
Performance Analysis of Encrypted Code Analyzer

for Malicious Code Detection

Daewon Kim, Yongsung Jeon, and Jeongnyeo Kim

Cyber Security Research Department

Electronics and Telecommunications Research Institute

Daejeon, Korea

emails: {dwkim77, ysjeon, jnkim}@etri.re.kr

Abstract—Signature-based malicious code detection systems

cannot in real-time detect unknowns, such as polymorphic and

metamorphic codes, which can be used as zero-day attacks.

More serious situation is that many automated engines easily

generate new malicious codes without the attacker’s special

knowledge. We have already proposed a method to detect pol-

ymorphic parts of suspicious packets in anomalous network

traffic. In this paper, we introduce the experiments and analy-

sis to show the real field effectiveness and performance of our

method.

Keywords-zero-day attack; malicious code; polymorphic

code; unknown attack; intrusion prevention system.

I. INTRODUCTION

Static analysis methods [2] to detect polymorphic exploit
codes can be avoided by exploits using static analysis re-
sistant techniques, which includes disassembly thwarting and
self-modifying code techniques. To catch the techniques,
dynamic analysis methods that directly emulate the instruc-
tions of packets include full dynamic analysis methods [3],
which use a CPU emulator, and a hybrid analysis method [4],
which uses both static and dynamic analyses.

Full emulation methods have an advantage in that they
can detect most encrypted malicious codes. However, the
overhead of emulating instructions makes it difficult to apply
to real high-speed networks. A hybrid method offers better
performance than a full method because the starting point of
emulation can be selected through the support of a static
analysis. However, hybrid methods are still insufficient for
real networks owing to the complicated operational process
of a static analyzer and an emulator.

Our previous work [1] showed that it can detect the de-
cryption routine using the disassembly thwarting and self-
modifying techniques. In this paper, we will present more
practical examples and experiment results to show real field
effectiveness.

The rest of the paper is organized as follows. In Section 2,
we overview our method and describe the operation steps. In
Section 3, we show our evaluation results. Finally, we con-
clude the paper in Section 4.

II. ENCRYPTED CODE ANALYZER

In this section, we will present the overview and example
of our previous work [1] to help the understanding of our
experiment results.

A. Overview

Our encrypted code analyzer detects the loop code in-
structions in an encrypted exploit code to decrypt the en-
crypted code itself. Normally, for ease of development, the
decryption routine of an encrypted code stores the current
program counter value on the stack and uses the value as the
address for accessing the memory of an encrypted original
code. Our previous work includes four kinds of components.

Firstly, seed detector detects the instructions loading the
current program counter, which is a base value, into the stack.
The Register Loading Base Value (RLBV) detector traces a
register loading the program counter value on the stack. The
Memory access Using Base Value (MUBV) detector traces
the movements of registers including the base value between
instructions. Lastly, loop detector determines the existence of
a loop code if the final register traced by the MUBV detector
is used for the instructions to access memory.

B. Operation Process

Non-malicious codes normally don't hide their original
codes. One of new techniques for avoiding signature-based
detection systems is code encryption. Encrypted malicious
codes, which are polymorphic codes, have any code routine
for decrypting to original codes at run-time. Our analyzer is
based on the special patterns of decryption routine codes. If
there are non-malicious codes that have similar behaviors to
malicious codes, it needs more time and analysis to classify
those. The cases are out of scope for our analyzer targeting
real-time detection.

The analyzer in Figure 1(a) detects the seed instructions
that store the address value related to the current program
counter into a stack memory. The address indicates the start
address of encrypted codes, which is called the base address.
If the seed instructions are detected, the analyzer generates a
virtual stack to trace the operations of the stack with the base
address and in (b) detects a register loading the base address.
After that, (c) the analyzer traces the movements of the base
address from the first register, and (d) checks whether the
final register with the base address is used for accessing a

1Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

Figure 1. Encrypted code analyzer: (a) seed codes, (b) RLBV codes, (c)

MUBV codes, (d) loop codes, and (e) encrypted codes.

Figure 2. The decryption routines detected by the encrypted code ana-

lyzer: (a) Call4DwordXor, (b) FnstenvMov, (c) PexAlpha-Num, and (d)

NonAlpha (e) Pex.

Figure 3. The processing overhead.

valid memory address. The detected codes of (d) decrypt the
encrypted codes of (e).

The seed detector finds the instructions shown in Figure
1(a) and creates a virtual stack. The instructions frequently
used for a seed are call, fsave, fnsave, fstenv, and fnstenv. As
an example, if fnstenv [esp-0c] is detected, the base address
is on the top of the stack and is written on the created virtual
stack. To decrypt the encrypted codes, the loop codes load
the base address into a register using instructions such as pop
esi. The RLBV detector traces the position of the base ad-
dress stored on the real stack using a virtual stack that is op-
erated by instructions such as push/pop, inc/dec/sub/add, and
mov. Finally, the detector determines the last register using
the base address.

