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Abstract—Along with the increase in available compute power
of High-Performance Computing (HPC) systems and the success
of novel data-driven methods, the amount of data processed
and the user groups increase as well. This gave rise to two
big challenges: The traditional interaction scheme of users with
modern HPC systems becomes more and more unsuited to deal
with large data sets and many independent tasks working on
these data sets. This highly manual way can quickly lead to
unreproducible results and data loss due to missing backups
since it is stored fragmented on multiple storage tiers. Similarly,
domain-specific data management systems have been established
to ease the burden of data and process management of particu-
larly inexperienced users. These systems, however, only offer a
very rigid, and tool-specific interaction scheme. This resulted in
a gap between these two user groups, which even hinders large-
scale cooperations across different domains. In this paper, we
introduce the Governance-Centric interaction paradigm, a novel,
and holistic concept which allows us to enforce data management
plans to bridge this gap.

Index Terms—data management, high-performance comput-
ing, provenance, reproducibility, IO performance.

I. INTRODUCTION

Data-driven methods gained a lot of momentum in recent
years and their success lead to adoptions in a wide variety
of scientific domains. Also, many sciences are data-intense
such as climate/weather. These data-driven projects have a few
things in common. First, they require large data sets to be
able to derive results with good statistics. Second, these large
data sets often have large storage requirements due to their
size. Third, these data sets often consist of millions of small
files which are typically organized in storage within a few
flat namespaces. However, these methods are not only data-
intensive, but processing all of these data sets in a reasonable
amount of time requires large compute resources. Therefore,
researchers have started to utilize High-Performance Comput-
ing (HPC) clusters to serve those tasks.

There are various challenges when handling and processing
this data. 1) Performance: these iterative procedures on these
small files lead to heavy loads on the storage system, which
can overload, particularly the metadata servers, and can lead
to large performance degradation due to storage bottlenecks.
2) Data management: fulfilling the FAIR principles [1], i.e.,

making data findable, accessible, interoperable, and reusable
is challenging. For instance in order to make data findable
a naming scheme is mandatory - coming up with a naming
scheme for files/objects created and then actually following
it. Sharing data with other researchers often comes as an
afterthought. It is a reasonable assumption, that most projects
do neither strictly follow the FAIR principles nor their Data
Management Plan (DMP) if there was one defined at the
beginning of a project. It can be expected that this issue
will only be exacerbated by the increasing complexity and
heterogeneity of the employed storage systems in the compute
continuum. 3) Integration of compute and data handling:
Computing on the HPC system feels a bit archaic. Users have
to manually define many system settings, for instance, file
names define what storage to use. Meanwhile, the complexity
of the tiered storage systems in modern HPC systems has
drastically increased. There exists no way to define and enforce
data governance, which is homogeneously applicable across
all of the disparate storage tiers. 4) Reproducibility: Being
able to understand the lineage of data and how to reproduce
certain outputs is important for trust in the scientific results.
However, as execution on HPC systems are usually scripts that
are invoked manually, on binaries created specifically for the
given supercomputer, it is tricky to reproduce results.

We do not list usability as an independent key challenge
on its own explicitly, as it is primarily a function of data
management and integration.

One promising solution for 2) would be to use new or
established Data Management Systems (DMS) in these data-
intensive projects. These systems could provide a unified
namespace across a tiered and distributed storage architecture
by offering a single point for data copies to reside. However,
this requires tight integration of the tools in HPC systems.
Additionally, since there will always be a gap between a
remote DMS and a HPC system, ensuring reliable information
within the DMS which originates from a HPC system is an
unsolved problem. In this article, we systematically discuss
an overarching next-generation concept to integrate DMS
into data-intensive HPC workflows and create a user-friendly
unified infrastructure for compute and storage that we believe
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HPC should be. This includes the following contributions:
• the current user interaction paradigms with HPC systems

are discussed and classified
• the involved components are discussed
• the prevailing gap between different user groups is iden-

tified using a layer model
• the novel governance-centric paradigm is proposed
The remainder of this paper is structured as follows: in Sec-

tion II, the related work is discussed, leading to the discussion
of the prevailing interaction paradigms in Section III. Based
on this, the novel governance-centric paradigm is presented in
Section IV, which is followed by the conclusion in Section V.

