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Abstract—A delay differential equation for the population size 
is derived from an age-dependent model with a dominant age 
class. This equation is provided with impulse conditions and its 
discrete-time counterpart is constructed using the semi-
discretization method. Sufficient conditions for the existence of 
a periodic solution of the resulting difference problem are 
found by Mawhin’s continuation theorem.  
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I. INTRODUCTION  

Many evolutionary processes in nature are characterized 
by the fact that at certain instants of time they experience a 
rapid change of their states. This leads to the investigation of 
differential equations and systems with discontinuous 
trajectories, or with impulse effect, called for brevity 
impulsive differential equations and systems [1][2]. The 
theory of the impulsive differential equations is one of the 
attractive branches of differential equations which has 
extensive realistic mathematical modelling applications in 
physics, chemistry, engineering, and biological and medical 
sciences. 

A classical problem of the qualitative theory of 
differential equations is the existence of periodic (or almost 
periodic) solutions. Numerous references on this matter 
concerning differential equations with delay and impulsive 
differential equations can be found in [3].   

In [4], an age-dependent model with a dominant age class 
was considered. In a special case the total population size 
satisfies a delay differential equation. Sufficient conditions 
for the existence of a periodic solution of this equation 
satisfying appropriate impulse conditions were presented.  

A brief survey is given in Section II of the present paper. 
In Section III, we obtain a discrete counterpart of the  
problem using the semi-discretization method. Finally, in 
Section IV, we find sufficient conditions for the existence of 
a periodic solution of the resulting discrete problem using 
Mawhin’s continuation  theorem [5, p. 40].  

II. PRELIMINARIES 

The following model is described in the papers of T. 
Kostova [6], T. Kostova and F. Milner [7], where the 
existence of oscillatory solutions is proved.  

For two fixed ages ��, ��  such that 0 ≤ �� <  �� < ∞ , 
the age distribution �(�, �)  of a population is considered, 
where � is the age and � the time, with dynamics described 
by the following integro-differential equation with age-
boundary condition in integral form, 
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��
= −�(�, �)�(�, �),     �, � > 0,

�(0, �) = � �(�, �)�(�, �) ��,
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� ≥ 0,    

�(�, 0) = ��(�),                          � ≥ 0,    

             (1) 

 
where  

� = �(�) = � �(�, �) ��
��

��

 

 
is the dominant age cohort size and �(�, �) and �(�, �) are, 
respectively, the age-specific death rate and birth modulus 
when the dominant age group is of size �. It is assumed that 
� , �  and ��  are nonnegative, and that ��  is integrable (so 
that the initial population is finite). This model is a 
generalization of the classical one of Gurtin and MacCamy 
[8], which is obtained by setting �� = 0 and �� = ∞.  

Further on, in [6][7], the special case 
 

�(�, �) = �
�(�), � ∈ [��, ��],

0 otherwise,   
 

 
is considered. This means that the dominant age class is the 
only one capable of having offspring, i.e., births are possible 
only in the age interval [��, ��]  and the fertility rate depends 
just on the size of the dominant age group itself (and not on 
the age within the group). Moreover, �(�) ∈ ��(ℝ�, ℝ�) 
and the mortality rate � > 0 is assumed constant.Then, for 
the total population size, 
 

�(�) = � �(�, �) ��,
�

�

 

 
the equation 
  
                                       �̇ + �� = �(�)�                                (2) 
 
is derived, where  
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                 �(�) = �(� − ��)����� − (� − ��)�����           (3)  
 
for � > ��. Thus, for � > ��, �(�) satisfies a nonlinear scalar 
delay equation (2) with � given by (3), while for � ∈ [0, ��] 
�(�) and eventually �(�) can be expressed in terms of the 
initial function ��(�) of the age-dependent model (1). Thus 
we find the initial function ��(�), � ∈ [0, ��]  of the above 
mentioned delay equation. 

We fix a number � > 0 much larger than the age ��, and 
try to obtain an � -periodic regime of the population size by 
means of impulsive perturbations for a suitably chosen initial 
function ��. More precisely, suppose that at certain moments  
�� such that ���� = �� + � for all � ∈ ℤ, the population size 
�(�) is abruptly changed, while (2) with (3) is assumed to 
hold for all � ∈ ℝ, � ≠ ��. We normalize the quantities in  (2) 
as follows: 
 

� =
�

�
,   �(�) = �(��),   � = ��,   �(�) = ��(�). 

