
Secure Authorization for RESTful HPC Access
Mohammad Hossein Biniaz

Computing
Gesellschaft für wissenschaftliche
Datenverarbeitung mbH Göttingen

Göttingen, Germany
E-Mail: mohammad-hossein.biniaz@gwdg.de

Sven Bingert
eScience

Gesellschaft für wissenschaftliche
Datenverarbeitung mbH Göttingen

Göttingen, Germany
E-Mail: sven.bingert@gwdg.de

Christian Köhler
Computing

Gesellschaft für wissenschaftliche
Datenverarbeitung mbH Göttingen

Göttingen, Germany
E-Mail: christian.koehler@gwdg.de

Hendrik Nolte
Computing

Gesellschaft für wissenschaftliche
Datenverarbeitung mbH Göttingen

Göttingen, Germany
E-Mail: hendrik.nolte@gwdg.de

Julian Kunkel
Computing

Gesellschaft für wissenschaftliche Datenverarbeitung
mbH Göttingen/Universität Göttingen

Göttingen, Germany
E-Mail: julian.kunkel@gwdg.de

Abstract—The integration of external services, such as work-
flow management systems, with High-Performance Computing
(HPC) systems and cloud resources requires flexible interaction
methods that go beyond the classical remote interactive shell
session. In a previous work, we proposed the architecture and
prototypical implementation of an Application Programming
Interface (API) which exposes a Representational State Transfer
(REST) interface, which clients can use to manage their HPC
environment, transfer data, as well as submit and track batch
jobs. In the present article, we expand on this foundation by
integrating a fine-grained role-based authorization and authen-
tication system, which facilitates the initial setup and increases
the user’s control over the jobs that services intend to submit
on their behalf. The developed HPCSerA service provides secure
means across multiple sites and systems and can be utilized for
one-off code execution and repetitive automated tasks.

Index Terms—HPC, automation, RESTful API, OAuth, autho-
rization, web interface.

I. INTRODUCTION

Due to the increasing demand on computing power driven
by the success of resource-intensive methods in various sci-
entific domains, there is an equally increasing requirement by
researchers to utilize HPC resources to satisfy their demand in
a cost-effective manner. This has led to the creation of different
services, which for instance expose a RESTful API, with
which users can remotely interact with an HPC system. There
are numerous different use cases for such a requirement. One
motivating example can be the ability to manage complex and
compute intensive workflows with a graphical user interface
to improve usability for inexperienced users [1].

While, one one hand, there are these efforts to ease and
open up the use of HPC systems, there is, on the other hand, a
constant threat by hackers. Since users typically interact with
the host operating system of an HPC system directly, local
vulnerabilities can be immediately exploited. Two of the most
favored attacks by outsiders are brute-force attacks against a
password system [2] and probe-based login attacks [3]. These

attacks, of course, become obsolete if attackers can find easier
access to user credentials. Therefore, it is of utmost importance
to keep access, and access credentials, to HPC systems safe.

In this context, services easing the use of and the access to
HPC systems should be treated with caution. For example,
if access via Secure Shell (SSH) [4] to an HPC system
is only possible using SSH keys due to security concerns,
these measures are rendered ineffective if users re-establish
a password-based authentication mechanism by deploying a
RESTful service on the HPC system that is exposed on the
Internet. Observing these developments, it becomes obvious
that there is a requirement to offer a RESTful service to
manage data and processes on HPC systems remotely which
is comfortable enough in its usage to discourage concocted
and insecure solutions built by inexperienced users with the
main objective of “getting it to work”, but which adheres to
the highest security standards.

The key contributions of this article are:
1) analysis of possible attack scenarios based on a RESTful

service running on an HPC system;
2) presentation of a state-of-the-art REST API design,

called HPCSerA, to secure the RESTful service;
3) discussion of the usability utilizing explicit use cases.
A REST Service, i.e., a web application, is typically de-

ployed in a suitable cloud environment. User requests for
code execution on the HPC system are generated manually or
automatically and then sent by a Client to this REST Service.
In order to execute the requested task, an Agent is deployed
on an HPC system that retrieves the tasks and executes them,
for instance by submitting a job on the cluster via the batch
system.

