
Simulation of Pipeline Transport
of Carbon Dioxide with Impurities

Mehrnaz Anvari
Fraunhofer Institute for Algorithms

and Scientific Computing
Sankt Augustin, Germany

email: Mehrnaz.Anvari@scai.fraunhofer.de

Anton Baldin
PLEdoc GmbH and

Fraunhofer Institute for Algorithms
and Scientific Computing
Sankt Augustin, Germany

email: Anton.Baldin@scai.fraunhofer.de

Tanja Clees
University of Applied Sciences

Bonn-Rhein-Sieg and Fraunhofer Institute
for Algorithms and Scientific Computing

Sankt Augustin, Germany
email: Tanja.Clees@scai.fraunhofer.de

Bernhard Klaassen
Fraunhofer Institute for Algorithms

and Scientific Computing
Sankt Augustin, Germany

email: Bernhard.Klaassen@scai.fraunhofer.de

Igor Nikitin
Fraunhofer Institute for Algorithms

and Scientific Computing
Sankt Augustin, Germany

email: Igor.Nikitin@scai.fraunhofer.de

Lialia Nikitina
Fraunhofer Institute for Algorithms

and Scientific Computing
Sankt Augustin, Germany

email: Lialia.Nikitina@scai.fraunhofer.de

Sabine Pott
Fraunhofer Institute for Algorithms

and Scientific Computing
Sankt Augustin, Germany

email: Sabine.Pott@scai.fraunhofer.de

Abstract—The transport of carbon dioxide through pipelines
is one of the important components of Carbon dioxide Capture
and Storage (CCS) systems that are currently being developed.
If high flow rates are desired, a transportation in the liquid
or supercritical phase is to be preferred. For technical reasons,
the transport must stay in that phase, without transitioning to
the gaseous state. In this paper, a numerical simulation of the
stationary process of carbon dioxide transport with impurities
and phase transitions is considered. We use the Homogeneous
Equilibrium Model (HEM) and the GERG-2008 thermodynamic
equation of state to describe the transport parameters. The
algorithms used allow to solve scenarios of carbon dioxide
transport in the liquid or supercritical phase, with the detection
of approaching the phase transition region. Convergence of the
solution algorithms is analyzed in connection with fast and abrupt
changes of the equation of state and the enthalpy function in the
region of phase transitions.

Index Terms—simulation and modeling; mathematical and nu-
merical algorithms and methods; advanced applications; carbon
dioxide; capture and storage; pipeline transport.

I. INTRODUCTION

To reduce greenhouse gas emissions into the atmosphere,
Carbon dioxide Capture and Storage (CCS) systems are cur-
rently being developed. Typically, such systems consist of 3
parts: (1) capturing carbon dioxide (CO2) at its source; (2)
transporting CO2 through pipelines to special storage sites; (3)
and finally injecting it into wells, when underground storage
is used. In this paper, we focus on the second part of the
aforementioned process. It is generally required that CO2

be in the liquid or supercritical phase during transport in

order to increase the density and mass flows. It is essential
to avoid the transition of fluid phase to gas, which leads to
cavitation and destruction of the pipeline during transportation.
To ensure reliable operation of the CO2 pipeline, both an
extensive experimental base and stable numerical simulation
of the transportation process are required. At the same time,
for a long-term planning, it is sufficient to simulate a stationary
process of the transportation, with CO2 in a 1-phase state and
an indication of a possible phase transition, in order to prevent
it.

The pioneering work [1] has considered in detail the sta-
tionary process of transporting pure CO2 through a pipeline
and pumping it into an underground storage, taking into
account phase transitions. In that and in subsequent papers, the
importance of taking into account impurities that have a strong
influence on the parameters of the transportation process even
at low concentrations, has been pointed out. The papers [2]–
[9] considered the process of CO2 transport, both stationary
and dynamic. Papers [1]–[8] consider a Homogeneous Equi-
librium Model (HEM), in which different phases of a fluid
are homogeneously mixed and have the same speed, pressure,
temperature and chemical potential. In papers [4]–[6], [8],
[9], phase split is also considered, i.e., when the phases are
geometrically separated, and phase slip, i.e., when the phases
have different speeds. Also, in works [4], [6], [8] the formation
of a solid phase of CO2 (dry ice) is considered. In the works
[5], [6], [8], [9], fast transient processes occurring during
depressurization of a pipe are considered, together with the
related experiments. The economic aspects of pipeline CO2
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transport have been considered in papers [10]–[13].
In this paper, we describe a stationary simulation of the CO2

