
Imperative Functional Programming

Software Engineering with I4

Lutz Schubert, Athanasios Tsitsipas
Institute of Information Resource Management

University of Ulm
Ulm, Germany

Email: {lutz.schubert, athanasios.tsitsipas}@uni-ulm.de

Keith Jeffery
Keith G. Jeffery Consultants

Shrivenham, UK
Email: keith.jeffery@keithgjefferyconsultants.co.uk

Abstract—Applications need to be constantly re-developed for
new devices and infrastructures, and to address new user
needs. This leads to an increasing maintenance cost that only
large-scale companies can afford. The problem with traditional
Turing based programming models is that algorithms cannot
be easily adjusted and thus bind the application to an
environment. In this paper, we discuss how mathematical
definitions can be used to not only describe algorithms, but
specifically to allow their transformation and (re-)generation
to principally address different infrastructures and
requirements at considerably reduced effort.

Keywords-software engineering; I4; abstraction; declarative
programming; imperative programming.

I. INTRODUCTION

Modern infrastructures are defined by a degree of
heterogeneity and complexity never encountered before.
Myriads of new devices are connected to the internet and
want to be used and controlled. Each infrastructure and
resource have their own specific characteristics that are
difficult to fully exploit without adjusting the application to
it. Modern resources may not even be Industry Standard
Architecture (ISA) compliant. Hence, such new devices
demand significant changes in existing software and a large
part of the software industry is already just occupied with
ensuring that code runs on and with these new devices.

Traditional programming models based on Turing’s
concepts [1] are close to the hardware organization. In order
to achieve best performance and meet the desired constraints
best, every new ISA and hardware organization therefore
necessitates a re-thinking and hence re-development of the
algorithmic structure to meet the hardware specific
characteristics. This leads to significant cost for code
maintenance and portability, leading to more than 75% of the
development cost [2][3]. Implicitly, smaller companies with
new software ideas will not be able to stand the growing
pressure to fix bugs, adapt the software to new devices, etc.,
whereas the pressure on big companies from small
innovative, but un-sustainable ideas, grows constantly.

To overcome these constraints, software engineers have
always been working on ways of abstracting from the
hardware and thereby trying to get closer to the natural way
of specifying tasks. However, in general all new models
“just” build up on the existing constraints, thus incorporating

and wrapping them, rather than addressing the problem
directly. In the following we will investigate how developers
think about software and how they go about addressing
specific objectives. Based on these observations, we will try
to derive more flexible software engineering principles that
will allow for higher portability and adaptability to different
platforms. We will demonstrate that by exploiting intrinsic
mathematical properties of code and its properties, we can
emulate the developer’s behavior in code transformation and
adaptation, whilst maintaining or addressing specific
properties. The work presented here builds up on discussions
in the European Commission’s Cloud Computing Expert
Group and documented in [4][5] which include any
background and related work with respect to the approach.

This paper is structured as follows: in Section II, we will
examine the typical software engineering principles and try
to derive a generalized model from this. Our principles are
based on the assumption of mathematical equivalence to
code, which we will examine in Section III. Section IV will
try to apply this assumption to the full software engineering
principles. We discuss the approach in the concluding
Section V.

II. THE SOFTWARE DEVELOPMENT PROCESS

Developers are guided by four main principles in their
programming process, which we call the four “I”s [5][6]: (1)
the Intention behind the application, i.e., what the developer
actually wants to achieve with it; (2) the Information used,
processed and generated by the application; (3) the Incentive
defines the mode in which the functionalities are to be
offered, i.e., fast, reliable, etc.; and finally (4) the
Infrastructure on which the application is to be executed. Let
us see how a developer makes use of these four parameters
when programming a (new) software:

A. Intention

All software starts with an intention, i.e., with an idea of
what the application is supposed to do, once finished. Most
programmers already think in terms of steps and procedures
at this point, but this is just because of their experience, as
can be easily observed on programming beginners. In itself,
the intention is not bound to any algorithm or process other
than by logical constraints: to make a banana milkshake, it is
sensible to switch on the blender after banana and milk have

47Copyright (c) IARIA, 2019. ISBN: 978-1-61208-732-0

INFOCOMP 2019 : The Ninth International Conference on Advanced Communications and Computation

been added, but the order of banana and milk are
independent, as is the amount, the type, flavours, etc..