A register with the base address is referenced for access-
ing the address range of the encrypted code. Attackers can
move the base address to other registers to hide the memory
accesses referenced by the register with the base address.
The MUBV detector expresses the movements between reg-
isters as the connection graph for inspecting the register rela-
tions. Through this graph, the detector can determine a final
register with the base address. The loop detector analyzes the
instructions for accessing any range of memory with the base
address included in the detected register. One case of instruc-
tions is xor byte ptr [ecx+esi-1],93, and our detector analyzes
the validity of the address range. If the instruction accesses
the memory range near the re-assembled payloads, the detec-
tor determines that the payloads are encrypted malicious
codes and reports the start-position, Senc, and end-position,
Eenc, to our signature generation system. Our previous work
[1] described the encrypted code analyzer in greater detail.

III. EXPERIMENTS

Our previous work showed the detection rate, false posi-
tive rate, and performance of our encrypted code analyzer.
For evaluating the detection rate, we used four kinds of pol-
ymorphic generation tools, and thirteen kinds of polymor-
phic generation engines. Our analyzer archived a 100% de-
tection rate for all polymorphic codes that include disassem-
bly thwarting and self-modifying code techniques.

Figure 2 shows several detection results against the en-
cryption routines that were generated from the use of
Linux/x86/shell_bind_tcp exploit. Moreover, the low instruc-
tion traversing counts indicate that the detection speed of our
analyzer is similar to other static methods.

Figure 3 shows the processing overhead estimated under
the system for a 3.2 GHz Pentium 4 processor with 4 GB of
RAM on Cent OS (kernel version 2.6.9). The sample is net-
work traffic captured as pcap files in a university that has

policies for clean network. The C function gettimeofday()
was used for evaluating each processing overheads. The y-
axis analysis time was calculated as the difference of
full_time, which includes pcap_parsing+disassemble+detect-
ion, and disassemble_time, which includes pcap_parsing+d-
isassemble. The analysis time is the detection time of our
analyzer and it means the RLBV+MUBV+loop detector time
except for the seed detector.

The results show a linear increasing trend similar to the
static methods. Normally, exploit code size is small under a
few tens of kilobytes. It means that the result of InputSize x
1 is useful to show a linear overhead. If the bad cases that
suspicious traffic is continuously analyzed as back-to-back
are considered, other two graphs are useful to show to main-
tain a linear increasing of analysis time. At present, we guess
that the abnormal increase between the last two points, which
are 2111.848 and 2558.675, on Input Size x 100 is occurred
by any buffer problems between our analyzer and disassem-
bler [5].

2Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

IV. CONCLUSIONS

For the detection of polymorphic codes, we have already
proposed a new static analysis method for detecting self-
contained polymorphic codes using static analysis resistant
techniques. In this paper, we overviewed the main functions
and presented experiments to show the real field effective-
ness of the proposal.

ACKNOWLEDGMENT

This work was supported by Institute for Information &
communications Technology Promotion (IITP) grant funded
by the Korea government (MSIP) (No.R-20150518-001267,
Development of Operating System Security Core Technolo-
gy for the Smart Lightweight IoT Devices].

REFERENCES

[1] D. Kim, I. Kim, J. Oh, and H. Cho, “Lightweight Static
Analysis to Detect Polymorphic Exploit Code with Static
Analysis Resistant Technique,” Proc. of IEEE ICC, June 2009,
pp. 904-909.

[2] R. Chinchani and E. V. D. Berg, “A Fast Static Analysis Ap-
proach to Detect Exploit Code Inside Network Flows,” Proc.
of RAID, Sep. 2005, pp. 284-308.

[3] M. Polychronakis, K. Anagnostakis, and E. Makatos, “Emula-
tion-based Detection of Non-self-contained Polymorphic
Shellcode,” Proc. of RAID, Sep. 2007, pp. 87-106.

[4] Q. Zhang et al., “Analyzing Network Traffic to Detect Self-
decrypting Exploit Code,” Proc. of ACM ASIACCS, Mar.
2007, pp. 4-12.

[5] Libdasm – A Disassembly Library. [Online]. Available from:
https://code.google.com/p/libdasm/. 2015.06.16.

3Copyright (c) IARIA, 2015. ISBN: 978-1-61208-444-2

INNOV 2015 : The Fourth International Conference on Communications, Computation, Networks and Technologies

https://code.google.com/p/libdas%1fm/

