
An API to Include HPC Resources in Workflow
Systems

Sven Bingert
eScience

Gesellschaft für wissenschaftliche
Datenverarbeitung mbH Göttingen

Göttingen, Germany
sven.bingert@gwdg.de

Christian Köhler
eScience

Gesellschaft für wissenschaftliche
Datenverarbeitung mbH Göttingen

Göttingen, Germany
christian.koehler@gwdg.de

Hendrik Nolte
eScience

Gesellschaft für wissenschaftliche
Datenverarbeitung mbH Göttingen

Göttingen, Germany
hendrik.nolte@gwdg.de

Waqar Alamgir
Internet Technologies and Information Systems

Technical University of Braunschweig
Braunschweig, Germany

w.alamgir@tu-braunschweig.de

Abstract—The demand for processing power by modern
data analyses is continuously increasing. High-Performance-
Computing (HPC) resources can help but the standard process
is for users to log in to use the HPC systems which is often
complicated and not well suited for the integration in workflows.
In order to bridge the gap between external workflow tools and
the usage of HPC resources, we designed and implemented an
application interface. This API allows workflow systems to submit
HPC jobs along with required artefacts to the queuing system
without a direct login of the user. The presented API regards the
required safety regulations by ensuring the identity of authorised
external workflow systems, as well as the executing HPC systems
with a token-based authentication model. In this paper we
describe the design of the API and present three use-cases. In
the data lake use-case, a novel technique for provenance auditing
without runtime overhead is presented which is particularly well
suited for HPC systems.

Index Terms—HPC, automation, RESTful API, workflow en-
gine, data management, provenance, data lake

I. INTRODUCTION

A typical workflow one might think of when describing the
usage of an High-Performance-Computing (HPC) system can
be outlined as follows:

• As a central component of getting started on an HPC
system, shell access has to be set up for the user, which
is typically done over Secure Shell (SSH). Since HPC
systems are a major target for cyberattacks, as exemplified
in [1], providers like scientific institutions or private busi-
nesses are generally employing extra security measures,
such as enforcing key-based authentication, restricting the
source IP for user logins, as well as limiting the users’
capabilities of accessing the public internet from compute
nodes or even frontend nodes.

• Similar issues arise when users want to initiate the
transfer of input and output data for their jobs, as well
as the transfers that are necessary for setting up software
on the system. While the latter is commonly delegated
to the operating staff, data transfers are recurring tasks

which have to conform to security constraints, as well
as policies aimed at maintaining the performance of the
system, such as delegating the task of huge data transfers
to dedicated hardware.

A. Related Works

Our approach is complementary to the REST API provided
for, e.g., the batch system Slurm via its own slurmrestd in
the sense that our reliance on outgoing connections avoids
any administrative work on the part of the HPC provider.
Moreover, the split into an external API working in tandem
with a local script incorporates data management-related tasks
outside of the batch system from the outset. In cases where
the HPC network can be set up to allow incoming connections
to the REST endpoint, a homogeneous set of systems is to be
used exclusively, and remote access to the batch system is
sufficient, the included API is of course the more effective
solution.

NEWT, the NERSC Web Toolkit, follows a similar approach
of presenting HPC resources over a RESTful API and using
JSON formatting for the response. However, the implementa-
tion is custom-tailored for the resources at Lawrence Berkeley
National Laboratory (LBNL) [2].

The microservice-oriented solution FirecREST, which has
been developed at Swiss National Supercomputing Center
(CSCS) roughly at the same time as our solution, differentiates
asynchronous cluster jobs from synchronous shell scripts as
well, focuses on Slurm as the HPC workload manager and
handles data management also for large files [3].

B. Limitations of the interactive usage model

In addition to the mentioned preparatory steps for setting
up a workflow by the user, the manual management of HPC
tasks runs into limitations in various usage scenarios:

• There might be external triggers which start an entire
pipeline of data ingest, processing, and finally the upload

15Copyright (c) IARIA, 2021. ISBN: 978-1-61208-865-5

INFOCOMP 2021 : The Eleventh International Conference on Advanced Communications and Computation

of results, such as acquisition of data via scientific
instruments, e.g., electron microscopes. In this case, it
is desirable that a user’s existing data management tools
can delegate the entire chain of tasks to the HPC system.