The remainder of this paper is structured as follows: In
Section II, the related work is presented, including state-
of-the-art mechanisms to solve this issue. In Section III,
existing security issues preventing a wide-spread application
of HPCSerA are being discussed and an improved architecture

12Copyright (c) IARIA, 2022. ISBN: 978-1-61208-961-4

INFOCOMP 2022 : The Twelfth International Conference on Advanced Communications and Computation

with a security-based scope definition is presented. In the
following Section IV, our implementation is presented. At the
end, a diverse set of use cases are presented in Section V,
as well as a concluding discussion, which is provided in
Section VI.

II. RELATED WORK

There is without question a general trend towards remote
access for HPC systems, for instance in order to use web
portals instead of terminals [5]. These applications actually
have a long standing history with the first example of a web
page remotely accessing an HPC system via a graphical user
interface dating back to 1998 [6].

Newer approaches are the NEWT platform [7], which offers
a RESTFul API in front of an HPC system and is designed
to be extensible: It uses a pluggable authentication model,
where different mechanisms like Open-Authorization (OAuth),
Leightweight Directory Access Protocol (LDAP) or Shibboleth
can be used. After authentication via the /auth endpoint, a
user gets a cookie which is then used for further access. With
this mechanism NEWT forwards the security responsibility to
external services and does not guarantee a secure deployment
on its own. This has the disadvantage, that NEWT is not
intrinsically safe, therefore providers of an HPC-system need
to trust the provider of a NEWT service, that it is configured
in a secure manner. Additionally, no security taxonomy is
provided, which is key when balancing security concerns and
usability.

Similarly, FirecREST [8] aims to provide a REST API
interface for HPC systems. Here, the Identity and Access Man-
agement is outsourced as well, in this case to Keycloak, which
offers different security measures. In order to grant access
to the actual HPC resources after successful authentication
and authorization, a SSH certificate is created and stored at a
the FirecREST microservice. Although this is a sophisticated
mechanism, there seem to be a few drawbacks. First of all,
the sshd server must be accordingly configured to support
this workflow, secondly it remains unclear how reliable status
updates about the jobs can be continuously queried when using
short-lived certificates, and lastly these certificates needs to be
stored at a remote location, which might conflict with the terms
of service of the data center of the user. Additionally, HPC
systems are often configured to allow logins from a trusted
network only, which means that the FirecREST microservice
can not serve multiple HPC systems at a time.

While the Slurm Workload Manager provides a REST inter-
face that exposes the cluster state and in particular allows the
submission of batch jobs, the responsible daemon is explicitly
designed to not be internet-facing [9] and instead is intended
for integration with a trusted client. Its ability to generate
JSON Web Token (JWT) tokens for authentication provides
an interesting alternative route for interaction with our ar-
chitecture, provided both services are hosted in conjunction.
Clients that shall execute Slurm jobs authenticate the trusted
Slurm controller via the MUNGE service [10] that relies on
a shared secret between client and server. If either of these

is compromised, then it is assumed that the whole cluster is
insecure. Slurm can be deployed across multiple systems and
administrative sites and there are various options for Slurm to
support a meta-scheduling scenario or federation. However, if
the Slurm controller is compromised, it can dispatch arbitrary
jobs to any of the connected compute systems. In addition,
decoupling the API implementation from the choice of the
job scheduler, as we propose, allows interoperation of multiple
sites, possibly using different schedulers.

An alternative execution model popular with public cloud
systems is Function-as-a-Service (FaaS). In this model, a
platform for execution of functions is provided, i.e., code
can be submitted by the user and execution of the function
with parameters are triggered via an exposed endpoint. A
runtime system executes the function in an isolated container
and automatically scales up the number of containers accord-
ing to the response time and number of incoming requests.
Customers are billed for the execution time of the function.
The core assumption is that the function is a sensible unit
of work, e.g., running for 100ms, running on a single core,
side-effect free, and thus only suitable for embarrassingly
parallel workloads. Authentication and security is of high
importance for these systems as well. For example, OpenFaaS
is a Kubernetes-based FaaS system that utilizes, e.g., OAuth
to authorize users and to generate tokens that are verified
upon function deployment or execution. While this mechanism
has similarities to our approach, FaaS is for short-running
(subsecond to several second) single node jobs, we provide
different, security-derived authorization processes for the dif-
ferent available operations, while mitigating user impact via
push notifications and solve the issue for long-running HPC
systems including parallel jobs.

III. ARCHITECTURE

We first analyze the potential security issues from our initial
architecture and describe an approach to address them via an
updated authorization and authentication process. Finally, each
step of the revised workflow is discussed individually.

