INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

FuzzBOMB: Autonomous Cyber Vulnerability Detection and Repair

David J. Musliner, Scott E. Friedman, Michael Boldt, J. Benton, Max Schuchard, Peter Keller

Smart Information Flow Technologies (SIFT)

Minneapolis, USA
email: {dmusliner,sfriedman,mboldt} @sift.net

Stephen McCamant

University of Minnesota
Minneapolis, USA
email: mccamant@cs.umn.edu

Abstract—Beginning just over one year ago, Smart Informa-
tion Flow Technologies (SIFT) and the University of Minnesota
teamed up to create a fully autonomous Cyber Reasoning
System (CRS) to compete in the Defense Advanced Research
Projects Agency (DARPA) Cyber Grand Challenge (CGC).
Starting from our prior work on autonomous cyber defense and
symbolic analysis of binary programs, we developed numerous
new components to create FUzzBOMB. In this paper, we outline
several of the major advances we developed for FuzzBoMB,
and review its performance in the first phase of the CGC
competition.

Keywords-autonomous cyber defense; symbolic analysis; pro-
tocol learning; binary rewriting.

I. INTRODUCTION

In June 2014, DARPA funded seven teams to build
autonomous CRSs to compete in the DARPA CGC. SIFT
and the University of Minnesota (UMN) together formed
the FUzzBOMB team, building on our prior work on the
FUZZBUSTER cyber defense system [1] and the FuzzBALL
symbolic analysis tool [2].

SIFT’s FUZZBUSTER system automatically finds flaws
in software using symbolic analysis tools and fuzz testing,
refines its understanding of the flaws using additional test-
ing, and then synthesizes adaptations (e.g., input filters or
source-code patches) to prevent future exploitation of those
flaws, while also preserving functionality. FUZZBUSTER
includes an extensible plug-in architecture for adding new
analysis and adaptation tools, along with a time-aware,
utility-based meta-control system that chooses which tools
are used on which applications during a mission [3]. Before
the CGC began, FUZZBUSTER had already automatically
found and shielded or repaired dozens of flaws in widely-
used software including Linux tools, web browsers, and web
servers.

In separate research, Prof. Stephen McCamant at UMN
had been developing the FuzzBALL tool to perform sym-
bolic analysis of binary x86 code. FuzzBALL combines
static analysis and symbolic execution to find flaws and
proofs of vulnerability through heuristic-directed search and
constraint solving. On a standard suite of buffer overflow

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2

vulnerabilities, FuzzBALL found inputs triggering all but
one, many with less than five seconds of search [2].

Together, FUZZBUSTER and FuzzBALL provided the
seeds of a strategic reasoning framework and deep binary
analysis methods needed for our FuzzBoMB CRS. How-
ever, many challenges still had to be addressed to form
a fully functioning and competitive CRS. In this paper,
Section II describes the CGC competition, Sections III
and IV overview our prior components, Section V outlines
several of the major advances we developed for FUZZBOMB,
and Section VI reviews its performance in the first phase of
the CGC competition.

II. DARPA’S CYBER GRAND CHALLENGE

Briefly, the CGC is designed to be a simplified form of
Capture the Flag game in which DARPA supplies Challenge
Binaries (CBs) that nominally perform some server-like
function, responding to client connections and engaging in
some behavioral protocol as the client and server communi-
cate. The CBs are run on a modified Linux operating system
called Decree, which provides a limited set of system calls.
In the competition, CBs are provided as binaries only (no
source code) and are undocumented, so the CRSs have no
idea what function they are supposed to perform. However,
in some cases a network packet capture (PCAP) file is
provided, giving noisy, incomplete traces of normal non-
faulting client/server interactions (“pollers”). Within each
CB is one or more vulnerability that can be accessed by the
client sending some inputs, leading to a program crash. To
win the game, a CRS must find the vulnerability-triggering
inputs (called Proofs of Vulnerability (PoVs)) and also repair
the binary so that the PoVs no longer cause a crash, and
all non-PoV poller behavior is preserved. The complex
scoring system rewards finding PoVs, repairing PoVs, and
preserving poller behavior, and penalizes increases in CB
size and decreases in CB speed.