II. CONTEXT AND RELATED WORK

In the following, we describe the state-of-the-art in our four
challenges.

A. Performance
Usually, HPC clusters provide at least two parallel file

systems, providing file access via Portable Operating System
Interface I/O (POSIX-IO) semantics, the relaxed Message
Passing Interface I/O (MPI-IO) [2] semantics or the close-
to-open semantics used by the Network File System (NFS),
to name just a few. All of these semantics require dedicated
metadata servers to empower parallel file systems, like Lustre
[3], or the General Parallel File System (GPFS) [4]. These
metadata servers handle all metadata operations using special
data structures called inodes to handle these metadata opera-
tions. If an inode represents a folder on such a filesystem, it
contains a list of all inodes located in this folder. Depending
on the actual operation, which should be done, it might
be necessary to also read additional information from each
inode within a folder, for example, the file permissions, or
the ownership. The cost for these metadata operations scales
linearly with the number of files stored within a single folder.
However, if the list of inodes stored in a single inode becomes
too long, indirect inodes have to be used. This behavior can
be triggered if those inode lists are inlined within a small
data block within the inode itself. This is typically done
to avoid lookups on the storage servers holding the actual
data of a file, which would otherwise increase the latency of
such a metadata operation drastically. These indirect inodes,
potentially even consisting of multiple layers, lead to an even
worse performance degradation. Therefore, having too many
files within a single folder has a huge performance penalty.
However, this can often be observed in machine learning
projects, e.g., if there a tens of thousands of small images
in a single folder whose name encodes the particular target,
e.g., a folder called cats containing many small images of cats.

Although there is a varying amount of overhead necessary
in the different semantics and filesystems, they all share the
problem of bottlenecking when exposed to this described small
file IO. Current mitigation strategies consist of either providing
a multi-tier storage system, where each tier is optimized
to handle certain workloads, or meeting a specific cost-to-
capacity ratio. This option leads to increased complexity and

requires the users to manually move and stage data to the
correct tiers to achieve optimal performance while ensuring
that cold data is not piling up on fast and expensive storage,
which is not backed up. In addition, novel storage concepts,
like object storages, are being integrated into HPC cluster,
which supports flat namespaces by design. These are already
common in cloud environments, with prominent standards like
Amazon’s S3, or Openstack Swift. However, their REST-based
interfaces entail additional overhead, both, on the communi-
cation layer, and also on the application layer, since the file
handling drastically differs from the well-established POSIX-
IO compatible file systems.

B. Data Management

There are already some established tools that try to abstract
and simplify the interaction with complex and heterogeneous
HPC systems. One of these tools is VIKING [5] which is used
specifically for molecular dynamics simulations and provides
a user-friendly web interface to run NAMD [6] or Gromacs
[7] among others.

Similarly, XNAT [8] is a DMS specifically built for neu-
roimaging data. It allows the organization of data within
a hierarchical structure consisting of projects, subjects, and
experiments. Analysis can be done and solely controlled from
within the web interface using Docker container on a dedicated
Docker-Swarm or Kubernetes cluster.

However, these tools only provide a very restrictive compute
model or require a lot of manual steps by the users to allow
for larger flexibility.

C. Integration of Compute and Data Handling

In order to integrate HPC systems into XNAT, DAX [9] was
developed. It supports the execution of preconfigured tasks,
called Spiders on a batch system, but does not support direct
access to the data or the tasks by the users on the HPC system.

In cloud environments, the integration of compute and data
is well established and is commonly implemented in any
Infrastructure-as-a-Service offering. The entire approach can
even be found on Hadoop systems, where tasks and data were
transparently integrated either by batch jobs accessing data via
the Hadoop distributed file system [10] or by interactive tasks
using the YARN [11] resource manager.

Today, similar approaches can be seen with Jupyter-Hub
deployments in HPC centers [12], which, however, do not lift
the burden of managing tiered storage systems of the user.