• External applications or services to which the HPC sys-
tem acts as a back end via templated jobs that, once
initially configured, vary only in the provided input data.
These might range from rather sparse (such as user-
selected ranges in parameter studies of numeric sim-
ulations) to very data-intensive, such as asynchronous
processing of image data. An example of this approach is
GenePaint an online “atlas of gene expression patterns”
[4].

• Software development projects working on applications
that are intended to run on HPC systems, implying
dependencies on the available compilers, libraries, and
specialised fabric or accelerator hardware. The collabo-
rative workflow should support automatic testing of each
iteration in the native HPC environment without manual
intervention.

Custom-tailored architectures employing existing cloud in-
frastructures are often the answer to these demands, in fact
dynamically switching between a cloud provider or an HPC
system depending on each instance of an application might
be desirable, c.f. [5]. However, various constraints can make
the integration into an HPC system necessary, such as an
existing software stack that is hard to replicate on a cloud
infrastructure, the bare-metal performance achievable without
an intermediary virtualisation layer, as well as simple eco-
nomic considerations, like avoiding the costs of additional
software licenses and replicated storage for long-term resident
data, such as genomic databases in bioinformatics.

The remainder of this paper is structured as follows: In
section II we motivate the the need for an HPC API by
introducing potential usage scenarios and extracting our re-
quirements from these. Section III focuses on the design of
our solution and gives an overview of the implementation.
Finally, in sectionIV we elaborate on three use cases that rely
on the presented solution.

II. MOTIVATION FOR A GENERAL-PURPOSE HPC API

Our proposed solution to the problem of automating the
HPC tasks outlined in the introduction is the design of an
Application Interface (API) that abstracts the notion of an
HPC job and, with certain limitations, the artefacts needed
for its execution, away from the command-line tools typically
employed, thus making the resources available to external
services. Viewed this way, the system can itself become a
background service that is not visible to the end-user and
becomes, to some extent, an implementation detail, much like,
e.g., a database instance or a storage back end. The main
challenge is that the system should conform to the typical
security restrictions so its setup doesn’t involve major redesign
work in existing security concepts.

A. HPC as a backend service

The envisioned architecture has to be able to accept jobs as
part of a workflow that doesn’t necessarily have to originate
from the system itself, enabling the user interaction to depart
from the classical approach (i.e., preparing the application,
input data and job script tailored to the available infrastructure
in the HPC file systems, submitting the job in an interactive
shell session, and handling post-processing and data transfers
manually) - one example would be presenting a web interface
that allows the customer to
(a) configure a standardised job for a Computational Fluid

Dynamics (CFD) application by specifying the parame-
ters and upload the geometry, then using the HPC system
as a backend to calculate the flow asynchronously and

(b) visualise the results of finished jobs and automatically
attach citable persistent identifiers to them.

B. Requirements for an HPC API

We aim to enable standard users of the system to be able
to set up access via their individual accounts through the
API. This should happen transparently at the user’s discretion
and in particular without the need to set up a system-wide
solution that would need to be approved and handled by each
system’s administrators. By setting up their user account to
process jobs submitted over the HPC API, the user trusts the
implementation to (a) faithfully translate jobs that are accepted
from external services that were individually authorised by
the user. This notion of trust also has to work the other way
around, i.e., any HPC system that accesses the API has to be
authorised first as well, since the job’s metadata and artefacts
might be confidential, and confidence in the results comes
from the fact that it has been processed by a known HPC
system. To complete the circle, those results should only be
accessible to trusted services, in the simplest case the one
by which the job has been submitted. Apart from this most
critical component of the solution, that is, acting with users’
privileges on their behalf through the API, also the remainder
of the infrastructure should support being easily provisioned
by the user - the service-facing API endpoints (potentially
worldwide accessible). However, this part should allow shared
operation for multiple users, provided a suitable authentication
scheme is in place. The semantics used in the API to describe
the metadata and states of batch jobs that are ultimately
processed, should be batch system-agnostic. The goal here
is not to establish some generic standard of job metadata,
which could be a non-exhaustive attempt at integrating the
specifics of various existing batch systems at best. Instead,
our aim is to establish a suitable common denominator that
allows the simultaneous operation of various HPC sites with
potentially different batch systems as back ends for the same
set of services.

