
Fast and Memory Efficient NFA Pattern Matching using GPU
Yeim-Kuan Chang and Yu-Hao Tseng

Department of Computer Science and Information Engineering
National Cheng Kung University

Tainan, Taiwan
Email:ykchang@mail.ncku.edu.tw

Abstract—Network intrusion detection system (NIDS) is
mainly designed to monitor the malicious packets spreading on
the Internet. With pre-defined virus signatures called patterns,
NIDS can find out whether these pre-defined patterns exist in
the packet’s payload. GPU can be useful to effectively
accelerate pattern matching process due to abundant parallel
hardware threads. In this paper, we propose a constrained
NFA (CNFA) scheme to store complex regular expressions in
limited memory of GPU effectively. CNFA is constructed from
the original NFA based on the subset construction algorithm
that converts NFA to DFA. Compared to original NFA and
DFA, CNFA imposes a constraint that each state can only have
at most two transitions (self-loop and non-self-loop) for each
character. Based on our experimental results, CNFA can
achieve the performance of about 100 Gbps for one of the
tested rule sets on GPU. Also, CNFA only needs 18% of
memory needed in iNFAnt. In addition, CNFA can be used for
more complex rule sets that is not possible to be implemented
in iNFAnt.

Keywords- Deep Packet Inspection; DFA; NFA; GPU;
Pattern Matching; Regular expression.

I. INTRODUCTION
Due to the popularity of the Internet, Internet traffic

increases exponentially. Network security has become a
significant issue because more malicious attacks, such as
malwares and viruses, have spread on the Internet.
Traditional protections, such as firewalls, have been
inadequate to protect our computers. Instead, Network
Intrusion Detection System (NIDS) has been diffusely used
to maintain the security of network activities. The main task
of NIDS is to examine the payload of each input packet to
find out whether or not the packet contains suspicious
contents based on the pre-defined rules. If there are some
suspicious contents contained in the input packet, NIDS
reports all occurrences of these suspicious contents
associated with the matched rules.

In computer science, pattern matching algorithms are
used to check a given text of tokens for the presence of the
constituents of some patterns. In other words, we often
utilize the idea of pattern matching to develop the NIDS.
According to different forms of rules, pattern matching is
divided into string and regular expression matching. For
regular expression matching, most people implement finite
state machine, such as non-deterministic (NFA) and
deterministic (DFA) finite automata, to perform the

matching operations. We can first translate a regular
expression into a parse tree and use one of these algorithms,
which contain Thompson [10] and Glushkov [3] algorithms,
to build a NFA on the basis of the parse tree. We can even
transform the NFA into an equivalent DFA. With the rapid
expansion of networks, traditional software-based
approaches are not able to satisfy these demands. A lot of
researches attempt to improve the performance of pattern
matching on different devices. For example, Baker and
Prasanna [11] proposed variants version of KMP algorithm
and implement on FPGA. Zha and Sahni [12] and Lin et al.
[13] proposed a Parallel Failureless-AC (PFAC) algorithm
that uses Computer Unified Device Architecture (CUDA) to
implement modified version of AC algorithm on GPU which
NVIDIA corporation produces. PFAC is the simple version
of AC algorithm but suitable for GPU. PFAC effectively
streamlines AC algorithm by utilizing massive threads of
GPU. The main idea of PFAC is to assign each thread to
process input stream at the corresponded position of stream.
Each thread accesses the same goto function whose initial
state has no self-loop. In the above hardware, GPU has high
scalability and low overhead. When we choose CUDA as our
programing language, implementing General-purpose
computing on graphics processing units (GPGPU) becomes
an easy work.

In this paper, we propose our scheme which decreases
memory consumption of the original NFA and utilizes SIMT
(Single Instruction Multiple Thread) of GPU to accelerate
NFA’s searching procedure to get the better performance. In
our experiment, we can reach performance around 6 Gbps at
worst case.

The rest of the paper is organized as follows. Section II
describes the related work. In Section III, gives a detailed
description of the proposed scheme. Section IV outlines the
implementation on GPU. Section V presents the
experimental results that are compared to the existing GPU
implementation called iNFAnt [1]. Finally, our conclusions
are stated in Section VI.