Therefore, data and compute are currently considered sep-
arate parameters, a user has to individually and manually
manage and optimize. Particularly, the integration into a user’s
overarching experiment is lacking, since no globally defined
data governance can be homogeneously enforced across all
storage tiers.

D. Reproducibility

Since mostly data-parallelism is assumed in these data-
intensive workloads, the question of reproducibility of HPC
jobs is reduced to the problem of provenance auditing while
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the deterministic execution of a HPC job is completely ne-
glected. There is related work for provenance auditing on HPC
systems. Two often used approaches are either monitoring
system calls like PASS [13] to create audit trails. Following a
similar approach, LPS [14] has drastically reduced the runtime
overhead, but is not completely transparent due to the use of
a dedicated Library Wrapper. ReproZip [15] also continues
the idea of audit trails of system calls to automatically build
packages to re-run an experiment.

A different way for lineage recording is provided by Data
Pallets [16]. Here, all processes run within containers where
all write access to the storage devices is intercepted and
transparently redirected to data containers. Hereby, all data
containers are automatically annotated with reliable prove-
nance recordings.

Although provenance tools for HPC systems have evolved,
they currently lack integration of containers, and awareness of
DMS, i.e. if a problem data management is done, input data
can be linked, and must not be archived along each and every
single execution. In addition, they commonly lack the overall
awareness of a workflow. Therefore, there is a gap between
these node-local and hardware-close tools and the higher level
interaction a user wants to have with a HPC system.

III. OVERARCHING CONCEPT OF INTEGRATING DATA
MANAGEMENT TOOLS INTO HPC WORKFLOWS

There are a number of challenges that a user typically
faces when accessing an HPC system. For instance, a HPC
system should reduce the complex and heterogeneous storage
architecture to a unified namespace to offer users a quick and
easy overview of their data. In addition, the data management
system (DMS) should optimize the usage of a tiered storage
system to provide maximal performance during compute and
uses durable and low-cost storage for cold data. It should
also adhere to the FAIR principles and perform transparent
provenance auditing to ensure reproducibility. All data within
a flat namespace should be searchable by domain-specific, se-
mantic metadata, ideally even with respect to globally enforced
policies for data access.

First, we identify and discuss the abstract components and
their features when interacting with a storage and compute
infrastructure, such as an HPC system. Then we describe
the status quo as an archetype for the standard interaction
paradigm and our envisioned user-friendly and data-centric
flow.

A. Components

The components necessary when handing data and compute
are as follows:

• Resources - these are raw storage, compute and network
infrastructures such as compute nodes and object/file
systems and their interconnect. They come with their own
specification, i.e., what resource they actually provide and
their characteristics.

• Resource management (compute) - this layer manages
the usage of the resources by assigning compute jobs to

available compute resources satisfying the requirements
for the respective (parallel) jobs.

• Resource management (storage) - this abstract concept
defines where to store certain data and provides the
respective space on a storage system.

• Job specification - defines the scope of a compute job
together with it’s requirements and specification such that
it can be executed.

• Program - a code that can be executed on the compute
infrastructure, e.g., binary program or script.

• Software landscape - the ecosystem and environment
provided by the platform that allows to prepare programs
on the system.

• Workflow specification - defines how to execute jobs in
order to achieve the overall data-processing goal.

• Data management plan - defines for any data inputs and
data products the policies, data handling and such to
enable the FAIR principles while the data sovereignity
of the user is preserved.

• User interface - allows the user to interact with the
system, e.g., to manage and interact with some or all
of the above components and to upload/download data.

• Client - the computer system of the user, where the user
interface(s) are accessed.

The way, how one can fulfill the previously specified
requirements and implement the components depends on the
way a user wants to interact with it and the system providing
these capabilities, and the data flow involved. For example,
either, a user connects to the HPC system, and uses it as the
central contact point, or the interface of the DMS is used to
manage the data processing on the HPC system remotely.

B. Interaction Paradigms

On the most extreme scale, one can argue that there are three
different kinds of users. For instance, tech-affine people who
want to natively work on the HPC in a traditional command-
line approach, users that utilize state-of-the-art compute-
centric tools, or those, who ideally only want to work with
the interface of their domain-specific DMS.