Finally, any services relying on the HPC API should have
the possibility to inquire on the status of any jobs which
are already submitted yet not fully processed. These could
be just received, already fetched by one of the connected

16Copyright (c) IARIA, 2021. ISBN: 978-1-61208-865-5

INFOCOMP 2021 : The Eleventh International Conference on Advanced Communications and Computation

HPC systems, waiting in the system’s internal batch queues,
or ready for retrieving the results. We expect this to be a
useful feature since it is needed to, e.g., provide dashboards
on the jobs’ processing state or to dynamically decide which
system to delegate jobs to (there might be multiple processing
back ends in addition to the HPC systems addressed by our
solution).

C. Potential Use Cases

In addition to the abstract characterisation of tasks that limit
the manual HPC workflow, we give some concrete examples
of applications which potentially benefit from our solution, as
well as some who are already doing so where indicated:

• scientists considering classic HPC batch jobs only a part
of their broader data management workflow and want to
automate this process including the transfer to and from
the system (An example is given in the “Data Lake ” use
case.)

• users of Data Analytics tools (e.g. Apache Spark) who
want to automatically have a cluster of worker nodes
(unspecific to their actual project) provisioned as a batch
job and afterwards submit their job to this cluster in
the same way they would have done so on a non-HPC
infrastructure

• customers working on parallel codes in GitLab and want
to run their continuous integration (CI) jobs in those
projects’ native software environment, in particular if (a)
the compilers and/or libraries are commercially licensed
products whose installation in a dedicated Runner would
mean extra overhead or (b) need to test their build in a
distributed job against a high-speed interconnect (c.f. the
“GitLab” use case)

• users that often submit jobs which are highly schematic
in nature, such as parameter sweeps of simulations or
CFD simulations (e.g. OpenFOAM) or climate models
(e.g. CESM) can be provided with an interface that only
requires them to state initial values, resolutions, geome-
tries etc. (An application of this kind is the motivation
for our “Flowable” use case.)

• researchers who want to contribute to the quality of
scientific publications by making the processing from
input to output data transparent and reproducible by
automatically attaching persistent identifiers (PIDs) to
the output of their jobs, enriching them with metadata
about the job itself and (ideally, if publicly available) the
location of the input data.

III. DESIGN

In the following, we describe the most relevant aspects for
the design of the interface. Flexibility to adjust to different
environments let us summaries the the desgin as follows:

• A Representational State Transfer (REST) API service
that is being accessed over the HTTP(S) protocol is
deployed on a host (bare metal or virtual machine)
which is reachable by the external services as well as
the HPC system. From the point of view of the HPC

system all connections to the API are outgoing, so the
potential impact of firewall configurations is minimal.
Since REST client libraries are ubiquitous in a multitude
of programming languages (or at last HTTP clients and
JSON parsers), this design choice makes the integration
of a new service relatively easy.

• We provide a generic script to be installed by the user in
the context of their existing account on one or multiple
HPC systems. As long as this script is running, either
continuously in, e.g., a GNU Screen session or by being
periodically started by a cron job, it will poll the API for
jobs that need to be processed on the particular system
and submit those to the batch system, query the status
of the batch system to determine which jobs have been
finished and finally update the status of jobs via the
API. It is only at this stage that knowledge about the
batch system is needed, thus a heterogeneous collection
of systems can process jobs from the same endpoint as
shown in Fig. 1.

Jobs can be defined to be executed on the frontend node (one
particular machine in the HPC system where outgoing traffic
is allowed and where the script runs) as well, because various
tasks such as the (un)archiving of artefacts, the transfer of job
input and output data as well as the compilation of code as a
preparatory per-job step do not warrant the launch of an extra
batch job. Our approach for these kinds of tasks is to start with
a minimal set (the pass-through of shell commands as well as
basic data management tasks) and to formalise recurring tasks
only as needed in order to avoid over-engineering the solution.