III. BACKGROUND: FUZZBUSTER

Since 2010, we have been developing FUZZBUSTER under
DARPA’s Clean-Slate Design of Resilient, Adaptive, Secure

10

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

Reactive
Innate
l;r::ga 2>I<STo?t Exemplar: Refined
b faulting vulnerability
o test case profile Crt:!:s, /Q)s;)e/ss,
roactive o
Fuzz-testing Adaptation

Fuzzbuster
synthesizes
possible
exploit

Iterate to
improve adaptation

Figure 1. FUZZBUSTER refines both proactive and reactive fault exemplars
into vulnerability profiles, then develops and deploys adaptations that
remove vulnerabilities.

Hosts (CRASH) program to use software analysis and adap-
tation to defeat a wide variety of cyber-threats. By coordi-
nating the operation of automatic tools for software analysis,
test generation, vulnerability refinement, and adaptation gen-
eration, FUZZBUSTER provides long-term immunity against
both observed attacks and novel (zero-day) cyber-attacks.

FUZZBUSTER operates both reactively and proactively, as
illustrated in Figure 1. When an attacker deploys an exploit
and triggers a program fault (or other detected misbehavior),
FUZZBUSTER captures the operating environment and recent
program inputs into a reactive exemplar. Similarly, when
FUZZBUSTER’s own software analysis and fuzz-testing tools
proactively create a potential exploit, it is summarized
in a proactive exemplar. These exemplars are essentially
tests that indicate a (possible) vulnerability in the software,
which FUZZBUSTER must characterize and then shield from
future exploitation. For example, an exemplar could hold a
particular long input string that arrived immediately before
an observed program fault.

Starting from an exemplar, FUZZBUSTER uses its program
analysis tools and fuzz-testing tools to refine its understand-
ing of the vulnerability, building a vulnerability profile (VP).
For example, FUZZBUSTER can use concolic testing to find
that the long-string reactive exemplar is triggering a buffer
overflow, and the VP would capture this information. Or,
FUZZBUSTER can use delta-debugging and other fuzzing
tools to determine the minimal portion of the string that
triggers the fault.

At the same time, FUZZBUSTER tries to create software
adaptations that shield or repair the underlying vulnerability.
In the simplest case, FUZZBUSTER may choose to create a
filter rule that blocks some or all of the exemplar input (i.e.,
stopping the same or similar attacks from working a second
time). This may not shield the full extent of the vulnerability
(or may be too broad, compromising normal operation),
so FuzzBUSTER will keep working to refine the VP and
develop more effective adaptations. Even symbolic analysis
may not yield a minimal description of the inputs that
can trigger a vulnerability: there may be many vulnerable
paths, only some of which are summarized by a constraint
description. Over time, as FUZZBUSTER refines the VP and
gains a better understanding of the flaw, it may create more

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2

FuzzBALL

Decision Procedure Interface

STP
Path Condition:
a>10&& b =

Symbolic Interpreter 3& ... ||

1

%eax: 0x00ffoOff

cobx: a1 Bx12 Decision Tree Z3

Instruction
VEX Translation
Cache
oxdonts EAX < EAX + 1 Variable-sized Symbolic Memory
) [4 Mot el T 11T 111
aots besora
Vine | | 4-
Figure 2. An overview of our FuzzBALL binary symbolic execution
engine.

sophisticated and effective adaptations, such as filters that
block strings based on length not exact content, or actual
software patches that repair the buffer overflow flaw.

While FUZZBUSTER already had the coordination infras-
tructure and representation/reasoning to manage exemplars,
VPs, and adaptations, many of the tools we had integrated
could not apply to the CGC because they do not operate
directly on binaries. To fill these gaps and support the full
spectrum of vulnerability detection, exploitation, and repair
needed for CGC, we integrated with UMN’s FuzzBALL and
also developed new components, as described below.

IV. BACKGROUND: FuzzBALL

FuzzBALL is a flexible engine for symbolic execution and
automatic program analysis, targeted specifically at binary
software. In the following paragraphs we briefly describe
the concepts of symbolic execution and explain FuzzBALL’s
architecture, emphasizing its features aimed at binary code.