II. RELATED WORK
In this paper, we focus on regular expressions that can

specify a finite set of strings mainly used in pattern matching.
Traditional software-based approaches are unable to meet the
performance requirement of the NIDS. Several researches
have attempted to improve the performance by using GPU.
There is a GPU-based parallel regular expression matching
engine, iNFAnt [1]. iNFAnt adopts NFA to support a very
large complex rule set that are otherwise hard to solve.
iNFAnt is explicitly designed and developed for running on

7Copyright (c) IARIA, 2016. ISBN: 978-1-61208-503-6

INNOV 2016 : The Fifth International Conference on Communications, Computation, Networks and Technologies

GPU consisting of a large number of threads. This
parallelism is exploited to handle NFA and to process
multiple packets at once, thus get better performance.

Compared to traditional NFA, iNFAnt adopts a
character-first representation for state transition graph. The
character-first representation keeps a list of transitions that
will be triggered by each of the 256 characters. This list can
grow very large so it must be stored in global memory of
GPU, together with an ancillary data structure that records
the index in character-first transition table for the first
transition of each character in order to perform easy random
lookups. Figure 1 illustrates an example of iNFAnt.

III. PROPOSED SCHEME
Pattern matching for regular expressions (RegEx)

patterns is performed by searching a finite state automata
(FSA) built from these patterns. Researchers are familiar
with non-deterministic (NFA) and deterministic (DFA) finite
automata. Automata theory confirms that both NFA and
DFA are true in terms of expressiveness, but their practical
properties like memory requirement and number of active
states are much different. According to automata theory,
each state in NFA may transit to zero or more states after
processing an input character. Furthermore, each state in
NFA may also transit to zero or more states without
processing any input character, which we call ε-transition.
Different from NFA, each state in DFA transits to only one
state for an input symbol. DFA is faster than NFA because
only one active state exists in any cycle. However, DFA is
less memory-efficient than NFA because it requires a lot of
memory to store the transition table. NFA suffers from a
higher cost to traverse many states per input character but it
requires much less memory than DFA. For some
complicated regular expressions, it may not be possible to
build the corresponding DFAs because the required memory
may exceed the amount of memory that a computer can
support. In order to store large RegEx sets in a scant amount
of memory, we choose the architecture of NFA.

Our proposed scheme is inspired by the subset
construction algorithm that converts NFA to DFA. As we
know that all NFAs can be converted into equivalent DFAs
by using the subset construction algorithm [2]. It is well

known that complex syntaxes like “.*” and “[^\r\n]*” in
RegEx lead to so-called state space explosion in DFA
because a state in DFA is associated with a subset of states in
NFA and most subsets contain the NFA states that are
originated from these complex syntaxes. One of the
advantages of subset construction algorithm is that many
different states generated from the same prefix of different
rules are merged and so some different transitions labeled
with the same character are merged into the same transition.
Consider two rules “ABCD*E” and “ABC.*E” whose NFA
and DFA are shown in Figure 2. Transitions (state 0  state
1) and (state 0  state 5) in NFA are transformed into the
transition (state {0}  state {0, 1, 5}) in DFA. The reason is
that these two patterns have the same prefix “A” and thus
reduces some redundant states and transitions in NFA.
Obviously, the DFA in Figure 2(b) is more complex than the
NFA in Figure 2(a). States 0 and 7 in NFA exist in most
subsets of DFA due to “.*” syntax. This is the disadvantage
that makes the number of DFA states blow up. Besides, we
also observe that states 1 and 5 (or 2 and 6) in NFA exist in
the same subsets of DFA. Reducing redundant states can
mitigate the process of updating active states in NFA. And
less transitions in NFA can lead to a better throughput. In
order to utilize the observations described above, we propose
a new NFA called constrained NFA (CNFA) that considers
the regular expressions containing the syntax of “.*” and
counters.

To show the proposed CNFA and original NFA, we use a
simple rule set example containing two rules, “ABCD*E”
and “ABC.*E”, in Figure 2 and explain the difference
between them. Assume that character set only includes A, B,

(a) NFA transition graph. (b) Transition table with an
ancillary table.

size

0

3

1

7 5

2

A

4

B

6

8

Figure 1. Character-first representation in iNFAnt for pattern
 “(A+|B+C|C*D+)” and Σ = {A, B, C, D}.

A A

B

B C

C

C C D D

D

D

 (i, j)

A
(0, 1)
(1, 2)
(2, 2)

B
(0, 3)
(3, 4)
(4, 4)

C
(0, 6)
(3, 5)
(4, 5)
(6, 6)

D
(0, 7)
(6, 7)
(7, 8)
(8, 8)

0
3
6

10
14

0 .