 
Henceforth, we write again �, �and � instead of �, � and �, 
respectively, � instead of �, and ℎ = ��/� will be the small 
parameter, while the still smaller quantity ��/�  will be 
assumed 0, for the sake of simplicity. We suppose that the 
time interval between two successive abrupt changes 
(impulse effects)  ���� − �� is large in comparison with the 
“age” ℎ for all � ∈ ℤ, and look for 1--periodic solutions of 
the problem 
 
           �̇(�) = −��(�) + ���(�), �(� − ℎ)�,   � ≠ ��,         (4) 
          ∆�(��) = −���(��) + ��,   � ∈ ℤ,                              (5) 
 
where ∆�(��) ≡ �(�� + 0) − �(�� − 0) is the magnitude of 
the impulse effect at the moment �� , �(��) ≡ �(�� − 0) , 
��, ��  are positive constants satisfying ���� = ��, ���� =

��   (� ∈ ℤ)  , ���(�), �(� − ℎ)� = ���(�)��(�) , �(�) =

�(�) − �(� − ℎ)���� , 0 = �� < �� < ⋯ < ���� < �� = 1.  
We can consider (4) for � > 0, the impulse conditions (5) for 
� ≥ 0, with initial condition 
  
                       �(�) = �(�)   for   � ∈ [−1,0],                        (6) 
 
where the initial function �(�) is piecewise continuous with 
possible points of discontinuity of the first kind at ����� , 
�����, … , ���. To find a 1-periodic solution of problem (4), 
(5) means to determine the initial function �(�) so that the 
solution of the initial value problem (4), (5), (6) is 1 -
periodic.  

III. STATEMENT OF THE PROBLEM 

We suppose that the period �  has been chosen so that 
� = ��� for a positive integer �, thus ℎ = 1/�. We assume 
� so large that 

  
ℎ < min

���,�����
(���� − ��). 

 

Then, each interval [�ℎ, (� + 1)ℎ]  contains at most one 
instant of impulse effect  ��.  

For convenience, we denote � = [�/ℎ] , the greatest 
integer in �/ℎ , and �� = [��/ℎ] . Clearly, we will have 
���� = �� + � for all � ∈ ℤ.  

Let � ∈ ℤ, � ≠ �� . This means that the interval 
[�ℎ, (� + 1)ℎ] contains no instant of impulse effect ��. We 
approximate the differential equation (4) on the interval 
[�ℎ, (� + 1)ℎ]  by 

 

�̇(�) + ��(�) = � ��(�ℎ), ��(� − 1)ℎ�� . 

 
We multiply both sides of this equation by ��� and integrate 
over the interval [�ℎ, (� + 1)ℎ]. Thus we obtain 
 

            

��(� + 1)ℎ� − �(�ℎ) = −�1 − ���/���(�ℎ)

+
1 − ���/�

�
� ��(�ℎ), ��(� − 1)ℎ�� .

         (7) 

 
Henceforth, by abuse of notation, we write �(�) = �(�ℎ) 
and redefine ∆�(�) = �(� + 1) − �(�)   (� ∈ ℤ). Now, (7) 
takes the form 
  

                        
∆�(�) = −�1 − ���/���(�)

+
�����/�

�
���(�), �(� − 1)�.

                   (8)  

 
Next, for � = �� , the interval [�ℎ, (� + 1)ℎ]  contains the 
instant of impulse effect ��. On this interval, we approximate 
the impulse conditions (5) by 
  
                      ∆�(��) = −���(��) + ��,   � ∈ ℤ.                 (9) 
 

The difference system (8), (9) can be written in operator 
form as 

 
                                            ∆� = ��,                                       (10) 
 
where  
 

           
  

 (��)(�) = −�1 − ���/���(�)

+
1 − ���/�

�
���(�), �(� − 1)�,   � ≠ ��,

(��)(��) = −���(��) + ��,   � ∈ ℤ.

           (11) 

 
We can consider the system (10) for � ≥ 0, with initial 

conditions 
 

                 �(ℓ) = �(ℓ)   for   ℓ = 0, −1, … , −�,               (12) 
  

where �(ℓ), ℓ = 0, −1, … , −�, is a given initial vector. To 
find an � -periodic solution of system (10) means to 
determine the initial vector �(ℓ) so that the solution of the 
initial value problem (10), (12) is � -periodic.  
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IV. MAIN RESULT 

First, we introduce some notations:  
 

� ≔ � ��

���

���

,   � ≔ � ���

���

���

, � ≔ (� − �) �1 − ��
�
�� ,

�� ≔ {0,1, … , � − 1}, ℑ� ≔ ��\{��}���
���

 .