The basic principle of symbolic execution is to replace
certain concrete values in a program’s state with symbolic
variables. Typically, symbolic variables are used to represent
the inputs to a program or sub-function, and the symbolic
analysis results in an understanding of what inputs can lead
to different parts of a program. An interpreter executes
the program, accumulating symbolic expressions for the
results of computations that involve symbolic variables,
and constraints (in terms of those symbols) that describe
which conditional branches will occur. These symbolic
expressions are valuable because they can summarize the
effect of many potential concrete executions (i.e., many
possible inputs). When a symbolic expression is used in a
control-flow instruction, we call the formula that controls the
target a branch condition. On a complete program run, the
conjunction of the conditions for all the symbolic branches
is the path condition. We can use an Satisfiability Modulo
Theories (SMT) solver (such as Z3 [4]) on a path condition
to find a set of concrete input values that would cause the
corresponding path to be executed, or to determine what
other paths might be feasible.

Many symbolic execution tools operate on program source
code (e.g., KLEE, Crest), but FuzzBALL is differentiated
by its focus on symbolic execution of binary code. At

11

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

its core, FuzzBALL is an interpreter for machine (e.g.,
x86) instructions, but one in which the values in registers
and memory can be symbolic expressions rather than just
concrete bit patterns. Figure 2 shows a graphical overview of
FuzzBALL’s architecture. As it explores possible executions
of a binary, FuzzBALL builds a decision tree data structure.
The decision tree is a binary tree in which each node rep-
resents the occurrence of a symbolic branch on a particular
execution path, and a node has children labeled “false” and
“true” representing the next symbolic branch that will occur
in either case. FuzzBALL uses the decision tree to ensure
that each path it explores is different, and that exploration
stops if no further paths are possible.

We have used FuzzBALL on several CGC-relevant
research projects, which typically build on the basic
FuzzBALL engine by adding heuristics or other fea-
tures specialized for a particular problem domain. For
FuzzBowMmB and the CGC, we integrated FuzzBALL with
the FUZZBUSTER reasoning framework and significantly
extended FuzzBALL’s program analysis capabilities.

V. NEW DEVELOPMENTS
A. Hierarchical Architecture

We designed FUzzBOMB to operate on our in-house
cluster of up to 20 Dell Poweredge C6100 blade chas-
sis, each holding eight Intel XEON Harpertown quad-core
CPUs. To allocate this rack of computers, we designed a
hierarchical command-and-control scheme in which differ-
ent FUzZZBOMB agents play different roles. At the top of
the hierarchy, several agents are designated as “Optimus”,
or leader agents. At any time, one is the primary leader,
known as Optimus Prime (OP). All of the other Optimi
are “hot backups,” in case OP goes down for any reason
(hardware failure, software crash, network isolation). All
messages sent to OP are also sent to all of the other Optimi,
so that their knowledge is kept up to date at all times. We
enhanced our existing fault detection and leader election
protocol methods to ensure that an OP is active in the cluster
with very high reliability. We usually configure FUzZBOMB
with three Optimi, each run on a different hardware chassis
in the cluster.

Below OP, a set of “FuzzBOMB-Master” agents are
designated, each to manage the reasoning about a single
CB. OP’s main job is allocating CBs to those Master
agents and giving them each additional resources (other
FuzzBoMBS, DVMs) to use to improve their score on a
CB. A FuzzBoOMB-Master’s job is improve its score on its
designated CB, using its allocated computing resources in
the best way possible (whether that is analysis, rewriting,
or testing/scoring). As progress is made on each CB, the
responsible FUzzBoMB-Master will report that progress and
the best-revised-CB-so-far back to OP.

OP’s objective is to maximize the system’s overall score,
keeping in mind deadlines and other considerations. By

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2

design, OP should dynamically re-allocate the reasoning
assets to the most challenging problems, to maximize the
overall system’s score. OP is also responsible for uploading
FuzzBOMB’s final best answers to the competition.

B. FuzzBALL Improvements

FuzzBoOMB uses an improved FuzzBALL symbolic ex-
ecution engine in an approach that combines ideas from
symbolic execution and static analysis in order to find vul-
nerabilities in binary programs. A static-style analysis iden-
tifies parts of the program that might contain a vulnerability.
Then a symbolic execution search seeks an execution path
from the start of the program to the possible vulnerability
point that constitutes a proof of vulnerability. Symbolic
execution generates a number of input constraint sets, each
set representing a family of related program execution paths.
The symbolic execution engine uses these constraint sets
to determine the inputs to the program that can reach the
program vulnerability, offering a proof-of-concept exploit.
While exploring this space, the symbolic execution engine
will encounter many decision points (such as conditional
branches). Each of these decision points branches off a new
set of paths, leading to an exponentially growing number
of paths. Exploring this search space of paths represents a
significant computational effort. Scaling up the search in a
way that mitigates this path explosion poses a key challenge.
To overcome this problem, we applied parallelization tech-
niques and heuristic search improvements, as well as other
algorithmic changes.