1

5

2

6

3
D

7

.
4

8

 (a) NFA.

A

[^AB]

[^AC]

0

A

[BC]

[CD]

0,7
0,7,8

[^AE]

A

E

E

E

(b) DFA.

(c) The proposed CNFA.

Figure 2. Finite State Automata for {ABCD*E, ABC.*E}.

E A C B 1,5

8

4,8 3,7 2,6 0

7

[^D]

E

C

C

E

E

B

B

A

A

B

C

E

E

A

A

B

A

[^A]

[^AE]
[BD]

[^AE]

A

A

D

C

D

E

.

.

0,1,5

0,2,6

0,3,7 0,4,
7,8

0,1,
5,7 0,2,

6,7

8Copyright (c) IARIA, 2016. ISBN: 978-1-61208-503-6

INNOV 2016 : The Fifth International Conference on Communications, Computation, Networks and Technologies

C, D and E. The proposed CNFA is shown in Figure 2(c). It
is obvious that the proposed CNFA has fewer states than
NFA. Because we merge some states in NFA, we can get
multiple matched rules in final states of the proposed CNFA.

We will first illustrate the procedure of converting NFA
to CNFA. Table 1 lists some definitions of our CNFA
constructing algorithm to help us understand the converting
procedure. Figure 3 shows the pseudo code of the proposed
CNFA construction algorithm. Figure 4 show the NFA and
CNFA for rule set {ABCD*E, ABC.*E, CDEA+C, CDE.*C}
and Σ = {A, B, C, D, E}. Table 2 shows the complete list of
Si’ and the associated Φ(i') Figure 4(b). For example, S0 is
the initial state in NFA, S5’ denotes that the state 5 in CNFA
is equivalent to a set of corresponding NFA states where
Φ(5') = {S3, S7}. According to line 1 of the pseudo code, we
add the initial state of the proposed CNFA. Because NFA
has no ɛ-transitions, Φ(0') is set to {S0}. From lines 2-15, we
process each CNFA state Si’ and add accessible transitions
labeled with the character α from Si’ to Stmp’ that is the
temporary state of CNFA during the conversion. Unlike the
subset construction algorithm [2], we divided the process of
computing accessible transitions from a state to its next state
into two parts, the self-loop transition and the non-self-loop
transition for each state in Φ(i'). In lines 4-8, we add an
accessible non-self-loop transition Si’ to Stmp’ labeled with
character α. In lines 9-13, the same codes are performed for
self-loop transition. In line 4, function Extract-NonSelfLoop-
States(Φ(i'), α) collects all the states j from non-self-loop
transitions i  j with label α in the original NFA for i ∊ Φ(i').
In other words, it computes a set of NFA states that can be
reached from one of the NFA states in Φ(i') by a non-self-
loop transition with label α. Similarly, function Extract-
SelfLoop-States(Φ(i'), α) collects all the states j (i.e., Φ(tmp'))
from self-loop transitions i  j with label α in the original
NFA for i ∊ Φ(i'). As a result, we obtain the full table of the
proposed CNFA except the information of final states.
Therefore, in line 16-20, we mark the final states of CNFA
based the information of final states in the original NFA.
Here we will give a graphic example of converting NFA to
CNFA in Figure 4 by using rule set containing rules
“ABCD*E”, “ABC.*E”, “CDEA+C” and “CDE.*C”. Notice
that NFA is constructed according to Glushkov algorithm [3].
In this paper, we will also use the character-first format to
store the transition table of the proposed CNFA.

A. Compression by Default State
Before describing the details of the proposed

compression schemes, we analyze the number of transitions
for the NFA states based on Snort534 [4]. We observe that

most characters have a large constant number of transitions.
Every character appears to be the transition symbol for at
least 200 transitions. In other words, a source state has more
different transitions to the same destination state. This
appearance takes place due to overlapping syntaxes such as
“.” and “[^\r\n]”. As a result, based on character-first data
structure for transition table, more memory is required. In
order to reduce the number of transitions per symbol for
character-first for transition table, we record default
transition for each state by using a simple traditional state-
first transition table. Take the CNFA in Figure 4(b) as an
example. The character-first transition table is shown in
Figure 5(a). We build a default state table (DST) in Figure
5(b) including four fields, the default next state of each state,
default character and don’t care character of the default
transition, and the compliment flag. If don’t-care character
bit is 0, the default transition follows the default character.
Otherwise, the default transition is unconditional, i.e., the
default transition is taken no matter what the input character
is. If the complement flag is set to 1 and the default character
is C, the default transition will follow the symbol ^C (i.e.,
any character other than C).