transport process with the possibility of considering impurities,
phase transitions, several sources with different composition,
and networks of complex topology. Simulations of this type
have extended the capabilities of our software MYNTS [14]–
[18]. The system provides an open, freely configurable and
user-friendly specification of modeling, defined as a list of
variables and equations. An open Python code for workflow
procedures is also provided. The main calculations are per-
formed in a fast C++ solver. The system also has a Graphical
User Interface (GUI) with the ability to edit networks and
scenarios. This architecture allows to formulate and quickly
solve very large network problems, as well as the ability to
model different energy carriers and couple different energy
sectors.

For problems of stationary transportation of fluids, we im-
plement standard pipe transport equations with friction terms
by Nikuradse [19], Hofer [20] and spatial discretization of
type [21]. The GERG equation of state [22], [23], which is
currently the ISO standard [24], is used to accurately model the
thermodynamics of fluids, in particular CO2 with impurities
and phase transitions. Additionally, we have developed an
algorithm for detecting the proximity to the region of phase
transitions. A number of numerical experiments were carried
out to test the developed algorithms. Based on them, it is
shown that the fast, sometimes abrupt, behavior of the system
in the presence of phase transitions affects the convergence
properties of the numerical algorithms used for the solution. In
the scenarios we have considered, the divergence, if it occurs,
is entirely localized in the region of phase transitions. On the
other hand, scenarios without phase transitions are converging,
which makes it possible to solve them with detection of
proximity to the region of phase transitions.

Section II reviews the physics of phase transitions applied to
CO2 with impurities. Section III discusses the transport equa-
tions used. In Section IV, we describe numerical experiments,
with particular attention paid to the questions of convergence
of iterative processes. Finally, in Section V, we summarize our
results.

II. PHYSICS OF PHASE TRANSITIONS

Phase transitions occur in slightly different ways for pure
substances and their mixtures. Figure 1a shows the phase tran-
sition for pure CO2. At a constant temperature, the pressure
decreases starting in the region of the liquid state. There is a
line of phase transitions on the diagram. When the pressure
decreases, the process proceeds until it intersects with this line,
after that the pressure decrease stops until all the fluid passes
from the liquid state to the gaseous state. At the same time,
Figure 1c shows that during this process, the average density
changes from large values, typical for the liquid phase, to small
values, typical for a gas. Figure 1b shows what happens in the
case of a mixture, here 95% CO2, 3% N2, 2% O2. Now,
the 2-phase state corresponds not to a line, but to a region
on (T, P )-diagram. The boundary of this region is called the

Fig. 1. Phase transitions at fixed temperature: (a),(c) – for pure CO2; (b),(d)
– for CO2 with impurities.

Fig. 2. Fraction of gaseous phase as a function of pressure and temperature.

Vapour-Liquid Equilibrium (VLE) diagram, or phase envelope.
When the pressure decreases, the point enters this region and
the fluid also passes from the liquid state to the gaseous state,
but here the pressure continues to decrease. Figure 1d shows
that in the 2-phase state, the density decreases in the same
way as for pure substance, but at a decreasing pressure.

The 3D diagram in Figure 2 shows the behavior of frac-
value, which varies in the interval [0, 1] and measures the frac-
tion of the gaseous phase in the fluid. Here, one can also see
the region where the phase transition occurs, which proceeds
continuously for mixed compositions. Also, this diagram has
a jump on a line starting from the critical point, however
this transition is spurious. Above the critical point, gas and
liquid do not really differ from each other, but according to
the scheme of description, it is required to make a transition
from gas to liquid somewhere. Although the quantity frac has
a formal jump here, the physically measurable quantities have
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no jumps on this line.
Interestingly, this surface resembles the surfaces considered

in the theory of functions of a complex variable. Namely, if we
take this surface, as well as the 1−frac surface and join them
together, we get an object that looks like a Riemann surface
for a complex square root. The similarity is not accidental, in
both cases there is a 2-sheeted surface without the possibility
of continuously separating the sheets from each other.