 

 
Next, we formulate some assumptions: 
 
A1. There exists a constant � > 0 such that |�(�)| ≤ � for 
any � ∈ ℝ. 

��.     � + � −
2��

�
− (� + �) �� + � +

2��

�
� > 0.           

  
Remark 1. Assumption A2 may seem quite complicated. We 
show that it is easy to satisfy. If we denote � = � + � ,  

� =
���

�
, then assumption A2 takes the form  

 

� − � − �� − �� > 0,   i. e. ,   � <
�(1 − �)

1 + �
. 

 
The right-hand side of the last inequality is positive for 

0 < � < 1, it achieves its maximum value 3 − 2√2 ≈ 0.18 

for � = √2 − 1 ≈ 0.41. Thus, it suffices to choose � + � =

0.41 and 
���

�
< 0.18. 

  
Remark 2. The inequality  

 

                        � + � −
��

�
�1 − ��

�
�� > 0                        (13) 

  
follows from assumption A2. In fact, 
 

� + � −
��

�
�1 − ��

�
�� > � + � −

��

�

= �� + � −
2��

�
− (� + �) �� + � +

2��

�
��

+ �
��

�
+ (� + �) �� + � +

2��

�
�� > 0.

 

 
Now, we can state our main result as the following theorem.  

 
Theorem 1. Suppose that assumptions A1, A2 hold. Then,  
(10) has at least one �-periodic solution. 

 
Proof. We shall prove Theorem 1 using Mawhin’s 
continuation theorem [5, p. 40]. To state this theorem, we 
need some preliminaries (see [9][10]). 

Let �, � be real Banach spaces, �: Dom � ⊂ � →  � be a 
linear mapping, and �: � →  �  be a continuous mapping. 
The mapping � will be called a Fredholm mapping of index 
zero if dim Ker  � = codim Im � < +∞  and Im �  is closed 
in �. If � is a Fredholm mapping of index zero and there 
exist continuous projectors ��: � →  � and ��: � →  � such 

that Im �� = Ker � , Ker �� = Im � = Im(� − ��) , then the 
mapping �|��� �∩��� ��

: (� − ��)� → Im � is invertible. We 
denote the inverse of this mapping by ���

. If Ω is an open 
bounded subset of � , the mapping �  will be called �  -
compact on Ω� if ���(Ω�) is bounded and ���

(� − ��)�: Ω� →
�  is compact. Since Im ��  is isomorphic to Ker � , there 
exists an isomorphism  �: Im �� → Ker �. 

Now, Mawhin’s continuation theorem can be stated as 
follows. 

 
Lemma 1. Let � be a Fredholm mapping of index zero, let 
Ω ⊂ �  be an open bounded set, and let �: � →  �  be a 
continuous operator, which is � -compact on Ω�. Assume that 
the following conditions hold: 
(a) for each � ∈ (0,1), � ∈ �Ω ∩ Dom �, �� ≠ ���;   
(b) for each � ∈ �Ω ∩ Ker �, ���� ≠ 0; 
(c) deg(����, Ω ∩ Ker �, 0) ≠ 0 , where deg(∙)  is the 
Brouwer degree. 

Then, the equation �� = �� has at least one solution in 
Ω� ∩ Dom �. 

  
Before we proceed further, we shall recall the definition of 
Brouwer degree [11].   

Suppose that �  and �  are two oriented differentiable 
manifolds of dimension �  (without boundary), with � 
compact and � connected, and suppose that �: � → � is a 
differentiable mapping. Let ��(�)  denote the differential 
mapping at the point � ∈ � , that is, the linear mapping 
��(�): ��� → ��(�)�. Let sign ��(�)  denote the sign of 
the determinant of ��(�). That is, the sign is positive if � 
preserves orientation, and negative if � reverses orientation. 
 
Definition 1. Let � ∈ � be a regular value, then we define 
the Brouwer degree  (or just degree) of � by 

 

deg � = � sign ��(�)

�∈���(�)

. 

     
It can be shown that the degree does not depend on the 
regular value � that we pick, so that deg �  is well defined. 

Note that this degree coincides with the degree as defined 
for maps of spheres. 