A. Problem statement

In the original architecture, static bearer tokens were used
for user authentication. There was one bearer token per user,
which means that each client, as well as each agent authen-
ticated towards HPCSerA with the same token, compare [11,
III. B.]. Although considered state-of-the-art, this approach has
different security flaws, which prevented a public deployment.
These security problems become apparent, when particularly
taking into account that an access mechanism for an HPC
system is provided. One problem is that this single bearer
token can be used to access all endpoints, which means that
it can be used to perform any possible operation. This can be
maliciously exploited in two different ways:

• If that token is not properly guarded, an attacker can use
it to post a malicious job, to gain direct access to the
HPC system.

13Copyright (c) IARIA, 2022. ISBN: 978-1-61208-961-4

INFOCOMP 2022 : The Twelfth International Conference on Advanced Communications and Computation

• If an attacker has escalated their privileges, the token used
by the agent is left vulnerable. If the user has authorized
that token to get access to more than one HPC system, the
attacker has immediately gained access to another cluster.

There are two different conclusions one can deduce from these
observations: First, it is a highly vulnerable step to allow code
ingestion via a RESTful service into an HPC system and one
has to take the chance of a token loss into account, when
designing such a system. Second, the agent sometimes only
needs the permissions to read queued jobs and to update the
state of a job, e.g., from queued to running. It is, therefore,
an unnecessary risk to allow a job ingress from the token of
an agent.

B. Improved Architecture

The separation of access tokens by the user who created
them and the services (clients and HPC agents) to which
they are deployed, as described in [11], already enables
revoking trust in a setup with multiple services and multiple
backend HPC systems easily. However, during operation, there
is global access to the entire state, i.e., in-flight jobs, to all
parties involved. In order to segment trust between groups
of services and HPC backends, our revised architecture (cf.
Figure 1) resolves this issue by introducing a dedicated tag
field into the design of the database for access tokens. Based
on this information, client services and HPC agents can be
authorized individually. Moreover, each token can be assigned
one or multiple roles that restrict the combination of Hypertext
Transfer Protocol (HTTP) endpoints and verbs which can be
used for all entities that have been created using the same tag.
The token’s individual lifetime is implied by the granted role.

User control over each individual task and job that is
allowed to be run or submitted, respectively, is enforced by
introducing an intermediate authentication step that requires
user interaction via an external application. This could be run
on a mobile device or hardware token, like the ones being
used for two-factor authentication or integrated into the web-
based user interface used for token and device management for
fast iterations on the workflow configuration. Metadata about
the action to be authorized is included in the user prompt in
order to allow an informed decision. However, the measure
is restricted to this most critical step of the process, while
non-critical endpoints, such as retrieving the state of pending
jobs, can continue to respond immediately. For submitting a
new job, the necessity of individual user confirmation is also
determined by whether new code is ingested or an already
existing job is merely triggered to run on new input data.

From the user’s perspective, setting up the workflow would
start with logging into the web interface and creating tokens
for each service to be connected to the API and configuring
them in each client and agent, respectively. In order to acquire
a minimal working setup, at least one token for the client
service and one for the agent communicating to the batch
system on the HPC backend system would be required. OAuth
compatible clients could initiate this step externally, thereby
sidestepping the need for the user to manually transfer the

token to each client configuration. As soon as each client has
acquired the credentials either way, HPC jobs can be relayed
between each service and the HPC agent.

While the OAuth 2.0 terminology [12] allows a distinction
between an authorization server which is responsible for grant-
ing authorization and creating access tokens, and a resource
server which represents control over the entities exposed by
the API, in our case the tasks and batch jobs to be run,
both roles are assumed by our architecture, so the design
can be as simple as possible and deployed in a single step.
However, since the endpoints for acquiring access tokens and
the original endpoints that require these access tokens are
distinct, a separation into microservices (which again need to
be authenticated against each other) would also be compatible
with the presented design.

The steps necessary for code execution are illustrated in
Figure 1. As a preliminary, we assume that the HPC agent is
set up and configured with the REST service as an endpoint.
The arrows indicate the interactions and the initiator. The
individual steps are as follows:

1) The workflow starts by a user logging into the web
interface. The Single sign-on (SSO) authentication used
for this purpose has to be trusted, since forging the
user’s identity could allow an attacker to subsequently
authorize a malicious client to ingest arbitrary jobs.