In principle, Turing has already shown that any solvable
problem can be solved in a near infinite number of ways, if
the individual steps are small enough (think of how to add
the banana). The process is not prescribed at this point,
though the principle steps involved will be known to most
humans, though everyone will execute it differently. The
things relevant to know in this context, are only the principle
steps involved, the logical constraints and relationships.

B. Information

Data is one specific form of representing information,
and as any communication scientist will know, information
is frequently lost by converting it into data. Vice versa,
extracting information from data is not always possible and
frequently requires human intervention (think of a book as
data and the information you extract by reading from it).

For a software engineer, finding the right way of
representing information is a challenge on multiple aspects,
as it will (1) define the data structure, thereby (2) influencing
the algorithmic behavior and (3) constrain the processing and
reusability. In general, data is hardly ever the desired
outcome of an application, but the information behind it.
Even large scale, data-bound applications, such as fluid
simulations actually just want to identify where and what
kind of turbulences occur, not the pressure and velocity at
any given point – we are just constrained in the way that we
compute said information without breaking it down into
(particle) data. This relationship is complex and requires
considerable expertise by the developer.

C. Incentive

Incentive may seem the least intuitive at first, as it is
something that most developers and users specify only
indirectly. By nature, the incentive is closely related to the
intention, yet changes the “flavor” of the latter ever so
slightly, for example if the application is supposed to be fast
versus reliable. Incentives can create the most contradiction
and confusion, so that developers will have to find the best
middle way between all requirements posed towards them.

The incentive is the main deciding factor for generation
of the algorithm, as the developer will have to choose
whether to generate a parallel code, a service-oriented or
modular approach, whether an algorithm is reliable, fast,
storage-consuming etc. Traditionally, software developers
are trained in a specific direction and will make the choices
intuitively, such as is the case for HPC programmers. Thus,
to interpret and “enact” an incentive, we need to know the
properties of an algorithm. This is a highly theoretical field
and, as we shall see, poses many obstacles for automated
code generation.

D. Infrastructure

Obviously, the final algorithmic choices are made when
the target infrastructure is known. Obviously, the incentive
already plays a large role in selecting the target infrastructure
and vice versa – for example a complex code that needs to be
executed as fast as possible will probably have to be

parallelised and will have to run hence on a parallel infra-
structure; whereas an application with multiple users will
probably be destined for a cloud-like web infrastructure, etc.

In this final step, the final code details will be decided,
leading to the final algorithm that can be compiled. To
realise this, the developer has to know something about the
relationship between hardware properties and code
behaviour.

E. Summary

The four parameters (Intention, Information, Incentive,
Infrastructure), are sufficient to describe all aspects that
guide a developer from idea to code (see Figure 1).

Figure 1. The Software Engineering process.

How can such parameters and the necessary background
knowledge for transformation be encoded? We built up on
Turing’s main principle, namely that computer programs are
mathematically solvable problems and hence are
mathematically expressible. This means for us that they are
hence also treatable as mathematical objects, including all
according transformation rules. Based on this assumption,
most computable problems and therefore applications should
be transformable the same way as mathematical formulas. As
an implication, if we can express the (human) software
engineering process mathematically, we can also use
according rules to perform the transformation steps.

III. PRINCIPLES OF I4

The idea here is based on the following main principles:
(1) any mathematically expressible problem can be
converted into an algorithmic structure; (2) mathematical
expressions can be treated mathematically; (3) algorithmic
structures can be distinguished by their structural properties,
which in turn relate to the specific properties of the code.

As a simple example, let us assume we have a simple
task (Intention) to count the number of elements in a set of
objects. Mathematically, we can define count recursively:

48Copyright (c) IARIA, 2019. ISBN: 978-1-61208-732-0

INFOCOMP 2019 : The Ninth International Conference on Advanced Communications and Computation

We can resolve this function by counting the recursively
generated leaves (see Figure 2).