1) Traditional Paradigm: In the traditional approach, the
user interface is a shell (such as bash) on a login node of
the cluster and the client is an SSH-enabled program that
the user runs on their Desktop/Laptop. There exists no data
management plan, the user thinks about how to manage data,
therewith, manually performs the resource management for
storage, identifies how to map output data to files (influenced
by the applications) and directory structures, and utilizes
the available parallel file systems. Also, the user manually
prepares programs s/he wants to use by downloading the
necessary codes on the machine and ensuring it works with the
system architecture and software environment that is deployed
on the HPC system. The wider software landscape on the
HPC system was prepared by data center staff but libraries
can be extended by the users in order to create meaningful
programs. In most cases, workflows are not explicitly speci-
fied but manually invoked. The resource management of the
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compute resources is provided by tools such as Slurm. The job
specifications are (bash) scripts that are invoked - they define
the compute requirements. Such scripts are submitted to Slurm
which decides how to map and schedule them on the available
compute resources. These steps are basically manually set up,
requiring a scientist to think about how the experiment should
be conducted and then documented (if at all) in a lab notebook
or scripts that do some of the work. Potentially, workflow
tools such as Snakemake are utilized to specify dependencies
between tasks and to automate dependencies between tasks.
This is not only error-prone, but any change to the environment
requires the user to modify the experimental setup and perform
the steps again. We consider this the most typical interaction
with the HPC system archaic.

2) Compute-Centric Paradigm: In a Compute-centric ap-
proach, a user would connect to the HPC frontend as usual. In
the simplest form, a user would delegate the job of maintaining
a data catalog and staging the selected input data to a DMS
tool. This workflow is depicted in Figure 1.

Fig. 1. HPC-centric flow

Here, in order to get access to the requested input data,
a user would formulate a domain-specific, semantic search
query and send this request to the DMS. Usually, a DMS
would use a dedicated database or search engine to filter the
requested data. The data is loaded into the running code of
the user. This could either require a dedicated data transfer
to a pre-configured storage target, or the HPC system and the
DMS are already working on the same storage system. When
looking at different established systems, compare, the user
is typically responsible for lineage recording and enforcing
reproducibility. Therefore, these solutions typically only assist
users to manage and organize their data but do not free them
from the burden of efficient IO and working in agreement with
good scientific practice.

3) Use-Case-Centric Paradigm: The opposite way to inte-
grate a DMS into an HPC workflow, is to use the DMS as the
user frontend, see Figure 2.

Fig. 2. DMS-centric flow

This DMS-provided user interface can be used to query
and select input data, define a compute job, and submit this
job to an HPC system, without the need to extra login to
the HPC system or transfer data explicitly. This functionality
requires a communication channel, between a remote DMS

and an HPC system. Additionally, the DMS needs to be able
to work with the individual resource manager, of each HPC
system. The advantage of this approach lies in the capability
to perform transparent lineage recording and can guarantee
reproducibility. That is, because the DMS have complete
control over the input data and the processes which run on
them, using thorough logging methods is enough to ensure
reproducibility. Similar to the HPC-centric use case, storage
tiering is hard to support. In some existing implementations
[17] data staging is explicitly required for each task execution.

C. Data Flow

These two scenarios also differ in their data path, i.e. in
the storage systems involved in the data management and data
processing.

1) Compute-Centric: In the HPC-centric use case, a user
accesses data through their respective, native interface, e.g.
through the library functions of their respective programming
language, or as an input parameter of their program which they
want to run. That means, that only data is available which is
directly accessible from the HPC system, and data transfers,
e.g., for better performance, have to be done manually. In