B. Counter
As far as we know, counter is used to solve repetitions of

RegEx. In terms of data structure, we store the information
of repetition in a table which keeps a list of counter pairs
(min, max) for every state. Therefore, the proposed CNFA
construction algorithm has to be modified. As shown in
Figure 6(a), the reachable NFA states, Φ(tmp'), from any
state in Φ(i') returned by functions Extract-SelfLoop-States()
and Extract-NonSelfLoop-States() need further process to
consider the repetition conditions. What we do is to divide
Φ(tmp') into several groups based on the repetition
conditions performed by function UpdateCNFA(). Lines 2-5
of UpdateCNFA() in Figure 6(b) are responsible for
grouping based on the repetition conditions. GroupRepState()
function divides Φ(tmp') into several groups when Φ(i') of
current Si’ does not contain a repetition state of NFA.
IdentifyLeaveRep() function that is similar to
GroupRepState() divides Φ(tmp') into two groups, one for
the CNFA state leaving the repetition and the other for the
CNFA state continuing the repetition when current Si is a
repetition state.

TABLE 1. DEFINITIONS OF CNFA CONSTRUCTING ALGORITHM.
notation Description

Si (Si') State i in NFA (State i' in CNFA)
Φ(i') NFA states associated with state i' in CNFA

Σ The character set
GroupNum # of tuples in StateClosureGroup

StateClosureGroup
NFA states reachable from one of the NFA states in
Φ(i') are divided into GroupNum subsets based on
repetitions. These GroupNum subsets are put into
StateClosureGroup which is a GroupNum-tuple list.

Figure 3. Pseudo code of constructing CNFA.

Convert_NFA_to_CNFA (NFA)
01 CNFA = {0'} and Φ(0') = {S0}; tmp' = 1;
02 for each non-processed state i' in CNFA {
03 for each α in Σ {
04 Φ(tmp') = Extract-NonSelfLoop-States(Φ(i'), α);
05 if (Stmp’ ∉ CNFA) CNFA = CNFA + Stmp’; tmp'++;
06 add a transition Si’ to Stmp’ labeled with α;
07 Φ(tmp') = Extract-SelfLoop-States(Φ(i'), α);
08 if (Stmp’ ∉ CNFA) CNFA = CNFA + Stmp’; tmp'++;
09 add a transition Si’ to Stmp’ labeled with α; }
10 }
11 for each state i' in CNFA
12 if (any Si ∊ Φ(i') is a final state in the NFA)
13 Set Si’ as final state in CNFA;
14 return CNFA;

9Copyright (c) IARIA, 2016. ISBN: 978-1-61208-503-6

INNOV 2016 : The Fifth International Conference on Communications, Computation, Networks and Technologies

IV. GPU IMPLEMENTATIONG
In this section, we will emphasize how to parallelize the

general purpose procedure. First, all threads in the same
block initialize and update the active state list together.
Second, we also exploit parallelism that GPU offers to
accelerate. We select valid transitions for the current symbol
and all threads in the same block averagely sharing the
workloads. Similarly, we use parallelism to speed up the
process that access Default State Table when the design
architecture contains Default State.

According to different requirements, we first consider
that transition table, the default state table and then counters
should be stored in suitable type of memory space. Because
these tables need larger memory space and every task reads
the same data structure, we choose global memory and
texture memory that can be read by all threads on GPU. How
large is texture memory is dependent on the size of global
memory and texture memory is cached on chip. In some
situations, texture memory will provide higher effective
bandwidth by reducing memory requests to off-chip DRAM.
So we store our tables in texture memory.

Furthermore, we have to find out memory space suitable
for input streams. If input streams assigned in a block can be
stored in enough shared memory, we will choose this storing
mode. Because shared memory is faster than other memory
spaces except register. And the famous problem of using
shared memory is bank conflict. In order to get higher
bandwidth, shared memory is divided into memory modules
which are the same memory size when parallelizing memory
accesses. The memory module is named as bank and

different banks can be accessed at the same time. When all
16 threads of half-warp access the same memory address in
the same bank, shared memory adopt the broadcast mode to
respond requirements of half-warp. So we don’t have bank
conflict because all threads on the GPU read a character of
the input stream from shared memory at every cycle.