Figure 2. Recursive solution of “count(P)”.

It is obvious from Figure 2 that the code can be
distributed, serialized, etc. – in other words, we can associate
different properties with the structures. What is more, the
pattern can be easily described in a higher-order-function as:
count(P) ≡ foldl (+1) 0 P

which can be realized as a for loop over all elements in P
– no matter how P is organized. With this definition, we can
also apply simple transformations which in turn affect the
code behavior again. For example, we know that

count(P) = count(Q)+count(R) for R⋃Q=P

and thus implicitly
count(P) ≡ foldl (+1) 0 P ≡ foldl (foldl (+1)) 0
(R Q)

which represents two consecutive loops. This leads to an
execution cost of p = r+q operations (|P|=|R|+|Q|) and thus
the same as without transformation. However, as evidenced
by Figure 2, we can easily apply a further transformation
foldl (+1) 0 P ≡ foldl (+) 0 (map (foldl (+1) 0)
(R Q))

which is fully equivalent according to the base properties
of foldl and map, but obviously can now be executed in
parallel (see Figure 3) and thus leads to operational cost of
max(r,q)+1 which is considerably lower than r+q.

Figure 3. Recursive solution of “count(P)”.

Though this is clearly a very simple example, it still
shows how a descriptive task (“count”) can be (1) converted
into an algorithmic structure which (2) can be transformed
on a mathematical basis so as to (3) change its properties,
such as computational complexity and degree of parallelism.

IV. APPLICATION TO SOFTWARE ENGINEERING

With this base principle in place, we can examine how
the full software engineering process, as described in Section

II, could look like based on mathematical principles.
Building up on the “count” example, we can investigate how
to count unique elements following the software engineering
cycles above, for example to perform statistical evaluations:

A. Specifying the Intention

As a developer, we have immediately multiple ideas and
algorithms in mind how to count unique elements in a given
set (array, list) and thus this can serve as a full specification
for an application. We can thus define:

Intention: count unique elements
To convert this into the form of mathematical

specifications that can be reasoned over, we need to first of
all specify the relationship between the “intentions”, as
“unique before count” with a place holder for the set, i.e.
count ○ unique (P)

where count is defined as above and

It is important to stress here that even though an equality
operator (=) is used in the definition, this operation may
differ completely between types of objects (i.e. Information,
see below), just as we could override operators in C/C++. As
long as we uphold all equality properties, this definition
holds true, even if only partial aspects are used. This is
important for the developer, as the code will change
substantially with definition of the data structure.

Notably, again we can split P into subsets R and Q, so
that P=R⋃Q with R=P\Q, leading to

This looks very similar to a direct split, yet it will be
noticed that by default Q’ and R’ will be smaller than Q and
R, respectively, thus reducing the workload for the final
uniqueness test. Since we also know that unique must be
executed before count, we can specify a general task-flow on
basis of the knowledge so far, such as depicted in Figure 4.

Figure 4. Simple task flow for “count unique members of P” (left),
respectively the options for splitting P into R and Q (right).

Any reader with development skills will immediately get
an idea for the code just from the specifications above – in
particular given the capabilities of most higher order
languages for operator overloading. From the specification,
we can see that all elements need to be compared against
each other (see below for optimization), and that the
elements of the resulting set then needs to be counted. We
can also already see that both operations can be combined

49Copyright (c) IARIA, 2019. ISBN: 978-1-61208-732-0

INFOCOMP 2019 : The Ninth International Conference on Advanced Communications and Computation

and executed in different distributions, depending on context
(Incentive). At this point, a pseudo-code could look like this:
Q=P
foreach (q in Q)
foreach (p in (P\q))
if (q==p) Q=Q\q

ct=0
foreach (q in Q)
ct++

Note that the code would not execute for multiple
reasons, among others because we manipulate the set during
traversal. More correctly we would temporarily save the
values and remove them in the end – the behavior is
nonetheless sufficiently defined at this time.