A. What is not included

The scenarios where we envision an application of our API
share a certain uniformity of the jobs that will be submitted and
we focus on the automation of those. Therefore the initial setup
and testing of any new kind of job should not be shoehorned
into the API approach, but rather be carried out manually
and only afterwards schematised so that the bulk of jobs can
be handled automatically. However, there is demand for the
interplay between new software versions and data which is
described in the “Data Lake” use case.

B. Security and user management

The API can be provisioned by an individual user or, if
multi-user operation on a central setup is desired, authen-
tication against a local user database or LDAP has to be
performed. There are two kinds of stateful data on the API
server: Authentication tokens which are generated on a per-
user basis (this could in theory be outsourced to an external
service) and authorised for usage by either a service which
needs to submit and manage jobs, inquire about their state
and fetch the results or by HPC systems which need to receive
the jobs, update their status and uploads the results. These API
access tokens are then shared with the client run by the service
and the script running on the HPC frontends, respectively. If
trust of a system on either side is to be revoked, all that is
needed is the removal of the corresponding access token. At

17Copyright (c) IARIA, 2021. ISBN: 978-1-61208-865-5

INFOCOMP 2021 : The Eleventh International Conference on Advanced Communications and Computation

HPC API
GWDG

HLRS

GitLab

Flowable

Data Lake

CRON JOB

CRON JOB

Slurm

PBSPro

POST sbatch

qsub
GET/UPDATE

Fig. 1. Components of the architecture: external services, API server, HPC systems (in our use cases the Scientific Compute Cluster of GWDG and HAWK
at HLRS).

this level, more fine-grained access control per token could be
a sensible extension of our design.

C. Components

The core component to be developed in the project would
be an application server (“application” in the following) which
provides the following interfaces:

The HPC system has access via an API in order to regularly
poll the application for new jobs that need to be executed on
behalf of the user and to post the results (or references to
them in the metadata) once they have finished. Our envisioned
implementation of this step would be a standardised cron-job
that is developed in the project and provided in a way that
is easy to set up for the user. This approach implies that no
additional firewall rules and/or accounts have to be set up
on the HPC system itself. The user of the application to be
developed is authenticated by a token that is created upon
initial configuration of the cron-job and reported to the user
and vice versa with an API key generated by the application
itself.

A REST API is needed for importing jobs from third party
applications, e.g., GitLab Runners as described above, into the
job queue of the system and for querying the state of the queue.
Credentials that are necessary to authorise the submission of
jobs are handled by the system itself, in particular no SSH key
that would grant access to the HPC system has to leave the
user’s personal machine.

The final step is a web interface which
• allows the user to validate that the HPC system is con-

nected and authentication works in both ways, showing
basic information such as the status of system (available
nodes, current utilisation etc), and the status of the user’s
own jobs,

• facilitates the submission of supported jobs, such as
parameterised simulations, Data Analytics applications
etc. as described above and shows their results, possibly
visualisations, if applicable, and

• is used to authorise external applications, such as GitLab.

D. Implementation

Our design has been prototypically implemented as HPC
Service API (HPCSerA) in [6]. Using the OpenAPI 3.0
specification (known as Swagger until 2015) an authorita-
tive definition of the API was created in the YAML format.
Therein component definitions determine the schema of HTTP

responses, e.g., a Job component containing information on
a job such as its internal identifier (ID) in the batch system,
and path definitions assign possible HTTP request methods
(“verbs”) to individual paths as well as possible response
status codes. For example, the following excerpt from the
swagger.yaml definition states that the /job/{jobId}
path supports the GET method to receive information on the
instance of the Job component referenced by jobId:

swagger.yaml (abbreviated)
o p e n a p i : 3 . 0 . 0

/ j o b /{ j o b I d } :
g e t :

summary : F i n d s j o b by ID
d e s c r i p t i o n : R e t u r n s a s i n g l e j o b
p a r a m e t e r s :
− name : j o b I d
r e s p o n s e s :

” 2 0 0 ” :
d e s c r i p t i o n : S u c c e s s f u l o p e r a t i o n
c o n t e n t :

a p p l i c a t i o n / j s o n :
schema :

$ r e f : ’ # / components / schemas / Job ’

