0  3.0  
Total 5496.0 5454.7  1236.8  

Ratio over iNFAnt x1.0 x0.99 x0.23 
 

 CNFA CNFAde 
# of states 27,574 27,574 

# of transitions 423,501 41,592 
TT 1653.8 162.5 

DST N/A 353.3  
Repetition Table 107.7 107.7 
Matched Table 7.4  7.4  

Matched List Flag 107.7  107.7  
Total 1876.6  738.5  

 

(a) Snort534 with no repetition syntax. 

(b) L7-filter with no repetition syntax. 

(c) Suricata with repetition syntax. 
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