1) Heuristic Guidance: Because the space of program ex-
ecutions is vast, even in the constraint-based representations
of symbolic reasoning, heuristic guidance is essential. For
the CGC, the key objective is to guide the search towards po-
tential vulnerabilities. FUZZBOMB identifies potentially vul-
nerable instruction sequences and uses abstraction heuristics
to focus the search towards those targets. Although a wide
variety of source-level coding mistakes can leave a program
vulnerable, these dangerous constructs are more uniform
when viewed in terms of the binary-level capability they
give to an attacker. For example, many types of source-code
vulnerabilities create binary code in which the destination of
an indirect jump instruction can be influenced by an attacker.
The source-code and compiler details about why such a
controllable jump arises are often irrelevant, and are not our
focus. In particular, FUzzBOMB does not try to decompile
a binary back to a source language, nor will it identify
which particular source code flaw describes a vulnerability.
FuzzBOMB’s search guidance strategies target just these
end-result capabilities, e.g., searching for an indirect jump
that can be controlled to lead to attack code.

FuzzBOMB uses problem relaxation heuristics to re-
duce the search space of possible executions, drawing on
recent advances in heuristic search techniques for directed
symbolic execution and Artificial Intelligence (AI) planning.

12

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

To search through very large spaces, these techniques use
rapid solutions to relaxed or approximate versions of their
real problems to provide heuristic guidance. Over the last
dozen years, research on relaxation heuristics has produced
immense improvements in the scalability of AI planning
and other techniques. For example, Edelkamp et al. [5]
report up to four orders of magnitude reduction in nodes
searched in model-checking. Similarly, Al planning systems
have gone from producing plans with no more than 15
steps to plans with hundreds of steps (representing many
orders of magnitude improvement in space searched). These
techniques are only now being applied to directed symbolic
execution to help find program paths to vulnerabilities (e.g.,
Ma et al. [6]).

For FuzzBOMB, the problem is to find a symbolic execu-
tion path through a program that leads to a vulnerability. One
key research challenge is finding the best relaxation method
for symbolic execution domains. We developed an approach
using causal graph heuristics found in Al planning search [7]
to direct symbolic execution, in a manner similar to call-
chain backwards symbolic execution [6]. These heuristics
use factorization to generate a causal model of subproblems,
then “abstract away” interactions between the subproblems
to create a relaxed version of the problem that can be solved
quickly at each decision point during search. In symbolic
execution, solving the relaxed problem determines:

o A reachability analysis to a vulnerability. If the re-
laxation of the program indicates a vulnerability is
unreachable from a particular program decision point,
then exploring from that point is fruitless.

o A distance estimate at each decision point that lets
exploration proceed along an estimated shortest path.

To generate the relaxation heuristic, FUZZBOMB uses
the causal model present within data-flow and control-flow
graph (CFG) structures used in binary program analysis. For
instance, in a CFG, nodes represent blocks of code and edges
represent execution order. This provides a subproblem struc-
ture, allowing for bottom-up solving of each subproblem.

2) Other Improvements: The FuzzBALL approach to
hybrid symbolic execution and static analysis needed many
other improvements to work on the CGC CBs. Our major
developments have included:

o Porting to Decree— We adapted FuzzBALL to han-
dle the unique CB format, including emulating the
restricted Decree system calls and handling the specific
limitations of the CB binary format.

e Improving over-approximated CFG methods— Prior
to symbolic analysis, FuzzBALL requires the control
flow graph (CFG) of the target binary. Various existing
methods are all imperfect at recovering CFGs, but
some can be combined. We developed a new CFG-
recovery tool that leverages prior work on recursive
disassembly along with an updated over-approximation

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2

method that finds all of the bit sequences in a binary
representing valid addresses/offsets within the binary
and treats those as possible jump targets. While this
overapproximation is extreme, FUZZBOMB uses heuris-
tics to reduce the size of the resulting CFGs.

o Detecting input-controllable jumps— As FuzzBALL
extends branch conditions forward through the possible
program executions, whenever it reaches a jump it
formulates an SMT query asking whether the CB inputs
could force the jump to 42 (i.e., an arbitrary address).
If so, a likely vulnerability has been identified.

o Detecting null pointer dereferences, return address
overwrites, and various other vulnerable behaviors.