V. EXPERIMENT RESULTS
Our experiments are based on three rule sets and we

compare throughput and memory consumption with iNFAnt
[1]. Moreover, we show the comparison of throughput and
memory consumption with different compressed schemes.
And also we show that the influence on throughput by
workload per block.

All experiments were performed using a 4-core Intel
Core i5-650 machine running at 3.2 GHz with 8 GB of RAM.
GPU tests were implemented on the same platform equipped
with one graphic card which is NVIDIA GeForce GTX 770.
The GPU has 2 GB of RAM and 8 multiprocessors clocked
at 1.11 GHz, and its compute capability is version 3.0.
Though the GPU supports PCI-E 3.0, the motherboard on
our PC supports only PCI-E 2.0. Finally, we install Ubuntu
12.04.4 LTS x64 on the PC.

In our experiments, we use 2 rule sets which is taken
from iNFAnt [1] and an additional rule set to finish our
experiments. The first rule set, Snort534, taken from [4] is
composed of 534 regular expressions. Snort534 can be
partitioned into subsets that share an initial part while the
tails differ. The second rule set, L7-filter, is from the L7
traffic classifier [5] and consists of 115 regular expressions.
L7-filter is a very complex and irregular rule set where no

A

A

C

C
D E C

(a) NFA. (b) CNFA.

Figure 4. NFA and CNFA for Rule Set = {ABCD*E, ABC.*E, CDEA+C, CDE.*C} and Σ = {A, B, C, D, E}.

9,14

17

13 11,16

8

4, 8 2, 6

A

B

C

[^D]
E

E

.
C

C E D
C

A 1,5

C

B C E

B C E

D E A

.

.

A

D

3, 7

10,15

1

12

0 7 8

4

17

13

.

C
1 2 6

5

9

14

6

10

15

6

11

6

6

0

 A B C D E
src 0 0 5 6 6 7 9 10 0 1 5 6 7 9 0 0 3 5 6 6 7 9 9 10 0 2 5 6 7 9 0 4 5 5 6 7 7 9
dst 0 1 7 9 10 7 9 10 0 3 7 9 7 9 0 2 5 7 9 11 7 9 11 13 0 4 5 9 7 9 0 6 7 8 9 7 12 9

Total Size of TT

 A B C D E
src 0 6

0 6 9 10 5 5 7

dst 1 10 2 11 11 13 5 8 12

State # 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Default State 0 3 4 5 6 7 9 7 14 9 10 14 14 14
Default Char n/a B D C E D n/a n/a n/a n/a A n/a n/a n/a

Don’t care Char 1 0 0 0 0 0 1 1 0 1 0 0 0 0
Compliment Flag 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Figure 5. The complete data structure for Figure 4(b).

(a) The character-first transition table.

(b) The character-first transition table enhanced by default state table.

Default State Table (DST) of size |DST| = 14 Transition Table

A E B - D C
0 7 2 9 6 2 Size of TT

A E B - D C
0 30 8 38 24 14

10Copyright (c) IARIA, 2016. ISBN: 978-1-61208-503-6

INNOV 2016 : The Fifth International Conference on Communications, Computation, Networks and Technologies

special properties or common prefixes can be exploited.
Because of these same rule sets, these comparisons between
iNFAnt and the proposed CNFA deserve to be a reference.
Finally, we also take an additional rule set which is
Emerging Threats [6] Open optimized for Suricata [7]
because previous two rule sets don’t have complex regular
expressions with repetitions. Table 4 shows feature of these
rule sets.

We compare the memory consumption of the proposed
CNFA with iNFAnt [1] by using different rule sets. In
addition, we also show the difference between these
compressed schemes we proposed. Table 5 shows the
comparison results for Snort534, L7-filter, and Suricata.
Because there is no syntax of repetition in Snort534, L7-filter,
the comparison has no experimental data of Counter scheme.
We find out that CNFA decreases around 60% of memory
consumption needed by iNFAnt for Snort534, but less than
1% of memory needed by iNFAnt for L7-filter. The reason is
that Snort534 has many common prefixes between different
rules but L7-filter is a complex and irregular rule set where
no special properties or common prefixes can be utilized.
Compared to Snort534 and L7-filter, rule set Suricata has
complex repetitions. Due to complex repetition conditions,
the complete data structures of iNFAnt [1], as well as CNFA
without Counter scheme cannot be built for Suricata. So
Table 5(c) shows only experimental data of CNFA with
Counter scheme and CNFA with Counter scheme and the
default state table.