Fig. 3. Compute-centric flow

Figure 3 a layered diagram is shown which shows the possible
data staging strategies. Within the user interface, e.g. ssh or a
jupyter notebook, a user can explicitly copy/stage data on non-
node-local storage. Within this layer, this has to be deliberately
done. Assuming that a workflow engine, like snakemake,
is used, data can be staged on non-node-local storage in
a more automated and transparent way in the form of a
dedicated workflow step. These two options can be considered
asynchronous data staging since this will not lead to stalling
times on the compute infrastructure. Synchronous data staging
happens on the Job Layer, where a process first has to access
data on a slow storage tier and stage it, and in this case even
on a very fast node-local storage tier, before it can continue to
process the data. Since the node-local storage is typically only
available during the resource reservation, which is managed by
the resource manager, e.g. Slurm, a user has to ensure that the
overall process run on that node, does not only stage data, but
also archives it once it is done. The entire data staging and IO
optimization is therefore solely the user’s responsibility.
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2) DMS-Centric: Within the DMS-centric approach, a user
is generally not interested to access the data directly, e.g.
with a suitable library into self-written code. Instead, they
are rather interested to have the complexity of running their
job abstracted away. For this strategy, a layered diagram is

Fig. 4. DMS-centric flow

shown Figure 4, depicting the data flow. Here, a user access
the DMS via a browser, or a DMS-specific graphical user
interface (GUI). Within this interface, a user triggers the
execution of a workflow, or a single analysis step on the
selected input data. Often, these DMS are deployed in a cloud
environment and have their own storage layer. Depending
on whether this storage tier can be integrated into the HPC
system, there are different strategies for data access. Either one
can asynchronously or synchronously fetch data from the DMS
within a dedicated data mover process and stage it either node-
local, in the case of a synchronous data transfer, or non-node-
local in the case of an asynchronous data transfer. For this
purpose, the data mover process would either be granted access
to the DMS storage with respect to the user’s permissions,
or the DMS can provide an endpoint, for instance, a REST
endpoint, from which the process can fetch the required data.
Since generally there is a communication layer, like HPCserA,
required, to access the resources of an HPC system from the
outside, this can also be used to asynchronously fetch data
from the DMS. Lastly, a dedicated mover process can also
fetch the data synchronously from the DMS on the compute
node itself. This means, that the entire data movement and
staging strategy is solely in the hands of the admins of the
DMS, where the corresponding functionality is implemented
and configured.

D. Control Flow

Similar to the aforementioned data flow, there also exists
a control flow, as can be seen by the left arrow in Figure 3
and Figure 4. The control flow is initially triggered by the
user within the user interface and is from there passed down

to the final task running on a node. From this upmost layer,
the control path goes down via an optional workflow layer
to the resource manager where the tasks get mapped on the
actual hardware, in case of the HPC-centric view. In the
DMS-centric view, the control flow gets even more abstracted,
since the user input recorded by the user interface has to first
pass through DMS layer, where the user request gets initially
processed and mapped on the DMS infrastructure. Since this
DMS system is completely disjunct from the HPC system, a
dedicated communication layer, like HPCSerA, is required to
bridge those two systems. On the HPC system, the individual
tasks are again mapped to the nodes in the infrastructure layer
via the resource manager.

E. Analysis

To summarize the previous discussion about the different
user interaction paradigms, Table I compares the charac-
teristics of the individual components – ignore the column
Governance-Centric for now.

The responsibility for one of the defined components and
features are either the user, i.e., a manual process, semi-
automatic - thus aiding the user (potentially following a spec-
ification), or fully automated. User-specific means it depends
on the skill of the user. The resulting differences in the
degree of automation can be illustrated best if we look at
the interfaces a user can use to interact with the processes
and data. Traditionally, only ssh connections are supported,
whereas at least for the process interaction in the compute-
centric paradigm, some interactions may take place via a web
interface. In the use case-specific paradigm typically only a
web interface is available that hides the HPC system and all
internal processes.

The resource handling requires a lot of manual interaction
of the users in the traditional and the compute-centric concept,
while it is completely automated in the use case-centric
approach based on configurations provided by the admins of
the specific system.

A similar pattern can be seen in the characteristics of the
task-related components. Here, the user experience with the
HPC system evolves from a completely manual interaction
to a partially automated or guided system in the compute-
centric context, where already some low-level programming
tools for workflow orchestration, data selection, and containers
for dependency management are used. However, the program
and data management rely still on manual work and are
therefore potentially error-prone. On the other side, the use
case-centric system fully automates these steps. Again, all
task-related interactions are fully automated by the use case-
specific system.