2) The user can create tokens for the the REST service in
the WebUI.

3) The tokens are stored in the Token database (DB), along
with the granted role, project tag and token lifetime.

4) The retrieved tokens can then be used by a client,
e.g., to run some code on the HPC system or have an
automatic process in place, provided the code is already
present on the system, rendering manual authentication
unnecessary.

5) The request is forwarded to the REST Service, which
verifies the information in the Token DB. On success,
the code to execute is forwarded to the HPC agent.

6) If the client chooses to use the OAuth flow instead in
order to avoid manual token creation, the authorization
request is forwarded to the Auth app instead.

7) The user can choose to confirm or deny the authorization
request. In the former case, the generated token is stored
(cf. 3) in the Token DB. Again, further requests can
then in general proceed via step 5 without further user
interaction.

8) Like any other client, the HPC agent uses a predefined
token or alternatively initiates the OAuth flow in order
to get access to the submitted jobs.

9) For the most critical task of executing code on the HPC
frontend or submitting batch jobs, the agent can be
configured to get consent from the user by using the
Auth app for authentication.
This request is accompanied by metadata about the
job to be executed, such as a hash of the job script,
allowing an informed decision by the user. This step
also avoids the need for trust in a shared infrastructure,

14Copyright (c) IARIA, 2022. ISBN: 978-1-61208-961-4

INFOCOMP 2022 : The Twelfth International Conference on Advanced Communications and Computation

since the authentication part can be hosted by each site
individually.

10) Once the user confirmed execution, the HPC agent
executes the code, e.g., by submitting it via the batch
system. In this case, information about the internal job
status is reported back to HPCSerA.

We assume that the HPC agent is secure as otherwise the
system and user account it runs on are compromised and,
hence, could execute arbitrary code via the batch system
anyway. The Web-based User Interface (WebUI), HPC agent,
HPCSerA Service and Client are all independent components.
For example, a compromised REST Service could try to
provide arbitrary code to the HPC agent anytime or manipulate
the user’s instructions submitted via the client. However, as the
user will be presented with the code via the authenticator app
and can verify it similarly to a 2 Factor Authentication (2FA),
the risk is minimized.

There are multiple approaches to deploy HPCSerA across
multiple clusters and administrative domains:

a) Replication: Each center could deploy the whole
HPCSerA infrastructure which we develop (cf. Figure 1)
independently maximizing security and trust. By adjusting the
endpoint URL, a user could connect via the identical client to
either the REST service at one or another data center – this is
identical to the URL endpoints in S3. Although the user now
has two independent WebUIs for confirming code execution
on the respective data center, the authenticator and the identity
manager behind it could be shared. An additional advantage
of this setup would be that the versions of HPCSerA deployed
at each center could differ.

b) Shared infrastructure: The maximum shared config-
uration would be that for each HPC system a user has to
deploy a dedicated HPC agent on an accessible node but all
the other components are only deployed once.As the HPC
agents register themselves with the REST service, now the
user can decide at which center they would like to execute any
submitted code. While using a single WebUI for many centers
and cloud deployments maximizes usability, it requires the
highest level of trust in the core infrastructure: If two of these
components are compromised, arbitrary code can be executed
on a large number of systems.

IV. IMPLEMENTATION

In the following, more details about the technologies chosen
for our implementation are provided. Due to the conceptual-
ized architecture in Section III, this section has a focus on the
current scope definition and the authentication/authorization
scheme employed. Generally, the OpenAPI 3.0 specification
[13] was used to define the RESTful API, which is a language-
agnostic API-first standard used for documenting and describ-
ing an API along with its endpoints, operations, request- and
response-definitions as well as their security schemes and
scopes for each endpoint in YAML format. This API is backed
by a FLASK-based web application written in Python. The
token database is in a SQL-compatible format, thus SQLite
can be used for development and, e.g., PostgreSQL for the

production deployment. The database schema contains only
the user (user_id) and project (project_id) that the
token belongs to as well as the individual permission-level
(token_scope).

A. Definition of Access Roles

In order to give granular permissions for accessing each of
the endpoints, OpenAPI 3.0 allows to define multiple security
schemes providing different scopes to define a token matching
to the security level of each of the endpoints. Eight different
roles have been identified, which are listed and described in
Table I.