In Figure 7, we show the throughputs of iNFAnt
compared with CNFA and CNFA with Default State Table.
The difference between these two figures is that one uses
our ClamAV-based [8] synthesis and the other utilizes eth0
taken from Defcon [9]. In Figure 7(c), we use Suricata to
build our finite state machine, but the data structure of
iNFAnt can’t be built due to insufficient memory on the
device. So we only show the performance of CNFA with
counter scheme.

Finally, we test iNFAnt [1] and our proposed CNFA by
controlling the number of tasks per block. We test the two
input traces with rule set Snort534. Figure 8 shows the
throughputs. We discover that increasing the number of tasks
doesn’t evidently accelerate the searching speed of iNFAnt
[1]. The proposed CNFA gets most performance gain when
the number of tasks is four.

Figure 6. Pseudo code of the proposed CNFA construction.

NFA_to_CNFA(NFAin)
01 NFAout = {}
02 Set the initial state S0' in NFAout and let Φ(0') = {S0};
03 for each non-processed state i' in NFAout {
04 for each α in Σ {
05 Φ(tmp') = ExtractSelfLoopStates(Φ(i'), α);
06 UpdateNFAout(NFAout, i', Φ(tmp'), α);
07 Φ(tmp') = ExtractNonSelfLoopStates(Φ(i'), α);
08 UpdateNFAout(NFAout, Φ(tmp'), α); }
09 }
10 for each state i' in NFAout
12 if (any Si ∊ Φ(i') is a final state in the NFAin)
13 Set Si’,Φ(i') as one final state of the NFAout;
14 return NFAout;

UpdateNFAout(NFAout, i', Φ(tmp'), α)
01 StateClosureGroup ={};
02 if (Si',Φ(i') is a repetition state)
03 StateClosureGroup = IdentifyLeaveRep(Φ(tmp'));
04 else
05 StateClosureGroup = GroupRepState(Φ(tmp'));
06 for each set j in StateClosureGroup {
07 set temp state Stmp',Φ(tmp'), where Φ(tmp') = set j;
08 if (Si’,Φ(i') is a repetition state)
09 for each state Sx in Φ(tmp') {
10 find state Sy' in NFAout such that Sx ∈Φ(y') {
11 add a α-transition from Si' to Sy' ;
12 Φ(tmp') =Φ(tmp')-{Sx};}
13 if Φ(tmp')is not empty {
14 create a new state Stmp’,Φ(tmp') in NFAout;
15 add a α-transition from Si' to Stmp'; }
16 else
17 if (Stmp',Φ(tmp') does not exust in NFAout)
18 create a new state Stmp’,Φ(tmp') in NFAout
19 add a α-transition from Si' to Stmp';
20 }

(a) Algorithm Convert_NFA_to_CNFA_counter.

(b) Algorithm UpdateNFAout.

(a) The synthesis trace.

(b) The eth0-Hex trace.

(c) Performance of Suricata with different input traces.
Figure 7. Performance with different input traces.

T
hr

ou
gh

pu
t (

G
bp

s)

T
hr

ou
gh

pu
t (

G
bp

s)

T
hr

ou
gh

pu
t (

G
bp

s)

Input Traces

Rule Set

Rule Set

11Copyright (c) IARIA, 2016. ISBN: 978-1-61208-503-6

INNOV 2016 : The Fifth International Conference on Communications, Computation, Networks and Technologies

VI. CONCLUSION
In this paper, we proposed a scheme on GPU with

efficient utilization of memory space to avoid the so-called
state space explosion. The main for searching is that we
assign each block on GPU to process appropriate amount of
tasks. And we utilize massive amount of threads to accelerate
the process of finding possible transitions to next states.
Compared to iNFAnt [1], our scheme does not increase the
complexity of NFA searching but accelerate the searching
procedure because it can decrease the number of states for
most rule sets. And we assign each thread to be responsible
for number of tasks and avoid latency of block switch.

By utilizing the same rule set, our method can reach
101.94 Gbps for one of the tested rule sets. With our
compression scheme, we need 18% of iNFAnt’s memory
usage with the same rule set. Besides, we proposed the
architecture for counters to slow down state space explosion
which is caused by repetitions. The proposed CNFA scheme
obviously slows down our performance and we can construct
the complete search data structure for more complex rule sets
that is not possible for iNFAnt.