B. Influence of Information

It has already been noted that information will greatly
influence the code definition above – this is already obvious
by the simple circumstance that “uniqueness” is a highly
subjective and philosophical notion. We can for example
specify that two people are identical if they have the same
tax id, or that two objects are the same if they have the same
shape and color, etc. As a developer, we would specify the
object as a complex struct and overload the equality
operation to allow for such behavior. However, as a High
Performance Computing (HPC) or Embedded Systems
developer, you would probably point out that this structure is
not aligned to data access, consider:
struct molecule {double px, py, pz, w }
foreach (mol in molecules)
mol.w = mol.w*c

As can be seen, this leads to a stride in memory usage
and thus to an 75% underutilized memory, which in turn
affects cache performance, leading to 4 times more cache
misses than necessary (see Figure 5).

Figure 5. Memory organisation for an array of structs.

By converting this array of structs into a struct of arrays,
we can easily improve memory utilization and thus cache
performance (see Figure 6):

struct molecules {double px[], py[], pz[], w[] }
foreach (weight in molecules.w)
weight = weight*c

Figure 6. Memory organisation for a struct of arrays.

With the decision for a specific layout, the developer has
constrained adaptability of the algorithm considerably at this

point. Few compilers support the conversion from array of
structs to structs of arrays and vice versa and will always
need additional information by the developer to do so. By
exploiting Information, we do not specify the layout yet – it
is in fact often considered a weakness of functional
programming that memory layouting cannot be influenced
by the programmer [7]:

P ⊂ People
People have name, location, …
By adding a specification that we consider two elements

in people as identical if they have said the same names:
∀ p1, p2 ∊ P: p1 = p2

stringmatch(name of p1, name of p2)
We thus have a data structure without a concrete layout

and we can easily see that both memory arrangements (see
Figure 5 and Figure 6) are possible with this definition.

C. Setting the Incentives

Notably, the memory layout is directly related to the
incentive behind it: a struct of arrays may be more sensible
in situations with high performance requirements, whereas
an array of struct is sensible if the work is distributed, i.e.,
when different operations may be performed on the array.
Thus, with defining the incentive, we make a concrete
instantiation choice for parts of the algorithm, which is
closely related to the infrastructure impact, below:

The incentive performance can be seen as a projection
function from the data access structure and the executional
pattern to cost. We have already indicated above that the
operational load can be roughly derived from the number of
operations resulting from the size of the set. In algorithm
theory, we generally assess the order of complexity based on
the execution patterns [8] which gives us an indicator for
workload and thus performance of an algorithm.
Communication overhead can be assessed through data size,
messaging frequency and network properties (see
infrastructure). Notably, this provides only relative
information, as the size of the data set will still affect
distribution, degree of parallelism, etc., but it already allows
to distinguish between different choices.

We can see that the parallel implementation of the count
○ unique function leads to a significant reduction of
operational load (per processor). Since we also just access
the name property, we can not only reduce the memory load
through a struct of arrays, we can even completely discard all
other properties associated with People (though this
obviously depends on the intention in the first instance).

To realise this, we need to associate the data access cost
to a complexity function similar to the algorithmic operation
load. Obviously, this is directly related to communication
modalities and can thus be assessed similarly, where the cost
must be related to non-accessed areas. In other words, we
can use indicators, such as ratio between accessed and non-
accessed data size based equally on the access patterns (see
Figure 3), as well as on the data structure decisions.

D. Specifying the target Infrastructure

Only when the task flow is mapped onto a system model
can the Incentives be fully assessed and properly matched.

50Copyright (c) IARIA, 2019. ISBN: 978-1-61208-732-0

INFOCOMP 2019 : The Ninth International Conference on Advanced Communications and Computation

Traditionally, infrastructures are modelled as network
graphs, where each node represents a resource and each edge
a connection between resources. This allows distribution of
deployment graph and thus analysis of the impact on
performance, respectively on other Incentives. Given the
scale and complexity of modern systems, this approach is not
feasible for real world problems. Furthermore, it is as yet
unclear, which resource characteristics impact on application
properties how –simple properties, such as number of cores,
are used, or the hardware is profiled for an application and
said profile is then used instead of characteristics.