These intrinsic characteristics have different advantages and
disadvantages. The traditional HPC usage paradigm relies
heavily on manual work by the user to achieve a reason-
able performance. Also the data management, the integration
of storage and compute, and therefore the overall repro-
ducibility is very much exposed to user errors. However,
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TABLE I
COMPARISON OF DIFFERENT HPC USER INTERACTION PARADIGMS

Characteristics Traditional Compute-Centric Governance-Centric Use Case-Centric
Resources (Compute) Auto Auto Auto Auto
Resources (Storage) Manual Manual Auto Auto

Res. Mgmt (Compute) Semi-Auto Semi-Auto Auto Auto
Res. Mgmt (Storage) Manual Manual Auto Auto

Job spec Manual Semi-Auto Semi-Auto Auto
Program Manual Manual Semi-Auto Auto

Software land Provided Provided/User-Container Provided/User-Container Provided
Workflow spec Manual Semi-Auto Semi-Auto Auto

DMP Manual Manual Semi-Auto Tool-specific
User interface SSH SSH+Web Web+SSH Web

User interface (Data) SSH SSH Web+SSH Web
Client SSH SSH+Browser Browser+SSH Browser

Performance User-specific User-specific ++ +
Data management - - ++ Tool-specific

Integration – 0 ++ ++
Reproducibility – + ++ Tool-specific

Flexibility ++ ++ + –

this enables the highest level of flexibility. The compute-
centric paradigm improves this by utilizing the discussed semi-
automated components and hereby improves the integration
and reproducibility. The use case-specific systems will most
likely have reasonable, but not custom-made, configurations
to achieve good performance - here the interaction with data
is challenging as the upload/download via Web-frontend limit
performance. The current challenge is to unify the concepts
of the compute-centric and the use case-centric paradigms and
combine the advantages of these worlds.

IV. GOVERNANCE CENTRIC ARCHITECTURE

Our goal is to expand upon the existing concepts to provide
a novel, unified view of processes and data in order to im-
prove the user experience on HPC systems. Here, the metrics
for the user experience, i.e. performance, data management,
integration, reproducibility, and flexibility, all basically boil
down to the question of where the data is located and how
they are linked. This has to be tackled simultaneously in
two directions: first, an additional integration layer above the
resource manager (compare Figure 3 and Figure 4) is required.
This layer has to provide an integrated and unified namespace
to the users. Secondly, an information flow, which is directed
in the opposite direction as the control flow in Figure 3
and Figure 4, is required. Although this can be achieved
with available auditing tools, see Section II-D, there is no
concept for a tool that processes the incoming information and
hereby makes it actionable. The advantage of an actionable
information flow compared to the existing systems is that the
information is utilized to create a desired, predefined state, and
not just create yet another piece of data a user has to manage
manually.

To this end, we propose the governance-centric interaction
paradigm that aids the users and automizes the integration
of data and compute. In Table I, we have identified the
required degree of automation to bridge the gap between the
compute-centric and the use-case-centric paradigms. Resource
management should be fully automated to achieve the highest
degree of integration of data and compute. The task-specific
components should be semi-automated to guide the user in

managing the data, working reproducibly, and ensuring that a
predefined, ideal state is reached while allowing as much flex-
ibility as possible. Similarly flexible should be the interface,
to allow interaction from both user groups.

We believe professional and proper data management re-
quires users to define an experimental description at the
beginning of a project consisting of a workflow linking data
sets and compute tasks and a data management plan for the
respective input/output data. Then the user has to initially
modify their tasks, e.g., job scripts, to allow linking of the tasks
and their data products to the workflow and also to generate
descriptive metadata for the data sets. Building upon the
previous discussion, the goal is to not only use the workflow
as an abstract concept that users may informally follow but
rather enforce its usage. The implications of the design are
that the HPC system can exploit the information to perform
many previously manual tasks automatically and fulfill our
goals.

For instance, to automatically receive and process infor-
mation about input data and artifacts created during task
execution, or enforcing archival/deletion policies defined in
the DMP. To unify both user groups, the ingest of results into
a DMS along with all required metadata including lineage
information has to be one of the supported features.