Let us choose 
 

� =  � = {�(�): �(� + �) = �(�), � ∈ ℤ}. 
 

If we define ‖�‖ = max�∈��
|�(�)| , then �  is a Banach 

space with the norm ‖∙‖. For � ∈ �, let ��  be defined by 

(11), �� = ∆�  and ��� = ��� =
�

�
∑ �(�).���

���  Then, Ker � 

= {� ∈ �: � = � ∈ ℝ}  (independent of � ), Im � = {� ∈ �: 
∑ �(�) = 0���

��� }  is a closed set in � , and codim � = 1 . 
Thus, � is a Fredholm mapping of index zero. It is easy to 
see that ��  and ��  are continuous projectors and Im �� =
Ker � , Im � = Ker �� = Im(� − ��) , and �  is �  -compact 
on Ω� for any bounded set Ω ⊂ �. Moreover, in condition (c) 
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of Lemma 1 the isomorphism � can be taken as the identity 
operator �.  

Now, we will derive some estimates for the solutions � 
of the operator equation �� = ��� for � ∈ (0,1), that is, 

 
∆�(�) = �(��)(�),   � ∈ ��. 

 
First, from (11) for � ≠ ��, we obtain  
 

|∆�(�)| ≤ �1 − ��
�
�� |�(�)| +

1 − ��
�
�

�
|�(�)| |�|

≤ �1 − ��
�
�� �‖�‖ +

�

�
��(�) − �(� − 1)���/���

≤ �1 − ��
�
�� �1 +

2�

�
� ‖�‖.

 

 
Similarly, for � = ��, we have  

 
|∆�(��)| ≤ ��‖�‖ + ��. 

 
From the  above inequalities, we obtain  
 

�|∆�(�)|

���

���

≤ (� − �) �1 − ��
�
�� �1 +

2�

�
� ‖�‖

+ � ��

���

���

‖�‖ + � ��

���

���

,

 

or 
 

        �|∆�(�)|

���

���

≤ �� �1 +
2�

�
� + �� ‖�‖ + �.              (14) 

 
Adding together all  equations of (8), (9) for � ∈ �� , we 
obtain 
 

�1 − ��
�
�� � �(�)

�∈ℑ�

+ � ���(��)

���

���

=
1 − ��

�
�

�
� ���(�), �(� − 1)� + � ��

���

���

.

�∈ℑ�

 

 
Then, as above, we obtain 
 

            
  ��1 − ��

�
�� � �(�)

�∈ℑ�

+ � ���(��)

���

���

�

≤ �
2�

�
‖�‖ + �.

                 (15) 

   
Now, we shall use the following lemma (see [12] [13]). 

 

Lemma 2. Let �: ℤ → ℝ  be � -periodic, i.e., �(� + �) =
�(�) for any � ∈ ℤ. Then, for any fixed  ��, �� ∈ �� and any 
� ∈ ℤ, we have  
 

�(��) − �|�(� + 1) − �(�)|

���

���

≤ �(�)

≤ �(��) + �|�(� + 1) − �(�)|

���

���

.

 

  
According to Lemma 2, for arbitrary �, ��, �� ∈ ��, we have 
 

�(��) − �|∆�(�)|

���

���

≤ �(�) ≤ �(��) + �|∆�(�)|

���

���

. 

 
We multiply these inequalities by 1 − ���/�  for � ≠ ��  or 
�� for � = ��, and sum up over �� to obtain  
 

(� + �)�(��) − (� + �) �|∆�(�)|

���

���

≤ �1 − ��
�
�� � �(�)

�∈ℑ�

+ � ���(��)

���

���

≤ (� + �)�(��) + (� + �) �|∆�(�)|.

���

���

 

 
From the last two inequalities, we deduce 

  

−�(��) ≤ −
�1 − ��

�
�� ∑ �(�)�∈ℑ�

+ ∑ ���(��)���
���

� + �

+ �|∆�(�)|,

���

���

�(��) ≤
�1 − ��

�
�� ∑ �(�)�∈ℑ�

+ ∑ ���(��)���
���

� + �

+ �|∆�(�)|.

���

���

 

 
Let |�(��)| = ‖�‖ = max�∈��

|�(�)| . If �(��) ≥ 0 , we 
choose �� = ��. Then, 
 

(� + �)‖�‖ = (� + �)�(��)

≤ ��1 − ��
�
�� � �(�)

�∈ℑ�

+ � ���(��)

���

���

�

+(� + �) �|∆�(�)|.