The I4 model combines these two aspects and relaxes the
characteristics definition. We foresee that future machine
learning methods building up on the profiling principles
devised, e.g. in CACTOS [9], that will automatically
categorize profiling information according to the resources
used and thus generate more meaningful properties. For now,
we assume a relationship graph similar to a network model
with annotations meaningful in relation to the Incentives and
Intentions, here such as: multicore or simply number of
cores, and bandwidth, latency, etc. We can thus define, e.g.
User.Dev = {Smartphone}
DB1.Dev = {Virtual, MySQL, 4 cores, ...)}
DB2.Dev = {Virtual, MySQL, 4 cores, ...)}
G = ({User.Dev, Internet}, {(User.Dev, Internet)})
Gt = ({DB1.Dev, DB2.Dev}, {(DB1.Dev, DB2.Dev)})
Gp1 = ({DB1.Dev, Internet}, {(DB1.Dev, Internet)})
Gp2 = ({DB2.Dev, Internet}, {(DB2.Dev, Internet)})

This information allows us to generate a simple network
graph such as depicted in Figure 7. Comparing this to the
potential instantiations of our task graph (see Figure 4), we
can immediately recognize the potential task distribution,
respectively how the work could be split between resources.
This is principally a “simple” graph matching task, bearing
in mind that multiple solutions are valid, so greedy matching
approaches will be sufficient [10].

Figure 7. Target infrastructure network graph.

Based on the performance incentive, we would try to
parallelise and reduce the communication between points,
which gives us a general guide to the matching strategy.

E. Generating the Algorithm

We now have all the relevant information in place that
would allow a developer to generate an algorithm that meets
the specified requirements (the four “I” s). An experienced
developer will also see that some of the choices made above
will lead intuitively to sub-optimal solutions. Specifically,
the separation of unique and count seems less than optimal,
since the loops could be fused. Now, we should note at this
point that the approach suggested here does aim at replacing
existing compiler techniques and, e.g. loop fusion can also be
performed by most compilers. Nonetheless, we will show in

the following how such techniques can be respected and will
influence the transformation choices and outcome.

Following the strict usage of all information, we can
derive that if both database sources should be considered, the
best approach treats the databases DB1 and DB2 as R and Q,
respectively (see Figure 4 (right)). We can also see how
mapping to the infrastructure allows different distribution of
count to exploit task parallelism and communication delays
(see Figure 8).

Figure 8. Task flow (see Figure 4) mapped to target infrastructure (see
Figure 7).

This analysis is straight-forward and can be directly
derived from the individual task-flow graphs that can be
spanned by such simple transformations as (1).

We have already seen in Section IV.A, how algorithms
can be generally derived from Higher Order Functions. In
general, this relationship is more or less straight-forward,
though we must bear in mind that different algorithmic
presentations exist. For example,
foldl f a P

can be expressed as
z=a; for (i=0; i<P.length(); i++) z = f(z, P[i]);

or, since no order is given by foldl, also as
z=a; foreach (p in P) z = f(z, p);

Obviously, we could use while loops, serialise the
execution, recurse it, etc. Similarly,
map f P

can be represented as
for (i=0; i<P.length(); i++) z = f(P[i]);

and so on. So, with the definitions for count and unique
as discussed, we can derive algorithms for the individual
target resources, e.g.

DB2.Device:
Q’=Q
foreach (q1 in Q)
foreach (q2 in (Q\q1))
if (q1==q2) Q’=Q\q1

Q’’=Q’
foreach (r in R’)
foreach (q3 in Q’)
if (r==q3) Q’’=Q’\q3

It will be noticed that due to the symmetry of equality,
not all elements need to be checked with all others, but in
fact that if q1=q2 then q2=q1 and hence the algorithm for
unique can be changed to

51Copyright (c) IARIA, 2019. ISBN: 978-1-61208-732-0

INFOCOMP 2019 : The Ninth International Conference on Advanced Communications and Computation

if (q1==q2)
Q’=Q\q1
Q=Q\q2

It is important to note that q2 is removed from the search
set, due to equality and not from the result set. If we follow
the whole process through for each resource, task and all
relationships, we thus can generate a task-based execution
pattern such as depicted in Figure 9.