The client script handling jobs on the HPC side is im-
plemented in Python as well, which is conveniently possible
since a Python module for the API corresponding client called
swagger_client is automatically generated alongside the
server code. This module includes a corresponding class
definition for each component in the API specification which
allows straightforward interoperation between Python code
and the component instances accessed through the API. In
the case of the central Job component, the class definition is
augmented by methods that use its metadata to execute scripts
locally and to interact with the batch system. This is done
repeatedly for all jobs that are either new, being queued or
currently running on the batch system. Any shell commands
being run implicitly are defined in a separate configuration
file to allow easy modification, e.g., for interacting with a
different batch system or to customise data transfer tasks.
The full documentation of HPCSerA is presented at [7].
In the prototypical implementation, a statically configured
set of users and access tokens is being used. To make the
service fully production ready, dynamic user management and

18Copyright (c) IARIA, 2021. ISBN: 978-1-61208-865-5

INFOCOMP 2021 : The Eleventh International Conference on Advanced Communications and Computation

authentication as well as token generation and management
has to be implemented as well.

Local persistence of jobs, which is strictly needed only
during their runtime, is implemented with a MySQL database
that is running on the same host as the API server itself. The
local file-system is used for temporary storage of uploaded
artefact files.

IV. USE-CASES

We selected three different use-cases two show the strength
of our flexible approach. Each use-case has a different tech-
nical background and different target user groups.

A. GitLab

For Continuous Integration (CI) workflows relying on Git-
Lab runners, various implementations are available, among
which SSH executors are in principle the most suitable for
integrating with an HPC system. Of course, private credentials
and SSH keys should never leave the personal machine of
any user, therefore it is not trivial to deploy these runners
on an HPC system. However, running them over the API
client is not a problem and the API key can be conveniently
handled by GitLab Secrets Management and centrally revoked
if necessary.

The client implementation generated by Swagger Codegen
is used in [6] with a configurable hpc.yaml file which directs
the HPC frontend to run various subJobTypes, such as raw
shell commands, file transfers and archiving tasks, as well as
batch jobs. This approach allows a clean integration with the
.gitlab-ci.yml file used in a GitLab repository in order
to trigger the API client’s tasks. The API supports uploading
small file artefacts that should accompany the job and do not
warrant the setup of a dedicated file storage by accessing
the /file/uploadFile path with the POST method. This
feature is used to ship the source code of the git commit to
be tested on the HPC system.

B. Workflow Engine

The Open Forecast project [8] has the goal to integrate
HPC resources into a generic workflow system to allow
users to process open data. Flowable [9] was chosen as
workflow runtime engine to execute user-defined workflows.
Although Flowable offers many BPMN-specific (Business Pro-
cess Model Notation) tasks, a possibility to select a different
runtime environment for dedicated workloads is not available.
The presented API allows to interact with the HPC system
using the built-in HTTP task of Flowable. The HTTP task
allows to define and configure REST calls to specify the
HPC job. Including this task in a Flowable workflow enables
the workflow designer to include user interactions to collect
additional information for the HPC job. Eventually the full
potential of BPMN based workflows can be used, e.g., data
processing on different HPC resources is combined with user
interactions such as collecting parameters and sending job
status information via email. In our current setup, the HPC
job is defined as a singularity container which is pulled

from a GitLab container registry, submitted to the queuing
system, and started with the previously collected user-defined
parameters.

C. Data Lake

A data lake is generally designed as the central repository
for all data sets from all data sources in their raw format [10].
In order to ensure proper data integration, comprehensibility
and quality some data modelling is required [11]. These
models are then being stored in a central data catalogue which
is used to perform searches on the data lake and to access
descriptive metadata.

Retaining data in their native format prevents a possible
information loss due to ETL-Processes and ensures a high
re-usability. Due to the high re-usability there is the need to
support a wide range of different analyses on these data sets.
Since these analyses are potentially extremely computationally
demanding it is favourable for the data lake to outsource
those computations to an HPC system. Furthermore, since
all resulting artefacts will be ingested back into the data
lake, maintaining concise and accurate provenance data is
recognised to be the key requirement for the manageability
of the data lake [12]. Various solutions tailored for specific
purposes have been proposed for this. Goods [13] analyses
log files in a post-hoc manner to determine which jobs
created a dataset based on which input, which requires that
the application writes a suitable log. Similarly, Komadu was
integrated into a data lake [12] which supported the messaging
of provenance information via RabbitMQ, also relying on
the explicit support of the application. DataHub [14] was
equipped with ProvDB [15] where user annotations and special
shell commands are used to capture provenance information.
However, solely relying on user annotations is very error prone
and piping commands through a shell into an auditing tool can
not capture the entire execution environment reliably without
introducing a noticeable overhead. In order to mitigate these
shortcomings we present a novel technique to enable retro-
spective provenance auditing of generic applications which is,
amongst others, ideally suited for HPC Systems, where generic
provenance tools are still under discussion [16].