« Making incremental solver calls— We have enhanced
FuzzBALL’s SMT solver interface so that it can behave
incrementally. For example, after querying if a jump
target is input-controllable, it can retract that final part
of the SMT query and the SMT solver can retain
some information it derived during the prior solver
call. Microsoft’s Z3 SMT solver is state of the art and
supports this type of incremental behavior.

« Handling SSE floating point (FP)— The original
FuzzBALL implementation used a slow, emulation-
based method to handle floating point calculations, and
it could not handle the modern SSE FP instructions. We
have recently completed major extensions that allow
FuzzBALL to handle SSE FP instructions using Z3.
We have switched over to using Z3 by default, and
are collaborating with both the Z3 and MathSATS
developers to fix bugs in their solvers and improve their
performance.

o Implementing veritesting— David Brumley’s group
coined this term for a flexible combination of dynamic
symbolic execution (DSE) and static symbolic execu-
tion (SSE) used to reason in bulk about blocks of code
that do not need DSE [8]. We completed our own first
version of this capability, along with associated test
cases and SMT heuristic improvements. However, as
noted below, this improvement was not used during
the actual competition because its testing and validation
was not complete.

Symbolic execution can be expensive because it is com-
pletely precise; this precision ensures that the approach can
always create proofs of vulnerabilities. At the same time, it
is valuable to know about potentially dangerous constructs
even before we can prove they are exploitable. To that end,
we modified FuzzBALL to run as a hybrid of static analysis
and symbolic execution techniques.

C. Proofs of Vulnerability (PoVs)

We developed two ways of creating PoVs. First, when
FuzzBALL identifies a vulnerability that can be triggered
by client inputs, it will have solved a set of constraints
on the symbolic input variables that describe a class of

13

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

PoVs for that vulnerability. Depending on the constraints,
the PoV description may be more or less abstract (i.e., it
may require very concrete inputs or describe a broad space
of inputs that will trigger the vulnerability). For the concrete
case, FUzzBOMB has a mechanism to translate FuzzBALL’s
constraints into the XML format required for a PoV.

Second, if a CB is provided with a PCAP file that illus-
trates how it interacts with one or more pollers, FUzZZBOMB
uses protocol reverse engineering techniques to derive an
abstract description of the acceptable protocols for a CB.
FuzzBOMB then feeds this protocol description into one or
more fuzzing tools, to try to develop input XML files that
trigger an unknown vulnerability.

We initially developed a protocol reverse engineering tool
building on Antunes’ ideas [9]. However, the techniques
did not scale well to the large numbers of pollers present
in the CGC example problems, and they are not robust to
the packet loss present in the provided packet captures. We
then developed a less elaborate protocol analysis tool which,
while not providing a full view of the protocol state machine,
allows FuUzzBOMB to generate protocol sessions which are
accepted by the CBs. This tool uses a heuristic approach,
based on observations from prior work in the field [10], to
identify likely protocol command elements, fields required
for data delivery to the CBs (e.g. message lengths and field
offsets), and message delimiters. Additionally, the protocol
inference tool also attempts to identify session cookies and
simple challenge/response exchanges that are required by
the protocol. Significant effort was also required to process
the DARPA-provided PCAP files because they contain un-
expected packet losses and non-TCP-compliant behavior.

D. Binary Rewriting

We have developed a powerful binary rewriting tool suite
that includes mechanism for rewriting instructions, relocat-
ing code, and inserting arbitrary code into binaries (if neces-
sary, via trampolining) [11]. Building off of the conservative,
over-approximated CFG, these rewriting tools can be used to
perform a variety of proactive defensive rewrites as well as
focused repairs. For example, FUzZzBOMB can inject well-
known techniques such as stack canaries that can protect
against stack smashing and code injection attacks. We have
developed a search-based method for trying different stack
canary injection locations, trying to find a location for the
canary and the canary-check that preserves known good
functionality and defeats known PoVs.