To explain this idea in more detail, the experimental descrip-
tion shall be a user-defined and machine-readable workflow
description that contains information about the data flow, the
tasks which process these data sets and create artifacts, and
further optional information like access policies or the IO
intensity of each task. This means that, for every task a
user wants to schedule via the resource manager, this task
has to be linked to a specific workflow step within the
experimental description at job submission time. Thus, each
and every submission of a job on a HPC system becomes one
concrete invocation of the abstract task description within the
experimental workflow linked to data in the DMP.

A. Experimental Description

Specifically, in data-driven projects, it is common that there
is not a single task, but that the entire processing consists
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of multiple steps which are concatenated into a workflow.
Therefore, a user has to provide a simple graph, compare
Figure 5, connecting input and output data via tasks as a
workflow description. This workflow could represent a weather
prediction, where each cycle represents the simulation of the
next hour (in the future); Dataset2 is the initial conditions
while Dataset1 holds the model. Manual steps in the workflow
are explicitly annotated as they require data to be accessible.

Task 1

Dataset 1 Dataset 2

Task 2

Product 2

Manual 
QC check

Product 1

Task 3

[OK]

Product 3

Cycle 1

Manual 
usage

Task 1

Dataset 1

Task 2

Product 2

Manual 
QC check

Task 3

[OK]

Product 3

Cycle N

Manual 
usage

Checkpoint
Product 1
Checkpoint

. . .

Fig. 5. High-level view of a workflow.

Within this workflow definition, general policies can be de-
fined, e.g. where and when data should be archived, how long
artifacts should be kept on hot storage if a manual inspection is
required, what accompanying metadata are required, or if input
data can be altered. The archiving of data should explicitly
support remote DMS as a target, to integrate HPC systems
with remote DMS, and similarly, data within a remote DMS
should also serve as possible input data. The required data
mover tools have therefore to be integrated as dependencies
into the DMP. In addition, the users can provide information
about the expected IO profile, aiding the proposed DMP tool
to find the best storage tier based on heuristics configured by
the HPC admins. Based on further metrics, like the available
bandwidth of a remote DMS and the HPC system, or the
amount of data, the DMP tool can also determine, whether
data should be staged synchronously, i.e. during compute time,
or asynchronously, i.e. as a dedicated, dependent step before
the compute task starts.

Describing Datasets: The user can and should add further
information to the data sets which are getting processed or
created. To improve the findability a user should provide
domain-specific metadata, or define a task to extract those.
The required, and optional domain-specific metadata fields
can be defined in the DMP. For instance, in our figure,
Product 2 may be characterized by the date/time of the weather
prediction and each product could be tagged with the model
configuration settings. This can even ensure a homogeneous
metadata quality across a larger group working on a joint
project. In addition, the data life cycle should be defined,
i.e. what is the retention time, what are the deletion policies.
To meet the data governance policies required by the user,
additional aspects such as access control must be defined to
prevent unwanted data leakage.

B. Modifying Tasks
Compute jobs on HPC systems are dispatched to the actual

resources using resource managers such as Slurm. On this

level, a job has to be prepared, annotated, and linked with the
workflow. The user annotations should specify the task within
the defined workflow, which is to be executed. In addition, a
user can further restrict and specify the input data. Here, the
largest change compared to the traditional HPC interaction
paradigm becomes apparent: Instead of working with explicit
files, a user rather works with datasets defined by metadata.
For instance, a user specifies the input data either based on
domain-specific metadata or simply due to the link in the
DMP. Therefore, the actual storage location is abstracted from
the user. The actual data directory, which a program still
needs to specify in API calls, can be automatically exported
via environment variables or generated via support tools in
the job script. Before reserving dedicated compute resources,
the proposed DMP tool decides to use either synchronous or
asynchronous data staging and stages the data respectively.

One key requirement in science is reproducibility. In a first
step, this requires at least sufficient provenance information to
allow for retrospective comprehensibility of the lineage of the
resulting artifacts. One important element to retrospectively
comprehend an HPC job is the run script used for batch
processing. This can be automatically archived along with the
artifacts by the proposed DMP tool. However, these batch
scripts, which contain the actual compute job to be run in
the form of a shell script, can have multiple ambiguities.
One simple example of this would be the execution of an
interpreted script, e.g. a Python script. Here, one would have
a simple line within the batch-script which would look similar
to:$ python my_script.py
The challenge within this call is to track differences between
multiple invocations of this script, where the content of
my script.py has been changed. For this, three different high-
level modi are proposed.