These roles are entirely orthogonal, which means they can
be combined as necessary. If, for instance, on one HPC system
only parameterized jobs needs to be submitted, the agent can
be provided with a token which has only the permissions of
role 2 and 3, thus lacking role 5, which is required to fetch
new files. Similarly, if a token is provided to a client which is
not 100% trustworthy, one can choose to only provide a token
with the role 6, i.e., to only allow to trigger a predefined job.
Important to understand is the difference in mistrust between
the role 3, 4, and 5. The security mistrust in role 4 comes from
the admins of the HPCSerA, which want to ensure that a code
ingestion is indeed done by the legitimate user. Therefore, in
order to allow code ingestion, the possession of a token with
the corresponding permission is not enough, the user has to
confirm the code ingestion via a 2FA. The mistrust in role 3
and 5 comes, however, from the user, who wants to ensure that
only jobs s/he confirmed are being executed. This is, again,
completely orthogonal, to the enforced 2FA in role 4 and can
be optionally used by the user. This fine-grained differentiation
between the different security implications of the discussed
endpoints, minimize user interference while providing a high
level of trust.

B. Providing Tokens via Decoupled OAuth

The introduction of OAuth-compatible API endpoints has
several advantages: Access tokens can be created on demand
in a workflow initiated by a client or HPC agent, respectively.
In addition, while there is a default API client provided, a
standard-compliant API enables users to easily develop drop-
in replacements.

It is important to note here that we modified the usual OAuth
flow, where a client gets redirected to the corresponding login
page to authorize the client. This “redirect approach” has two
problems:

• The client is a weak link, where the Transport Layer
Security (TLS) encryption is terminated and therefore
becomes susceptible to attacks and manipulation.

• It does not support a headless application, like the HPC
agent, which is not able to properly forward the redirect
to the user.

Due to these shortcomings, a modified OAuth flow was
developed to enable the usage of headless apps and improve
security. This modified version decouples the user confir-
mation from the client, which means that the client is not

15Copyright (c) IARIA, 2022. ISBN: 978-1-61208-961-4

INFOCOMP 2022 : The Twelfth International Conference on Advanced Communications and Computation

potentially shared infrastructure in scope of HPCSerA
development

Token DB

HPCSerA ClientHPC agent

Batch systemAuth appWebUI

User

4 Access token

Manage Tokens
1

8
3 Store

5 Validate

2 Get consent9
6

2FA
7

10 CLI

Fig. 1. A sketch of the proposed token-based authorization flow. The following parts are shown: 1) WebUI login 2) Connection to the HPCSerA service 3)
Storage of access tokens 4) Client connecting to the API 5) Validation of access tokens 6) Authorization request 7) User interaction with the Auth app 8)
HPC agent connecting to the API 9) Authentication request for code execution 10) Interaction with the HPC batch system

TABLE I
DEFINITION OF THE EIGHT ROLES. OPERATIONS MARKED IN RED HAVE TO BE CONSIDERED SECURITY CRITICAL FROM THE ADMIN POINT OF VIEW,

WHEREAS THE ORANGE MARKED OPERATIONS FROM A USER POINT OF VIEW.

Role Number Role Description
1 GET JobStatus Client can retrieve information about a submitted job
2 UPDATE JobStatus Used by client/agent to update the job status
3 GET Job Endpoint used by the agent to retrieve job information
4 POST Code Client to ingest new code to the HPC sytsem
5 GET Code Agent pulls new code. Might be necessary to run new job
6 POST Job Client triggers parameterized job
7 UPDATE Job Client updates already triggered job
8 DELETE Job Client deletes already triggered job

being redirected but that the confirmation request is being
sent out-of-band, e.g., via the WebUI or via notification on
a smartphone device.

Starting with the case that the script does not already
come equipped with a token, analogous to the usual OAuth
flow, the generation of a token is requested. Since our use
case was initially built as an instance of machine-to-machine
interaction, i.e., headless, the issue of a lack of user interface
is encountered; the usual OAuth flow - implemented in the
browser - would redirect the user to an authorization server
where the user could actively provide their username and
password to the authorization server. The authorization server
would then return a code, in the case of the authorization
code flow, in the redirect URI which would be posted in a
backchannel along with a client secret assigned at the time of
registering the client to attain an access token.