We have also developed an “unstripping” tool that finds
the unique bit patterns of the 1ibcgc library calls in a
binary. FuzzBoMB will use this information to identify
which library calls are not used in a particular CB, and their
space can be reclaimed for use by the binary rewriting tool
(without expanding the size of the binary at all).

Initially, finding space to inject canaries and trampolining
code was a major challenge. FUzZZBOMB has three methods

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2

for finding space to use for rewriting:

« Hijacking program header segments.

« Using file space in between segments (which start on

page boundaries).

« Extending a file’s executable segment up to the next

page boundary.

We have also developed purely defensive rewriting meth-
ods that can protect against flaws that FUzZBOMB has
not yet identified. Currently, our defensive measures use
heuristics to identify functions that receive input data and
seem likely to contain a potential overflow flaw. The system
then incrementally adds canary-based stack protection to
those blocks, re-testing the resulting CB version to see if it
still performs as expected. However, the performance (speed)
impact of these changes is difficult to assess without many
test cases. By default, FUzZZBOMB chooses to add stack
protection to just three target blocks, chosen heuristically.

VI. RESULTS AND CONCLUSIONS

The first year of CGC involved three opportunities to as-
sess FUzZBOMB’s performance: two practice Scored Events
(SE1 and SE2) and the CGC Qualifying Event (CQE),
which determined which competitors would continue to
the second year of competition. In SEI, DARPA released
fifteen challenge binaries, some of which had multiple
vulnerabilities. At the time, FUzzBOMB had only recently
become operational on our computing cluster, and it did
not solve many of the problems. However, with access to
the source of the SE1 examples and many bug fixes, some
months later we had improved FUzzBOMB enough that it
was able to find vulnerabilities in four of the problems,
including at least one undocumented flaw. For each of those
vulnerabilities, FUzzBOMB had a repair that was able to
stop the vulnerability from being attacked while also pre-
serving all of the functionality tested by up to 1000 provided
test cases. FUzZBOMB also create defensive rewrites for all
of the other binaries. In SE2, DARPA provided nine new
challenge binaries in addition to the prior fifteen, giving a
total of twenty-four. Each problem was supplied with either
no PCAPs or a PCAP file containing up to 1000 client/server
interactions. At the time of SE2, FUzZBOMB was only able
to find two of the new vulnerabilities, but that performance
was enough to earn fourth place, when the SEl problems
were included in the ranking.

Our progress in improving the system was slowed by ma-
jor problems with the government-provided testing system:
running parallel tests interfered with each other, and running
batches of serialized tests could cause false negatives, hiding
vulnerabilities. This meant we had to run tests one at a
time, incurring major overhead and making test-running a
major bottleneck (especially when given 1000 tests from
PCAPs, or when FUzZBOMB created many tests itself).
We finally resolved these issues by discarding the provided
testing tool and writing our own. Our tool supported safe

14

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

parallel testing and increased testing speeds by at least two
orders of magnitude. However, it took many weeks to come
to that conclusion. Several key analysis functions were not
completed, including handling challenge problems that had
multiple communicating binary programs, complete support
for SSE floating point instructions, and veritesting. We also
were not able to build the ability to have the system re-
allocate compute nodes to different CBs or to different
functions (DVM vs. running FuzzBALL). By the time of
the CQE, in June 2015, FuzzBOMB was only able to fully
solve seven of the twenty-four SE2 problems. If given the
PoVs for the twenty-four problems, the repair system was
able to fix twelve CBs perfectly, and the defense system
earned additional points on the remaining CBs.