For the thermodynamical description of the fluid, the GERG
equation of state and its accompanying implementation [22]–
[24] is used. Technically, it is delivered as a software library
where one can access a variety of functions describing the fluid
state. In addition to the already mentioned phase envelope and
frac-value, we use the Equation Of State (EOS) and energy
functions

z = z(T, P, x), W = W (T, P, x), (1)

where T is absolute temperature, P is pressure, x is a
vector describing fluid composition, W = (H,U,G,A) is a
vector describing molar energies of different types: enthalpy,
internal energy, Gibbs energy, Helmholtz energy, respectively.
Compressibility factor z enters in the gas law P = ρRTz/µ,
where R is the universal gas constant, ρ is the mass density,
µ is the molar mass.

As a parameter important for the user, the frac-value or
a conservative algorithm based on frac-values in the vicinity
of the solution can be used to detect the proximity of phase
transitions:

Algorithm (proximity-alarm):
given (T0,P0,x,dT,dP,val)
for T in (T0-dT,T0,T0+dT)

for P in (P0-dP,P0,P0+dP)
if frac(T,P,x)!=val return true

return false.

The algorithm considers a 3x3 grid created by (±dP,±dT )-
variations, and if frac differs from the user-specified val at
least at one point, triggers a proximity alarm. This simple
algorithm is applied to every node in the network. It has the
advantage that it works even in the networks with many fluid
compositions, i.e., variable x-values. Alternative algorithms
based on the construction of the phase envelope produce many
diagrams for different compositions, which complicates the
analysis. At the same time, this algorithm has one drawback,
it can produce a false alarm when approaching a spurious line.
In this case, the user can visually control the solution trajectory
on the (T, P )-diagram by constructing a phase envelope for
the local network segment with constant x. The development
of other algorithms for automatic detection of phase transitions
that work for the variable composition of the fluid in the
network is in our future plans.

III. PIPE TRANSPORT EQUATIONS

A pressure drop in the pipe in the stationary case is
described by the equation:

dP/dL = −λρv|v|/(2D)− d(ρv2)/dL− ρg dh/dL, (2)

where L is the running length along the pipe, v is the speed
of the fluid, D is the internal diameter of the pipe, g is the
gravitational acceleration, and h is the height. On r.h.s. the
first term is usually dominant, describing the contribution of
the friction force, defined in terms of the dimensionless friction
coefficient λ(k/D,Re) using the Nikuradse [19] formula or
the more accurate Hofer [20] formula. Here, k is the pipe
roughness, Re = 4|Qm|/(πµviscD) is Reynolds number,
where µvisc is the dynamic viscosity and Qm = ρvπD2/4 is
the mass flow constant along the pipe. Further r.h.s. includes
the convective and gravitational terms.

For discretization purposes, we consider a short pipe seg-
ment of length L and integrate the equation over it. Expressing
the velocity in terms of the mass flow, and keeping only the
leading first term for illustration, we get dP/dL = c1/ρ,
where c1 is constant. When integrating, we replace the variable
density ρ by the average ρ̄ = (ρ1 + ρ2)/2 over the end points
of the segment, i.e., P2 − P1 = c1L/ρ̄. As an alternative,
we multiply the original equation by P , use the gas law
P/ρ = RTz/µ, replace the variables T and z with the end
averages and, thereby, we get (P 2

2 − P 2
1 )/2 = c1LRT̄ z̄/µ,

in a more familiar quadratic form for gas dynamics [21]. To
find the optimal pipe subdivision, the number of segments
is increased until the solution stops changing, up to a given
tolerance.

Temperature profiles are described by the equation

dH/dL = −πDch(T − Ts)µ/Qm, (3)

according to which the enthalpy change in a segment of the
pipe is equal to the heat exchange with the soil or other
environment. Here, ch is the heat transfer coefficient, Ts is
the soil temperature. Note that when the heat exchange is
switched off ch = 0, the process described by this formula is
isoenthalpic dH = 0, and the temperature change is related to
the pressure change by the well-known formula dT = µJT dP ,
where µJT = −(∂H/∂P )T /(∂H/∂T )P – Joule-Thomson
coefficient. The equation can also be modified by introducing
kinetic and gravitational terms.