The recommended way is to use a Git repository, where
changes in code are properly tracked. In this case the DMP tool
checks in the directory of the script and saves the information
about the Git repository and the used Git commit hash so that
this information can be stored in the metadata of the created
data products. The DMP tool will create a dedicated sidecar
file for this metadata in the output directory. The usage of
version control systems can, and should, also be part of the
required specifications within the DMP.

Alternatively, if no Git repository is set up, the batch script
is parsed and untracked dependencies in the user namespace,
like a Python script, are tried to be identified and archived
along with the artifacts. Since this method is potentially more
error-prone compared to a proper version control system, like
Git, it is not recommended, but should still offer a better
chance for retrospective comprehensibility when compared
to other strategies. These dependencies will be listed in the
before-mentioned sidecar file, and are archived alongside it.
One important distinction to make is the use of containers. In
this case, the container image should be archived and linked to
the sidecar file. Of course, utilizing provenance-specific tools,
as discussed in Section II and translating them to the required
standard in the sidecar file, is also an option to explore.
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The third option is that users compose the sidecar file
by adding code to the batch script, where this provenance
information are provided. This can be added to the directory
where the output, which should be archived, resides. This file
will also override information that was automatically tried to
extract in the previous step.

C. Implications of the Design

This presented design has different positive implications on
the user experience that we summarize in Table I.

a) Integration: First of all, the abstraction of files on
storage towards more high-level data sets achieves the tight
integration of storage and compute. Abstracting the storage
from the data will motivate users to use proper metadata
management systems and establish a data catalog, instead of
encoding information into file paths.

b) Performance: Since users are only working with
datasets and not with a filepath anymore, HPC admins can
configure data placement strategies, therefore relieving this
burden from the users and optimizing the performance.

c) Reproducibility: Since compute tasks, their input, and
resulting data are strongly linked with each other, the lineage
of artifacts is much more comprehensible and less subjected
to user errors. Utilizing further tools like containers and a
version control system will ensure full reproducibility, which
is integrated into this paradigm by design because this is just
another policy in the defined data governance, which will be
enforced for the users.

d) Enforcing DMP: Although the general idea of using
data management plans in HPC is far from new, the novel
advantage of this particular tool is that it can be enforced.
There are various ways to achieve this goal. A naive approach
compatible with existing systems is to use a cronjob that
reads in the workflow and task definition files, which a user
has provided, and compares the specified, desired state of the
storage systems of the user against the actual state at hand. If
new output data are detected and the required sidecar file for
the necessary metadata is available, the output data is handled
as specified. However, if the required sidecar file is not, or only
with insufficient content provided the user will be reminded to
provide the missing information after a specified grace time.
Similarly, if data is detected which can not be matched to
the dataset specification in the workflow definition, an error
or warning can be raised to the user as such unclassified
data shall not exist. Thus, the DMP becomes actionable and
hereby ensures a homogeneous system state in sync with the
experimental description and user expectations.

V. CONCLUSION AND FUTURE WORK

In conclusion, we introduced the governance-centric interac-
tion paradigm, which by design integrates storage and compute
for the users. It relies on a researcher to define an experimental
description and a DMP for the datasets at the beginning,
something that good scientific practice requires anyhow. This
will allow the system to perform various tasks on behalf of
the user and increase overall automatization. Ultimately, the

burden of performance optimization can be shifted partially
from each user to data center operators. Furthermore, the
abstraction of files to data sets allows the seamless integration
of a DMS. Since this paradigm seamlessly links data to
compute tasks, it ensures retrospective comprehensibility and
reproducibility by design.

We are in the process of developing tools and an environ-
ment where this vision is implemented. In future work, this
concept will be evaluated on specific use cases. In addition,
synthetic benchmarks will be used to evaluate the proposed
concept of storage and compute integration with other tools
offering a unified namespace across a tiered storage system.
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