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Abstract—Signature-based malicious code detection systems 

cannot in real-time detect unknowns, such as polymorphic and 

metamorphic codes, which can be used as zero-day attacks. 

More serious situation is that many automated engines easily 

generate new malicious codes without the attacker’s special 

knowledge. We have already proposed a method to detect pol-

ymorphic parts of suspicious packets in anomalous network 

traffic. In this paper, we introduce the experiments and analy-

sis to show the real field effectiveness and performance of our 

method. 
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I.  INTRODUCTION 

Static analysis methods [2] to detect polymorphic exploit 
codes can be avoided by exploits using static analysis re-
sistant techniques, which includes disassembly thwarting and 
self-modifying code techniques. To catch the techniques, 
dynamic analysis methods that directly emulate the instruc-
tions of packets include full dynamic analysis methods [3], 
which use a CPU emulator, and a hybrid analysis method [4], 
which uses both static and dynamic analyses. 

Full emulation methods have an advantage in that they 
can detect most encrypted malicious codes. However, the 
overhead of emulating instructions makes it difficult to apply 
to real high-speed networks. A hybrid method offers better 
performance than a full method because the starting point of 
emulation can be selected through the support of a static 
analysis. However, hybrid methods are still insufficient for 
real networks owing to the complicated operational process 
of a static analyzer and an emulator.  

Our previous work [1] showed that it can detect the de-
cryption routine using the disassembly thwarting and self-
modifying techniques. In this paper, we will present more 
practical examples and experiment results to show real field 
effectiveness. 

The rest of the paper is organized as follows. In Section 2, 
we overview our method and describe the operation steps. In 
Section 3, we show our evaluation results. Finally, we con-
clude the paper in Section 4. 

II.  ENCRYPTED CODE ANALYZER 

In this section, we will present the overview and example 
of our previous work [1] to help the understanding of our 
experiment results. 

A. Overview 

Our encrypted code analyzer detects the loop code in-
structions in an encrypted exploit code to decrypt the en-
crypted code itself. Normally, for ease of development, the 
decryption routine of an encrypted code stores the current 
program counter value on the stack and uses the value as the 
address for accessing the memory of an encrypted original 
code.  Our previous work includes four kinds of components. 

Firstly, seed detector detects the instructions loading the 
current program counter, which is a base value, into the stack. 
The Register Loading Base Value (RLBV) detector traces a 
register loading the program counter value on the stack. The 
Memory access Using Base Value (MUBV) detector traces 
the movements of registers including the base value between 
instructions. Lastly, loop detector determines the existence of 
a loop code if the final register traced by the MUBV detector 
is used for the instructions to access memory. 

B. Operation Process 

Non-malicious codes normally don't hide their original 
codes. One of new techniques for avoiding signature-based 
detection systems is code encryption. Encrypted malicious 
codes, which are polymorphic codes, have any code routine 
for decrypting to original codes at run-time. Our analyzer is 
based on the special patterns of decryption routine codes. If 
there are non-malicious codes that have similar behaviors to 
malicious codes, it needs more time and analysis to classify 
those. The cases are out of scope for our analyzer targeting 
real-time detection. 

The analyzer in Figure 1(a) detects the seed instructions 
that store the address value related to the current program 
counter into a stack memory. The address indicates the start 
address of encrypted codes, which is called the base address. 
If the seed instructions are detected, the analyzer generates a 
virtual stack to trace the operations of the stack with the base 
address and in (b) detects a register loading the base address. 
After that, (c) the analyzer traces the movements of the base 
address from the first register, and (d) checks whether the 
final register with the base address is used for accessing a 
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Figure 1. Encrypted code analyzer: (a) seed codes, (b) RLBV codes, (c) 

MUBV codes, (d) loop codes, and (e) encrypted codes. 

 

Figure 2. The decryption routines detected by the encrypted code ana-

lyzer: (a) Call4DwordXor, (b) FnstenvMov, (c) PexAlpha-Num, and (d) 

NonAlpha (e) Pex. 

 
 

Figure 3. The processing overhead. 

valid memory address. The detected codes of (d) decrypt the 
encrypted codes of (e). 

The seed detector finds the instructions shown in Figure 
1(a) and creates a virtual stack. The instructions frequently 
used for a seed are call, fsave, fnsave, fstenv, and fnstenv. As 
an example, if fnstenv [esp-0c] is detected, the base address 
is on the top of the stack and is written on the created virtual 
stack. To decrypt the encrypted codes, the loop codes load 
the base address into a register using instructions such as pop 
esi. The RLBV detector traces the position of the base ad-
dress stored on the real stack using a virtual stack that is op-
erated by instructions such as push/pop, inc/dec/sub/add, and 
mov. Finally, the detector determines the last register using 
the base address. 

A register with the base address is referenced for access-
ing the address range of the encrypted code. Attackers can 
move the base address to other registers to hide the memory 
accesses referenced by the register with the base address. 
The MUBV detector expresses the movements between reg-
isters as the connection graph for inspecting the register rela-
tions. Through this graph, the detector can determine a final 
register with the base address. The loop detector analyzes the 
instructions for accessing any range of memory with the base 
address included in the detected register. One case of instruc-
tions is xor byte ptr [ecx+esi-1],93, and our detector analyzes 
the validity of the address range. If the instruction accesses 
the memory range near the re-assembled payloads, the detec-
tor determines that the payloads are encrypted malicious 
codes and reports the start-position, Senc, and end-position, 
Eenc, to our signature generation system. Our previous work 
[1] described the encrypted code analyzer in greater detail. 

III. EXPERIMENTS 

Our previous work showed the detection rate, false posi-
tive rate, and performance of our encrypted code analyzer. 
For evaluating the detection rate, we used four kinds of pol-
ymorphic generation tools, and thirteen kinds of polymor-
phic generation engines. Our analyzer archived a 100% de-
tection rate for all polymorphic codes that include disassem-
bly thwarting and self-modifying code techniques. 

Figure 2 shows several detection results against the en-
cryption routines that were generated from the use of 
Linux/x86/shell_bind_tcp exploit. Moreover, the low instruc-
tion traversing counts indicate that the detection speed of our 
analyzer is similar to other static methods.  

Figure 3 shows the processing overhead estimated under 
the system for a 3.2 GHz Pentium 4 processor with 4 GB of 
RAM on Cent OS (kernel version 2.6.9). The sample is net-
work traffic captured as pcap files in a university that has 

policies for clean network. The C function gettimeofday() 
was used for evaluating each processing overheads. The y-
axis analysis time was calculated as the difference of 
full_time, which includes pcap_parsing+disassemble+detect-
ion, and disassemble_time, which includes pcap_parsing+d-
isassemble. The analysis time is the detection time of our 
analyzer and it means the RLBV+MUBV+loop detector time 
except for the seed detector. 

The results show a linear increasing trend similar to the 
static methods. Normally, exploit code size is small under a 
few tens of kilobytes. It means that the result of InputSize x 
1 is useful to show a linear overhead. If the bad cases that 
suspicious traffic is continuously analyzed as back-to-back 
are considered, other two graphs are useful to show to main-
tain a linear increasing of analysis time. At present, we guess 
that the abnormal increase between the last two points, which 
are 2111.848 and 2558.675, on Input Size x 100 is occurred 
by any buffer problems between our analyzer and disassem-
bler [5]. 
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IV. CONCLUSIONS 

For the detection of polymorphic codes, we have already 
proposed a new static analysis method for detecting self-
contained polymorphic codes using static analysis resistant 
techniques. In this paper, we overviewed the main functions 
and presented experiments to show the real field effective-
ness of the proposal.  
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