For discretization, in the form dH/dL = c2(T − Ts)
with constant c2, the variable temperature T is replaced by
the constant Tx, which can be taken as the end average T̄
or the value of the outflow temperature Tout, which better
represents the case of longer segments. After integration, we
get H2−H1 = c2L(Tx−Ts). Further, in an iterative solution
process in which the pressure profile and fluid composition
are kept constant, the enthalpy values can be linearized us-
ing the formula H(T i+1) = H(T i) + cp(T i)(T i+1 − T i),
where the superscripts indicate the number of iterations and
cp = (∂H/∂T )P is the isobaric molar heat capacity, also
calculated by the GERG software library.

Next, we will consider in more detail the process of conver-
gence of the iterations used for the solution. In our previous
work [18], the architecture of MYNTS system has been
described. Due to software-technical reasons, the solution was
divided into 2 parts: (1) Pressure-Massflow (PM)-iterations,
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solved by a sparse non-linear Newtonian solver; and (2) mix-
iterations, solved by a sparse linear solver. PM iterations
determine the pressure, density and mass flow, by solving
a relatively small nonlinear system. This system, however,
has strong numerical instabilities associated with nearly zero
Jacobi matrix eigenvalues and requires special stabilization
measures [17]. Mix iterations solve a large linear system
defining a multicomponent fluid composition, determine tem-
perature and call external modules, such as GERG that would
otherwise be called too often in a fully coupled system.
After the temperature linearization described above, all mix
equations of the system at each iteration become linear, their
solution can be produced by a sparse linear solver such as
Pardiso. Further, these two processes are iterated, while using
an additional stabilization algorithm weighted relaxation [18],
the result of the combined PM-mix-iteration h(x) is replaced
by a weighted average xi+1 = wh(xi) + (1− w)xi.

Among the modeling limitations, it should be mentioned
that the GERG module does not consider the solid phase
and derives equilibrium conditions for the liquid and gaseous
phases under the HEM assumptions. The transport equations
considered here treat 2-phase solutions as 1-phase, with the
values of thermodynamic parameters calculated by the GERG
module in the total system, which also means calculations
within the HEM framework.

At the end of this section, it is worth to mention a general
point regarding the simulation of static and dynamic types.
Often, the user assumes the uniqueness of the solutions
obtained in the simulations. In general, this may not be the
case. Existence and uniqueness theorems for solutions are
formulated only in rare cases. So, for example, they are
guaranteed for the PM subsystem under the conditions of
generalized resistivity [14]. Being combined with the mix
system, the uniqueness of the solution is not guaranteed.
Theoretically imaginable is the situation when there are two
stationary solutions, one 1-phase, the other 2-phase, and it
may happen that the stationary solver finds the first one, but
in reality the second one will be realized. Consideration of
dynamic simulation can decide which solution the trajectory
will go to when integrating from a given initial state. But even
for a dynamic solver, saddle points, bifurcations of the solution
are possible, where, with a small variation, the solution can go
in one direction or the other. Questions about the uniqueness
of stationary solutions and the stability of dynamic solutions
must be investigated in the practical analysis of simulation
results.

IV. NUMERICAL EXPERIMENTS

To test the implemented algorithms, we use a pipe segment
with parameters taken from [1]. In our experiments, different
scenarios are considered, see Table I. In the first scenario, a
small flow is set, at which no phase transitions occur. The
entire pipe is filled with liquid or supercritical fluid. In the
second scenario, a larger flow is set, the pressure drops more
strongly, and a phase transition occurs in the system. Both

TABLE I
PARAMETERS OF TEST SCENARIOS

parameter symbol [units] value
total pipe length Ltot[km] 150

pipe internal diameter D[m] 0.5
pipe roughness k[mm] 0.5

heat transfer coefficient ch[W/(m2K)] 4
fluid composition x(CO2, N2, O2) (0.95,0.03,0.02)

inlet pressure pset [bar] 100
outlet norm.vol.flow, scen1 qset1 [103m3/h] 200
outlet norm.vol.flow, scen2 qset2 [103m3/h] 310

Fig. 3. (a),(c) – convergent iterations for scenario without phase transitions;
(b),(d) – cycling iterations for scenario with phase transitions, red color -
iteration 100, blue color – iteration 99.

scenarios use a mixture of 95% CO2, 3% N2, 2% O2. The
pipe is laid horizontally with h = 0.