For CQE, DARPA provided 131 all-new problems to the
twenty-eight teams who participated (out of 104 originally
registered). Each problem was supplied with either no
PCAPs or a single client/server interaction. Unfortunately,
this singleton PCAP triggered an unanticipated corner case
in FUuzzBOMB’s logic: the protocol analysis concluded that
every element of the single client/server interaction was a
constant, so the protocol had no variables to fuzz. And the
default fuzz-testing patterns were not used because there
was a protocol. Thus FuzzBOMB’s fuzzing was completely
disabled for those challenge problems. Also, because the re-
allocation functionality was not available, we had to pre-
allocate the number of DVMs vs. FuzzBALL symbolic
search engines. We chose to use 325 DVMs and only 156
FuzzBOMBS, because testing had been such a bottleneck.
However, since there were almost no test cases provided in
the PCAP files and fuzzing was disabled, FUzZBOMB had
very few tests to run, and the DVMs were largely idle. With
most CBs having only a single FuzzBALL search engine,
there was little parallel search activity, and FuzzZBOMB
only found vulnerabilities in 12 CBs (some using prior SE2
PoVs). Of those, with the limited testing available, repair
was only able to perfectly fix six (as far as our system could
tell). Defense rewrote all of the remaining problems.

When the final CQE scores were revealed, FUzzBOMB
came in tenth place and did not qualify to continue in the
competition (only the top seven teams qualified). In addition
to the singleton PCAP files and other issues, we learned of
another “curveball” when the scores were released: among
the 131 test cases, there were 590 known vulnerabilities,
an average of more than 4.5 flaws per binary. In hindsight,
FuzzBOMB’s defensive system should have been much
more aggressive in adding blind checks, to try to capture
some points from all of those flaws. Our conservative
rationale had been that retaining performance was more
important, but with that many flaws per CB, the balance is
changed. Even so, defensive rewriting earned FUZZBOMB
more points than its active analysis and repair capability.
This result supports our notion that CGC-relevant flaws boil
down to a small number of patterns in binary, and can be

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2

addressed with a small number of repair/defense strategies.

Fortunately, the story is not over for FUzzBOMB; we have
other customers who are interested in the technology, and
we are actively pursuing transition opportunities to more
real-world cyber defense applications.

ACKNOWLEDGMENTS

This work was supported by DARPA and Air Force Research
Laboratory under contract FA8750-14-C-0093. The views, opin-
ions, and/or findings contained in this article are those of the
authors and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S.
Government. Approved for Public Release, Distribution Unlimited.

REFERENCES

[1] D.J. Musliner et al., “Fuzzbuster: Towards adaptive immunity
from cyber threats,” in Proc. SASO-11 Awareness Workshop,
October 2011, pp. 137-140.

[2] D. Babi¢, L. Martignoni, S. McCamant, and D. Song,
“Statically-directed dynamic automated test generation,” in
Proceedings of the ACM/SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA), Toronto, ON,
Canada, Jul. 2011, pp. 12-22.

[3] D. J. Musliner, S. E. Friedman, J. M. Rye, and T. Mar-
ble, “Meta-control for adaptive cybersecurity in FUZZ-
BUSTER,” in Proc. IEEE Int’l Conf. on Self-Adaptive and
Self-Organizing Systems, September 2013, pp. 219-226.

[4] L. de Moura and N. Bjgrner, “Z3: An efficient SMT solver,”
in Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), ser. LNCS, vol. 4963. Springer, Apr.
2008, pp. 337-340.

[5] S. Edelkamp et al., “Survey on directed model checking,” in
Model Checking and Artificial Intelligence, 2008, pp. 65-89.

[6] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks, “Directed
symbolic execution,” in Static Analysis Symposium (SAS),
Venice, Italy, Sep. 2011, pp. 95-111.

[71 M. Helmert, “The fast downward planning system,” Journal
of Artificial Intelligence Research, vol. 26, no. 1, 2006, pp.
191-246.

[8] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley,
“Enhancing symbolic execution with veritesting,” in
Proceedings of the 36th International Conference on
Software Engineering, 2014, pp. 1083-1094. [Online].
Available: http://doi.acm.org/10.1145/2568225.2568293

[9] J. Antunes, N. Neves, and P. Verssimo, “Reverse engineering
of protocols from network traces,” in Proc. 18th Working
Conf. on Reverse Engineering (WCRE), 2011, pp. 169-178.

[10] W. Cui, V. Paxson, N. Weaver, and R. H. Katz, “Protocol-
independent adaptive replay of application dialog,” in NDSS,
2006.

[11] S. E. Friedman and D. J. Musliner, “Automatically repairing
stripped executables with CFG microsurgery,” in Adaptive
Host and Network Security Workshop at the IEEE Int’l Conf.
on Self-Adaptive and Self-Organizing Systems, 2015.

15