REFERENCES
[1] N. Cascarano, P. Rplando, F. Risso, and R, Sisto, “iNFAnt:

NFA Pattern Matching on GPGPU Devices,” ACM
SIGCOMM Computer Communication Review, vol. 40 Num.
5, pp. 21-26, 2010.

[2] J. C. Marrtin, “Introduction to Languages and the Theory of

Computation.” McGraw Hill, pp.108, 2010
[3] V-M. Glushkov, “The abstract theory of automata.” Russian

Mathematical Surveys 16-5, pp.1–53, 1961.
[4] M. Becchi, C. Wiseman, and P. Crowley, “Evaluating Regular

Expression Matching Engines on Network and General
Purpose Processors,” the 5th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems,
2009. pp. 30-39

[5] L7-filter, “Application Layer Packet Classifier for Linux”.
[Online]. Available. http://l7-filter.sourceforge.net/ 2013.06.05

[6] Emerging Threats. [Online]. http://emergingthreats.net/
[7] Suricata. [Online]. http://suricata-ids.org/ 2016.06.20
[8] ClamAV. [Online]. http://www.clamav.net/ 2016.05.03
[9] Defcon. [Online]. Available : http://www.defcon.org/ 2016.4.7
[10] K. Thompson, “Programming Techniques: Regular expression

search algorithm.” Communications of the ACM Volume 11
Issue 6, pp. 419-422, 1968.

[11] Z. K. Baker, and V. K. Prasanna, “Time and Area Efficient
Pattern Matching on FPGAs,” Proceedings of the 2004
ACM/SIGDA 12th international symposium on Field
programmable gate arrays, pp.223-232, 2004.

[12] X. Zha, and S. Sahni, “GPU-to-GPU and Host-to-Host
Multipattern String Matching On A GPU,” IEEE Transactions
on Computers, vol.62, pp.1156-1169, 2013.

[13] C.-H. Lin, C.-H. Liu, L.-S. Chien, and S.C. Chang,
“Accelerating Pattern Matching Using a Novel Parallel
Algorithm on GPUs,” IEEE Transactions on Computers, 62
(10), pp.1906-1916, 2013.

TABLE 4. DETAILS OF RULE SETS
Snort534 [4] L7-filter [5] Suricata [6]

534 115 1195

common prefixes complex, irregular,
and no common prefixes

similar to snort and
complex repetition

Figure 8. Performances of different number of tasks.

(a) The synthesis trace.

(b) The eth0-Hex trace.

TABLE 5. MEMORY (KB) CONSUMED by iNFANT, CNFA, AND
CNFA WITH DEFAULT STATE (denoted by CNFAde).

 iNFAnt CNFA CNFAde
of states 14,566 9,696 9,696

of transitions 160,657 59,869 3,225
TT 627.6 233.9 12.6

DST N/A N/A 74
Match Table 56.9 2.1 2.1

Match List Flag N/A 37.9 37
Total 685.5 274.9 125.7

Ratio over iNFAnt x1.0 x0.40 x0.18

 iNFAnt CNFA CNFAde
of states 6,123 6,006 6,006

of transitions 1,400,594 1,397,104 1,397,104
TT 5471.1 5427.2 914.4

DST N/A N/A 295.8
Matched Table 23.9 23.5 23.5

Matched List Flag N/A 3.0 3.0
Total 5496.0 5454.7 1236.8

Ratio over iNFAnt x1.0 x0.99 x0.23

 CNFA CNFAde
of states 27,574 27,574

of transitions 423,501 41,592
TT 1653.8 162.5

DST N/A 353.3
Repetition Table 107.7 107.7
Matched Table 7.4 7.4

Matched List Flag 107.7 107.7
Total 1876.6 738.5

(a) Snort534 with no repetition syntax.

(b) L7-filter with no repetition syntax.

(c) Suricata with repetition syntax.

12Copyright (c) IARIA, 2016. ISBN: 978-1-61208-503-6

INNOV 2016 : The Fifth International Conference on Communications, Computation, Networks and Technologies

http://emergingthreats.net/
http://www.clamav.net/
http://www.defcon.org/

	I. Introduction
	II. RELATED WORK
	III. PROPOSED SCHEME
	A. Compression by Default State
	B. Counter

	IV. GPU IMPLEMENTATIONg
	V. EXPERIMENT RESULTS
	VI. CONCLUSION
	References