���

���
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If �(��) < 0, we choose �� = ��, 
 

(� + �)‖�‖ = −(� + �)�(��)

≤ − ��1 − ��
�
�� � �(�)

�∈ℑ�

+ � ���(��)

���

���

�

+(� + �) �|∆�(�)|

���

���

≤ ��1 − ��
�
�� � �(�)

�∈ℑ�

+ � ���(��)

���

���

�

+(� + �) �|∆�(�)|.

���

���

 

 
Thus, in both cases, we have 
 

(� + �)‖�‖ ≤ ��1 − ��
�
�� � �(�)

�∈ℑ�

+ � ���(��)

���

���

�

+(� + �) �|∆�(�)|.

���

���

 

 
Making  use of the estimates (14) and (15), we obtain 

 

(� + �)‖�‖ ≤ �
2�

�
‖�‖ + �

+(� + �) ��� �1 +
2�

�
� + �� ‖�‖ + ��

= ��
2�

�
+ (� + �) �� �1 +

2�

�
� + ��� ‖�‖

+�(1 + � + �),

 

 
or 
 

�� + � − �
2�

�
− (� + �) �� + � + �

2�

�
�� ‖�‖

≤ �(1 + � + �).
 

 
By virtue of assumption A2,  the number  
 

�∗ ≔
�(1 + � + �)

� + � − �
2�
�

− (� + �) �� + � + �
2�
�

�
> 0, 

 
and each solution � of the operator equation �� = ��� for 
� ∈ (0,1) satisfies the inequality ‖�‖ ≤ �∗. 

Now, we take Ω = {� ∈ �: ‖�‖ < �}, where � > �∗ will 
be chosen later. For � ∈ �� ∩ Dom � , we have ‖�‖ = � , 
thus �  cannot be a solution of �� = ���  for � ∈ (0,1) . 
Obviously, Ω satisfies condition (a) of Lemma 1.  

Now, let � ∈ �Ω ∩ Ker � = �Ω ∩ ℝ, i.e., � is a constant 
in ℝ with |�| = �. For such �, 

 
����� = ��−� + �(�)��1 − ���/��� − �� + �, 
 

and  
 

�‖����‖ ≥ �� + � −
��

�
�1 − ��

�
��� � − �. 

 

By inequality (13), we can choose � > �∗  so large that  

 

�� + � −
��

�
�1 − ��

�
��� � > �. 

 
Hence, for � ∈ �Ω ∩ Ker � , we have �‖����‖ > 0  and 
���� ≠ 0, that is, condition (b) of Lemma 1 is satisfied.  

To prove (c), we define the mapping 
 

(���)�: Dom � × [0,1] → � 
 

by 
  

(���)� = ����� + (1 − �)���, 
 

where the operator  �� is defined by  
 

�����(�) = − �1 − ��
�
�� �(�),   � ≠ ��,

�����(��) = −���(��),   � ∈ ℤ.
 

 
For � ∈ �Ω ∩ Ker �, we have  
 

�(���)�� = ��−� + (1 − �)�(�)��1 − ���/���

−�� + (1 − �)�.
 

 
As above, we obtain  

  

��(���)��� ≥ �� + � −
��

�
�1 − ��

�
��� � − � > 0. 

 
This means that (���)�� for � ∈ �Ω ∩ Ker � and � ∈ [0,1]. 
From the homotopy invariance of the Brouwer degree, it 
follows that 
 

deg(���, Ω ∩ Ker �, 0)

= deg�����, Ω ∩ Ker �, 0� = −1 ≠ 0.
 

 
According to Lemma 1, (10)  has at least one � -periodic 

solution. This completes the proof of Theorem 1. ■   

V. CONCLUSIONS 

In the present paper, we derived a delay differential 
equation for the population size from an age-dependent 
model with a dominant age class. We provided this equation 
with impulse conditions and constructed its discrete-time 
counterpart using the semi-discretization method. We found 
sufficient conditions for the existence of a periodic solution 
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of the resulting difference problem, in the form of 
assumptions A1 and A2, by Mawhin’s continuation theorem. 
A1 assumes boundedness of the birth modulus, while A2 is a 
not too complicated algebraic equation. Similar methods can 
be used to find conditions for the existence of periodic 
solutions of equations arising in physics and chemistry.  
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