Figure 3 shows the convergence characteristics for our test
scenarios, left column for scen1, right column for scen2. The
dimensionless precision parameter prec = max(resi/normi)
is defined as the maximum of the residuals of the equa-
tions divided by the normalizing value, for each equation its
own. For the Kirchhoff equation of conservation of flow, the
friction law in quadratic form, and the gas law expressed
with respect to density, the normalization factors norm =
(1kg/s, 100bar2, 1kg/m3) are chosen, respectively. In our
system, the equations and their normalizing factors can be
freely configured by the user. For a purely 1-phase solution
scen1 shown in Figure 3(a) and (c), the value of prec decreases
exponentially with the number of iterations and the solution
procedure converges. For scen2, as seen in Figure 1(b) and (d),
the procedure has cycling. In more detail, we see that there is
a converging region for the 1-phase and a part of the 2-phase
state, after which a temperature jump occurs, and oscillations
are observed in the remaining pipe segment.

Along with the two main scenarios, we ran a number of
additional simulations with small qset variations around the
specified values. Simulations show stability of the effects,
convergence in the 1-phase solution, and divergence in the
2-phase solution. The reason for this divergence is that EOS
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Fig. 4. Screenshot of MYNTS GUI for scenario without phase transitions.

and the enthalpy function receive large derivatives in the phase
transition region. These functions are actually jump-like for a
pure substance and formally continuous for a mixture, but at a
low concentration of impurities, the derivatives are still large.

A prototype example of such instability is the logistic map:
xi+1 = rxi(1−xi), which characterizes the behavior of simple
iterations near the root x = 1−1/r. When r rises from 1, and
passes the value 3, the absolute value of the r.h.s. derivative of
the logistic map equation exceeds 1, which is a critical value
for the convergence of simple iterations. Below this value, the
iterations converge. Above it, limit cycles appear, first with a
multiplicity of 2, then they double, and finally the system goes
to chaos.

Qualitatively, the same effects happen in our case. The
stabilization algorithm used in principle helps to overcome
such divergences, but for an ever higher derivative it becomes
less and less effective. We are going to explore this problem
in more detail in our future work. In order to overcome the
divergence, we can try to adjust the weight parameter in the
stabilizing algorithm. The dynamic solver behaves in much the
same way as weighted relaxation with a low weight; with a
decrease in the integration step, the stability of the integration
also increases. As shown in Figure 1, high derivatives only
occur for EOS in the form ρ(T, P ), changing variables to
P (T, ρ) could also be a solution of the problem.

At the same time, within the framework of the set technical
task, it is required to consider only those scenarios in which
there are no phase transitions and also there are no divergences
associated with them. For such solutions, it is required to
determine the proximity of the solution to the region of
phase transitions. That can be done using the proximity-alarm
algorithm described above.

Figure 4 shows the screenshots for scen1 solution in

MYNTS GUI. At the top, there is the pipe geometry with
the pressure profile shown in color. At the bottom, there is
the solution on the (T, P )-plane, where a part of the phase
envelope is also shown. The yellow disks show the proximity-
alarm triggered in the given node for the values dT = 1K,
dP = 1bar. The first 2 nodes near pset appear to be close to
the spurious line on the phase diagram. The alarm in them can
be canceled, because they are located top-right to the phase
envelope, in the supercritical region. In general, this visual
criterion is difficult to automate, since phase envelopes can
have a more complex appearance than in the figures of this
paper. Further, the figure shows how the solution trajectory
passes at a safe distance from the phase envelope, providing
the required CO2 transport without phase transitions.

V. CONCLUSION

In this paper, we have considered a numerical simulation
of the stationary process of CO2 transport with impurities
and phase transitions. We have developed the algorithms that
allow to solve scenarios of CO2 transport in the liquid or
supercritical phase and to detect the approaching of the phase
transition region. We have analyzed a convergence of the
solution algorithms in connection with fast and abrupt changes
of the equation of state and the enthalpy function in the region
of phase transitions.

The performed numerical experiments show that the sce-
narios with a single CO2 phase converge. For the obtained
temperature and pressure profiles, a conservative algorithm
for detecting the proximity of phase transitions can be applied,
giving the solution to the technical problem posed. At the same
time, divergences can occur in scenarios with phase transitions
due to the abrupt change of thermodynamic parameters. Ques-
tions about the possible suppression of these divergences as
well as improved detection of phase transitions are the subject
of our further work.
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