In order to perform a generic analysis job, required to
serve the wide range of different applications, the user has
to describe it in an unambiguous job manifest. This job
manifest contains not only the actual compute commands, but
it offers a wealth of options to exactly fine tune a job. The
specification of a container image is mandatory to enforce
better traceability and reproducibility. Furthermore, comments
can be made, a job name can be assigned and the data category
must be specified. These user annotations are very useful for
better comprehensibility and traceability later on, but do not
contribute to the actual recorded retrospective provenance data
since user-provided information is potentially error prone. In
order to further prepare the execution environment, an arbitrary
list of git repositories, with corresponding bash commands to
build them, can be declared. In addition, environment variables
can be defined which get imported into the container for the

19Copyright (c) IARIA, 2021. ISBN: 978-1-61208-865-5

INFOCOMP 2021 : The Eleventh International Conference on Advanced Communications and Computation

execution. Also, the input data is defined, either as a list or
as a query on the data catalogue on which the analysis is
being performed. The special feature here is that the manifest
itself is an entity which is getting stored in the data lake
with all its entries being indexed. Hereby, all submitted jobs
are searchable for all the specified attributes, artefacts can
be linked back to their input data and can also be directly
linked to the precise job description as well, enabling easy
reproducibility and comprehensibility of the origin of artefacts.
This job manifest is then sent to the data lake to execute the
specified job. Upon receiving this job specification, the data
lake generates three different bash scripts: a preprocessing,
a run and a postprocessing script. Together with optionally
needed assessor scripts, for example one to download the
specified data from an S3-Bucket, these are then zipped
and posted via an RESTful request to the the HPC API
server. Since the data lake has its own user management, the
corresponding tokens of the users for the HPC API are stored
locally in a database and are associated to the individual data
lake user. Using the hpc.yaml file, the cron-job running
on the frontend of an HPC system is configured such, that
it first executes the preprocessing script as a shell script.
Here, first of all is a dedicated folder created which is then
writable mounted into the specified container image. This
mount is then used to clone and build the git repositories
provided in the job manifest. Then the repository names and
the corresponding commit hashes are posted back to the data
lake via the REST-API to update the job entity, in order to
enable later precise traceability of the performed computations.
The rest of the dependencies has to be installed in the container
image itself which is read-only. In order to allow for later
reproducibility, the exact binaries of the container image are
also being stored in the data lake and are linked to the job
entity correspondingly. If some input data needs to be fetched
and staged, the corresponding scripts, which were part of the
zip, are being called from within the preprocessing script as
well. Hereafter the runscript is being submitted to the queuing
system. In this script, the required resources are first specified,
followed by the definition of the environment variables as
defined in the job manifest. Lastly the compute command
stated in the job manifest is executed in a shell inside of the
container. Only after the run of this job the cron-job executes
the postprocessing script, again on the frontend. Here, the
created artefacts are ingested back into the data lake, where
they are being indexed, linked to the job manifest entity, as
well as their input data and are finally stored. Also, in the
job manifest specifically provided environment variables are
read and indexed as well, which is very useful to have for
instance some metrics about the run easily searchable when
querying the job manifest entities in the data lake at a later
point. Lastly, some cleanup is necessary to prevent the user’s
home directory from polluting over time.

In summary, the job manifest unambiguously describes the
execution of a job. Since all dependencies, inputs and outputs,
the used software with the specific version, as well as the
actual run commands are defined or recorded each run can be

precisely understood and reproduced later on. Here we want
to emphasise that there is no requirement for the application
to support this provenance recording.