Figure 9. Full flow graph for count ○ unique (R⋃Q).

By investigating the dependencies between operations,
we will also notice that, in principle, counting can be directly
merged with testing for uniqueness (see Figure 10). Even
though beneficial for cache access, the actual operational
load does not change this way though and it is up to the
service owners, which versions they prefer – in principle, the
transformation processes described here can derive
principally any viable distribution, leaving it up to the
developer to make a final decision (or just choosing one).

Figure 10. count and unique combined.

V. CONCLUSIONS

In this paper, we have presented an approach to generate
Incentive- and Infrastructure- adapted code using a
specification of the Intention of the application and the
Information to be processed. The principles build up from

the initial discussions under “Complete Computing” [5] and
are still work in progress. For example, while the general
principles are clear, the full assumptions and scope of
applicability still need to be fully developed and analysed.
Even though the same methods will apply for more complex
application specifications, the computational complexity
rises considerably, necessitating the introduction of metrics
to guide the transformation process. Such metrics can be
derived from executional properties and backpropagation
over the decision tree – this is currently under investigation.
Additionally, due to the status of the approach industrial
applications cannot be addressed.

Another question obviously arises from problems that are
not directly mathematically expressible. Many algorithms
have been developed that are basically a set of tasks to be
performed, much rather than solving a mathematical problem
as such. It can be argued that any computational problem can
still be expressed mathematically, though the question would
be whether the additional effort is worth the gain. The
principles laid out above however easily allow for
incorporation of “black boxes” that expose an interface and
adhere to well-defined mathematical properties, so that they
can be reasoned over, but not changed. This concept will be
developed further in the follow-up project to ProThOS.

ACKNOWLEDGMENT

This work was partially funded by the German Federal
Ministry of Education and Research (BMBF) in the
ProThOS project, Grant No. 01IH16011.

REFERENCES

[1] A. M. Turing, “On Computable Numbers, with an Application
to the Entscheidungsproblem,” Proceedings of the London
Mathematical Society, vol. s2-42, no. 1, pp. 230–265, 1937.

[2] J. Hanby, “Software Maintenance: Understanding and
Estimating Costs,” 21-Oct-2016.

[3] Krugle Enterprise, “The Four Hidden Costs of Software
Maintenance,” 2014.

[4] K. Jeffery and L. Schubert, “Challenges in Software
Engineering, H2020: Analysis and Summary of the Cloud
Expert Group Reports,” European Commission, 2014.

[5] L. Schubert and K. Jeffery, “Complete Computing: toward
information, incentive and intention,” European Commission,
2014.

[6] L. Schubert, A. Tsitsipas, and K. Jeffery, “Establishing a basis
for new software engineering principles,” Internet of Things,
vol. 3–4, pp. 187–195, Oct. 2018.

[7] H. Nilsson and International Symposium on Trends in
Functional Programming, Eds., Trends in Functional
Programming. Volume 7 Volume 7. Bristol, UK; Chicago, IL:
Intellect Books, 2007.

[8] I. Wegener, Complexity theory: exploring the limits of
efficient algorithms. Berlin ; New York: Springer, 2005.

[9] P.-O. Ostberg et al., “The CACTOS Vision of Context-Aware
Cloud Topology Optimization and Simulation,” 2014, pp. 26–
31.

[10] B. O. Fagginger Auer and R. H. Bisseling, “A GPU
Algorithm for Greedy Graph Matching,” in Facing the
Multicore - Challenge II, vol. 7174, R. Keller, D. Kramer, and
J.-P. Weiss, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 108–119.

52Copyright (c) IARIA, 2019. ISBN: 978-1-61208-732-0

INFOCOMP 2019 : The Ninth International Conference on Advanced Communications and Computation