In order to circumvent this headless-app problem, this
work has implemented a synchronous push notification system
analogous to the Google prompt where a notification is pushed
to a user’s device awaiting a confirmation to proceed. In the
Minimum Viable Product (MVP), we have implemented this
in the SSO-secured WebUI in order to have a more integrated
interface. Eventually, the final product will see an Android
and iOS app that receives such notifications. This flow then
grants the permission to execute a security critical operation,
compare Table I.

This confirmation via push notification cannot solely rely on
time-synchronicity since it would be susceptible to an attacker
requesting tokens and/or 2FA confirmation for carrying out a
security-critical operation in the same approximate time frame.
Therefore, a sender constraint has to be implemented. This
is done in a similar way to the original authorization code
flow: The access code is signed with a client secret, which
was configured with HPCSerA prior to the execution of this
workflow, and then sent to HPCSerA. HPCSerA verifies the
secret and only then sends the actual token. This secret is
implemented using public-private key pairs, where the public
key is uploaded to HPCSerA in the initial setup to register a
new client (or agent).

Alternatively, in the case that a token is supplied along with
the software or script that is submitting a job to the HPCSerA
API, the permissions are validated against a token database.
In the case that the token provided contains permissions for
accessing a sensitive endpoint, the second factor check is trig-
gered through the WebUI and the notification / confirmation
process is once again undergone. It is important to note that
this is not a hindrance since already-running jobs and non-
sensitive endpoints proceed without user-intervention.

V. USE-CASES

Due to the previously stated changes in the architecture,
there are certain adaptions in the previously presented use

16Copyright (c) IARIA, 2022. ISBN: 978-1-61208-961-4

INFOCOMP 2022 : The Twelfth International Conference on Advanced Communications and Computation

cases [11]. These changes will be discussed in the following
and serve as the basis for a broader user impact analysis.

A. GitLab CI/CD

Since the GitLab Runner can be configured to run arbitrary
code without including secrets in the repository, thanks to
GitLab’s project Continuous Integration and Integration De-
velopment (CI/CD) variables [14], the required tokens can be
made available to the CI/CD job so it can in turn access the
API endpoints required to transmit the current repository state
to an HPC system where the code can be tested using the HPC
software environment or even multiple compute nodes.

A new commit might of course introduce arbitrary code to
the HPC environment, therefore it is advisable to enforce the
extra authentication step (cf. Section III-B), when code from a
new commit is submitted to the HPC system. The correspond-
ing hash, available by default via the GIT_COMMIT_SHA
variable, would be a helpful piece of information to display
to the user when asking to authorize the request.

B. Workflow Engine

In the workflow use case, HPC jobs should be fully auto-
mated without user interaction. Due to multiple repetitions and
time dependencies, interactions severely limit the functionality
and practicability of the workflow. One possibility is to prepare
the workflow in such a way that only parameterized jobs are
called and thus only safe endpoints of HPCSerA are used. An-
other possibility is to use dedicated (legacy) endpoints that are
only accessible through firewall regulations and fixed network
areas. The latter can also be regulated via an additional proxy
server, such as a nginx.

C. Data Lake

In order to provide high performance computing capabilities
to a data lake [15], HPCSerA is used to submit jobs on behalf
of the data lake users. A user sends a so-called Job Manifest to
the data lake, where the software, the compute command, the
environment, and the input data are unambiguously specified.
By transferring the responsibility of scheduling the job from
the user to the data lake, it has the control about it. This
allows to reliably capture the data lineage and to foster
reproducibility. The added benefit of the newly implemented
security measures in HPCSerA is that, before, users had to trust
the data lake, and hereby the admins, with their bearer tokens.
By introducing OAuth and enforcing a 2FA for code ingestion,
this is not necessary anymore, since users now need to confirm
each submission. Since users submit jobs actively, for instance
via a Jupyter Notebook using a PythonSDK, the requirement
to confirm each submission does interrupt the workflow too
much.

VI. CONCLUSION

In the paper presented here, we have examined the issue of
security in accessing HPC resources via a RESTful API. The
initial situation with a very simplified token model does not
meet the requirements. Therefore, a fine-granular token model,
coupled with interactive user consent and OAuth flows, was

proposed. With this new model, particularly critical interac-
tions, such as code transfer, can be secured. User consent is
requested in a prototype via a WebUI, which in turn uses a
central Identity Management (IDM) for authentication. This
means that no critical user-specific data needs to be managed.