V. CONCLUSION

The presented HPC API is a powerful and flexible tool
to integrate HPC resources in different kinds of workflows.
The described use cases feature the deployment in productive
environments and exemplify how the HPC API can be used to
react on changing demands from users or can even be utilised
to solve long-standing problems. The HPC API can be used
in communities where diverse working groups have access to
more than one HPC provider. Thus, it brings the strength of
HPC to a broader audience. In future work the integration of
an external and trustworthy token provider will be developed.
This will increase the acceptance of this new service by both
the users and HPC providers.

REFERENCES

[1] EGI-CSIRT. (2020) Attacks on multiple HPC sites. [accessed: 2021-
05-16]. [Online]. Available: https://csirt.egi.eu/attacks-on-multiple-hpc-
sites/

[2] S. Cholia, D. Skinner, and J. Boverhof, “NEWT: A RESTful service
for building High Performance Computing web applications,” in 2010
Gateway Computing Environments Workshop (GCE), 2010, pp. 1–11.

[3] F. A. Cruz et al., “FirecREST: a RESTful API to HPC systems,” in 2020
IEEE/ACM International Workshop on Interoperability of Supercomput-
ing and Cloud Technologies (SuperCompCloud), 2020, pp. 21–26.

[4] G. Diez-Roux et al., “A high-resolution anatomical atlas of the transcrip-
tome in the mouse embryo,” PLOS Biology, vol. 9, no. 1, pp. 1–13, 01
2011.

[5] F. Korte, M. Baum, G. Brenner, J. Grabowski, T. Hanschke, S. Hartmann,
and A. Schöbel, “Transparent model-driven provisioning of computing
resources for numerically intensive simulations,” in Simulation Science.
Cham: Springer International Publishing, 2018, pp. 176–192.

[6] W. Alamgir, “Design and implementation of an api to ease the use of
hpc systems,” Master’s thesis, Inst. Comp. Sci., Univ. Göttingen, 2021.

[7] HPCSerA - The HPC Service API Documentation. [accessed:
2021-05-17]. [Online]. Available: http://hpc-api.open-forecast.eu/

[8] Open Forecast. [accessed: 2021-05-17] co-financed by the Connecting
Europe Facility of the European Union (Action Number 2017-DE-IA-
0170). [Online]. Available: http://open-forecast.eu/en/

[9] Flowable AG. (n.d.) Flowable - award-winning intelligent
automation platform. [accessed: 2021-05-16]. [Online]. Available:
https://flowable.com/

[10] C. Madera and A. Laurent, “The next information architecture evolution:
The data lake wave.” New York, NY, USA: Association for Computing
Machinery, 2016.

[11] R. Hai, C. Quix, and C. Zhou, “Query rewriting for heterogeneous data
lakes,” Advances in Databases and Information Systems, vol. 11019,
2018.

[12] I. Suriarachchi and B. Plale, “Crossing analytics systems: a case for
integrated provenance in data lakes,” in 2016 IEEE 12th International
Conference on e-Science (e-Science). IEEE, 2016, pp. 349–354.

[13] A. Y. Halevy, F. Korn, N. F. Noy, C. Olston, N. Polyzotis, S. Roy, and
S. E. Whang, “Managing google’s data lake: an overview of the goods
system.” IEEE Data Eng. Bull., vol. 39, no. 3, pp. 5–14, 2016.

[14] A. Bhardwaj, S. Bhattacherjee, A. Chavan, A. Deshpande, A. J. El-
more, S. Madden, and A. G. Parameswaran, “Datahub: Collaborative
data science & dataset version management at scale,” arXiv preprint
arXiv:1409.0798, 2014.

[15] H. Miao, A. Chavan, and A. Deshpande, “Provdb: Lifecycle manage-
ment of collaborative analysis workflows,” in Proceedings of the 2nd
Workshop on Human-in-the-Loop Data Analytics, 2017, pp. 1–6.

[16] D. Dai, Y. Chen, P. Carns, J. Jenkins, and R. Ross, “Lightweight
provenance service for high-performance computing,” in 2017 26th
International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2017, pp. 117–129.

20Copyright (c) IARIA, 2021. ISBN: 978-1-61208-865-5

INFOCOMP 2021 : The Eleventh International Conference on Advanced Communications and Computation