In future work, the possibilities for obtaining user consent
will be further analyzed. The development of mobile apps is
planned, which will greatly simplify the consent workflow for
the user. So far, the focus has been on the transmission and
execution of code. However, there is also a requirement to
transmit data objects that are necessary for execution. There-
fore, it is examined to what extent the current implementation
is suitable for such tasks and where possible limits are reached
in terms of data quantity and transmission speed.

ACKNOWLEDGMENTS

We gratefully acknowledge funding by the “Niedersachsis-
ches Vorab” funding line of the Volkswagen Foundation and
“Nationales Hochleistungsrechnen” (NHR).

REFERENCES

[1] Z. Wang et al., “RS-YABI: A workflow system for Remote Sensing
Processing in AusCover,” in Proceedings of the 19th International
Congress on Modelling and Simulation. MODSIM 2011 - 19th
International Congress on Modelling and Simulation - Sustaining Our
Future: Understanding and Living with Uncertainty, 2011, pp. 1167–
1173.

[2] A. K. Singh and S. D. Sharma, “High Performance Computing (HPC)
Data Center for Information as a Service (IaaS) Security Checklist:
Cloud Data Governance.” Webology, vol. 16, no. 2, pp. 83–96, 2019.

[3] J.-K. Lee, S.-J. Kim, and T. Hong, “Brute-force Attacks Analysis against
SSH in HPC Multi-user Service Environment,” Indian Journal of Science
and Technology, vol. 9, no. 24, pp. 1–4, 2016.

[4] T. Ylonen, “SSH - Secure Login Connections Over the
Internet,” in Proceedings of the 6th USENIX Security
Symposium (USENIX Security 96). San Jose, CA: USENIX
Association, Jul. 1996, pp. 37–42, [accessed: 2022-03-21].
[Online]. Available: https://www.usenix.org/conference/6th-usenix-
security-symposium/ssh-secure-login-connections-over-internet

[5] P. Calegari, M. Levrier, and P. Balczyński, “Web portals for high-
performance computing: a survey,” ACM Transactions on the Web
(TWEB), vol. 13, no. 1, pp. 1–36, 2019.

[6] R. Menolascino et al., “A realistic UMTS planning exercise,” in Proc.
3 ACTS Mobile Communications Summit 98, 1998.

[7] S. Cholia and T. Sun, “The newt platform: an extensible plugin frame-
work for creating restful hpc apis,” Concurrency and Computation:
Practice and Experience, vol. 27, no. 16, pp. 4304–4317, 2015.

[8] F. A. Cruz et al., “FirecREST: a RESTful API to HPC systems,” in 2020
IEEE/ACM International Workshop on Interoperability of Supercomput-
ing and Cloud Technologies (SuperCompCloud), 2020, pp. 21–26.

[9] SchedMD. (2022) Slurm REST API. [accessed: 2022-03-18]. [Online].
Available: https://slurm.schedmd.com/rest.html

[10] Chris Dunlap. (2022) MUNGE Uid ’N’ Gid Emporium. [accessed:
2022-03-21]. [Online]. Available: https://dun.github.io/munge/

[11] S. Bingert, C. Köhler, H. Nolte, and W. Alamgir, “An API to Include
HPC Resources in Workflow Systems,” in INFOCOMP 2021, The
Eleventh International Conference on Advanced Communications and
Computation, C.-P. Rückemann, Ed., 2021, pp. 15–20.

[12] D. Hardt, “The OAuth 2.0 Authorization Framework,” RFC 6749, Oct.
2012, [accessed: 2022-03-21]. [Online]. Available: https://www.rfc-
editor.org/info/rfc6749

[13] OpenAPI Initiative. (2017) OpenAPI Specification v3.0.0. [accessed:
2022-03-21]. [Online]. Available: https://spec.openapis.org/oas/v3.0.0

[14] GitLab. (2022) GitLab CI/CD variables. [accessed: 2022-03-18].
[Online]. Available: https://docs.gitlab.com/ee/ci/variables/

[15] H. Nolte and P. Wieder, “Realising Data-Centric Scientific Workflows
with Provenance-Capturing on Data Lakes,” Data Intelligence, pp. 1–13,
03 2022. [Online]. Available: https://doi.org/10.1162/dint a 00141

17Copyright (c) IARIA, 2022. ISBN: 978-1-61208-961-4

INFOCOMP 2022 : The Twelfth International Conference on Advanced Communications and Computation

